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AN EXTENSION OF THE WEIGHTED HARDY INEQUALITIES AND ITS
APPLICATION TO HALF-LINEAR EQUATIONS

Ryskul Oinarov, Khanym Ramazanova and Aydin Tiryaki

Abstract. In this paper we consider a suitable extension of the weighted Hardy
inequalities and by applying to second order half-linear equations we establish
some oscillation and nonoscillation results.

1. INTRODUCTION

In the literature many authors including G. H. Hardy, J. E. Littlewood and G. Pólya
[9] considered the continuous Hardy inequality:
If f is a nonnegative function whose p-th power is integrable over (0,∞) for p > 1
then f is integrable over the interval (0, x) for all x > 0, and∫ ∞

0

(
1
x

∫ x

0

f(t)dt

)p

dx <

(
p

p − 1

)p ∫ ∞

0

fp(x)dx.(1.1)

The constant
(

p

p − 1

)p

in the inequality (1.1) is sharp in the sense that it can not be

replaced by any smaller number.
The inequality (1.1) was proven by Hardy in his famous paper [7] and it has been

generalized and applied in analysis and in the theory of differential equations. In
1928, G. H Hardy [8] proved the estimate for some integral operators, from which the
following “weighted” modification of the inequality (1.1) is obtained:

(1.2)
∫ ∞

0

(
1
x

∫ x

0

f(t)dt

)p

xεdx <

(
p

p − ε − 1

)p ∫ ∞

0

fp(x)xεdx

for p > 1 and ε < p − 1, for all measurable nonegative functions f (see [7], Theo-

rem 330), where the constant
(

p

p − ε − 1

)p

is the best possible.
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During the last decades the inequality (1.2) has been developed to the form

(1.3)
(∫ b

a

(∫ x

a

f(t)dt

)q

u(x)dx

)1/q

≤ C

(∫ b

a

fp(x)v(x)dx

)1/p

with a, b real numbers satisfying −∞ ≤ a < b ≤ ∞ , u, v positive measurable weight
functions in (a, b) and p, q real parameters, satisfying 0 < q ≤ ∞ and 1 ≤ p ≤ ∞.
This is sometimes called the weighted form of the continuous Hardy inequality.

In 1961, R. R. Beesack [4] connected the validity of the corresponding inequality
(1.3) for the case p = q with the existence of a (positive) solution y of the nonlinear
ordinary differential equation

(1.4)
d

dx

(
v(x)

(
dy

dx

)p−1)
+ u(x)yp−1(x) = 0

which is in the fact the Euler-Lagrange equation for the functional

J(y) =
∫ ∞

0

[
y′(x)pv(x)− yp(x)u(x)

]
dx.

Although Beesack’s approach was not the variational one, his approach was extended
to a class of the inequalities containing the Hardy inequality as a special case [18].

In 1969, Tomaselli [27] followed Beesack’s approach via equations and he has
shown that the solvability of the equation (1.4) is not only sufficient but in a certain
sense even necessary for (1.3) to hold.

Note that, the Tomaselli’s paper [27] plays a fundamental role in the development
of the Hardy inequality. Some of these developments, generalizations and applications
have been described and discussed in the books [6, 7, 10, 11, 18]. A history of
developments on weighted Hardy inequalities can also be found in [10].

The main aim of this paper is to obtain a suitable extension of the weighted Hardy
inequalities, namely the “three-weighted Hardy type inequality.” By applying this in-
equality, we establish some oscillation and non-oscillation results related to half-linear
second order differential equation.

Applying the results of the weighted Hardy inequality (1.3) to the question oscilla-
tory and non-oscillatory half-linear equations are in the works [13, 16, 17].

2. MAIN RESULTS

Let I = (a, b), −∞ ≤ a < b ≤ ∞ , 1 < p < ∞ and p′ = p
p−1 . Assume that

w, r, ρ and ρ1−p′ locally summable on the interval I and w ≥ 0, r ≥ 0, ρ > 0 in I. Let
W 1

p (ρ, r; I) be the space of locally absolutely continuous functions f on I such that
the norm

‖f‖W 1
p (ρ,r) =

(∫ β

α

(
ρ|f ′|p + r|f |p)dt

)1/p
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is finite. In case ρ ≡ 1 and r ≡ 1, we put W 1
p (1, 1; I) ≡ W 1

p (I). Let ÅCp(I) =
{f ∈ W̊ 1

p (ρ, r; I)) : supp f ⊂ I}. We denote by W̊ 1
p (ρ, r; I) and W̊ 1

p (I) the closure
ÅCp(I) respectively in the space W 1

p (ρ, r; I) and W 1
p (I).

On the interval I0 = (α, β) such that a ≤ α < β ≤ b, we consider the following
inequalities

(2.1)
∫ β

α

w|f |pdt ≤ C

∫ β

α

(
ρ|f ′|p + r|f |p

)
dt, f ∈ W̊ 1

p (ρ, r; I0).

Here and the sequel I0 = (α, β).
Equivalent criteria for the validity of inequality (2.1) follows from the results of

[12, 14, 15, 19]. However, the equivalence coefficients of the best constant in (2.1)
are not pointed out in these works. Here we investigate inequality (2.1) by a method
that allows us to find the equivalence coefficients more precisely.

We begin with a lemma for our purpose.

Lemma 2.1. Let p > 1 be real number. Let g be defined as g(λ) =
λp

λp − 1
−

1
(λ − 1)p

on (1,∞) ⊂ R. Then there exists a λ0 := λ0(p) such that 1 < λ0 < 2 and

1
(λ0 − 1)p

=
λp

0

λp
0 − 1

and g(λ) > 0 for λ > λ0 and g(λ) < 0 for 1 < λ < λ0.

Proof. It is clear that g(2) > 0 and lim
λ→1+

λp(λ − 1)p

λp − 1
= 0. Using the definition of

limit there exists a δ > 0 for ε = 1 such that
λ̃p(λ̃ − 1)p

λ̃p − 1
< 1 or

λ̃p

λ̃p − 1
<

1
(λ̃ − 1)p

,

for every λ̃ ∈ (1, 1+ δ). Thus g(λ̃) < 0. Since the function g is continuous in (1,∞)
there exists a λ0 ∈ (1, 2) such that g(λ0) = 0, i.e.,

λp
0

λp
0 − 1

=
1

(λ0 − 1)p
or λp

0(λ0 − 1)p = λp
0 − 1.

Let us define the functions g1(λ) :=
1

(λ − 1)p
and g2(λ) :=

λp

λp − 1
which are

strongly decreasing in (1,∞). Then g2(λ) > g1(λ) at λ > λ0 and g1(λ) > g2(λ) at
1<λ<λ0.

Remark 1. Calculation shows: λ0(2) ≈ 1.8393, λ0(3) ≈ 1.9531, λ0(4) ≈
1.9834, λ0(5) ≈ 1.9936.

We introduce the following functions defined in I0 as follows;

(2.2) ϕ−(α, x) := ϕ−
r (α, x) = inf

α<t<x

{(∫ x

t
ρ1−p′(t)dt

)1−p

+
(∫ x

t
r(t)dt

)}
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and

(2.3) ϕ+(x, β) := ϕ+
r (x, β) = inf

x<t<β

{(∫ t

x
ρ1−p′(t)dt

)1−p

+
(∫ t

x
r(t)dt

)}
.

Let

(2.4)
Br,w := Br,w(α, β)

= sup
α<c<d<β

(∫ d

c

w(t)dt

)(
ϕ−(α, c) +

∫ d

c

r(t)dt + ϕ+(d, β)
)−1

.

Theorem 2.1. Let λ0 and λ be defined as in Lemma 2.1 and let a ≤ α < β ≤ b.
The inequality (2.1) holds if and only if Br,w(α, β) < ∞. Moreover the best constant
C in (2.1) satisfies

(2.5) Br,w ≤ C ≤ γpBr,w,

where

(2.6) γp = inf
1<λ<λ0

λp(λp − 1)
(λ − 1)p

.

Remark 2. Calculation shows: γ2 ≈ 11.0902, γ3 ≈ 54.9637, γ4 ≈ 238.802.

Remark 3. Let us notice that the value Br,w(α, β) can be obtained from the results
of [12, 19].

Proof. From the hypotheses assume that the inequality (2.1) holds for all f ∈
W̊ 1

p (ρ, r; I0). Let α < μ < c < d < τ < β. We introduce the function f0(t) defined
on I0 as the following

f0(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(∫ t

μ

ρ1−p′(s)ds

)(∫ c

μ

ρ1−p′(s)ds

)−1

μ ≤ t ≤ c ,

1 c < t < d,(∫ τ

t
ρ1−p′(s)ds

)(∫ τ

d
ρ1−p′(s)ds

)−1

d ≤ t ≤ τ ,

0 t ∈ (α, β)\(μ, τ).

It is clear that f0 ∈ ÅCp(α, β). Simple computations show that

(2.7)
∫ β

α
w(t)|f0(t)|pdt >

∫ d

c
w(t)dt,

(2.8)
∫ β

α

r(t)|f0(t)|pdt ≤
∫ τ

μ

r(t)dt,

and
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(2.9)

∫ β

α
ρ(t)|f ′

0(t)|pdt =
∫ c

μ
ρ(t)ρp(1−p′)(t)dt

(∫ c

μ
ρ1−p′(t)dt

)−p

+
∫ τ

d
ρ(t)ρp(1−p′)(t)dt

(∫ τ

d
ρ1−p(t)dt

)−p

=
(∫ c

μ
ρ1−p′(t)dt

)1−p

+
(∫ τ

d
ρ1−p′(t)dt

)1−p

.

We combine (2.7), (2.8) and (2.9) to obtain∫ d

c

w(t)dt < C

[(∫ c

μ

ρ1−p′(t)dt

)1−p

+
∫ c

μ
r(t)dt +

(∫ τ

d
ρ1−p′(t)dt

)1−p

+
∫ τ

d
r(t)dt +

∫ d

c
r(t)dt

]
.

Since the left hand side of the above inequality are independent of μ and τ and with
(2.2), (2.3), we have∫ d

c
w(t)dt < C

(
ϕ−(α, c) +

∫ d

e
r(t)dt + ϕ+(d, β)

)
,

or (∫ d

c
w(t)dt

)(
ϕ−(α, c) +

∫ d

c
r(t)dt + ϕ+(d, β)

)−1

< C.

Taking supremum of both sides for α < c < d < β, we have

(2.10) Br,w ≤ C.

Conversely, let Br,w < ∞. Without loss of generality we assume that f ∈ ÅCp(I0)
and f ≥ 0. Our purpose for λ > 1 and for k ∈ Z we define the set Tk := {t ∈ I0 :
f(t) > λk}. Since the function f is bounded, then there exists an n = n(f) ∈ Z such
that

(2.11) Tn 
= ∅ , Tn+1 = ∅ and I0 =
⋃
k∈Z

Tk =
⋃
k∈Z

ΔTk,

where ΔTk = Tk\Tk+1. Let n ≥ k > −∞. The set Tk is open. Then it is sum of
a countable number of disjoint intervals Jk

j = (ck
j , d

k
j ), i.e. Tk = ∪jJ

k
j . We denote

Mk
j = Tk+1 ∩ Jk

j . We see that Mk
j 
= ∅. We put αk

j = inf Mk
j and βk

j = sup Mk
j .

Considering also the definition of αk
j and βk

j , we obtain

(2.12) Tk+1 ⊂
⋃
j∈Z

(αk
j , βk

j ) , ΔTk ⊃
⋃
j∈Z

(ck
j , α

k
j ) ∪ (βk

j , dk
j ),
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f(αk
j ) = f(βk

j ) = λk+1 and f(ck
j ) = f(dk

j ) = λk.

By (2.12) and Hölder’s inequality, we can obtain the following

λk(λ − 1) = λk+1 − λk = f(αk
j )− f(ck

j ) =
∫ αk

j

ck
j

f ′(t)dt

≤
(∫ αk

j

ck
j

ρ1−p′(t)dt

)1/p′(∫ αk
j

ck
j

ρ(t)|f ′(t)|pdt

)1/p

or

(2.13) λpk

(∫ αk
j

ck
j

ρ1−p′(t)dt

)1−p

≤ 1
(λ − 1)p

∫ αk
j

ck
j

ρ(t)|f ′(t)|pdt.

Similarly, we have

(2.14) λpk

(∫ dk
j

βk
j

ρ1−p′(t)dt

)1−p

≤ 1
(λ − 1)p

∫ dk
j

βk
j

ρ(t)|f ′(t)|pdt.

Now, we are ready to estimate the left hand side of (2.1). By using (2.11), (2.12)
and considering that λk+1 < f(t) ≤ λk+2 for t ∈ ΔTk+1 and equality λpk = (1 −
λ−p)

∑k
i=∞ λpi, we obtain∫ β

α
w|f |pdt =

n−1∑
k=−∞

∫
ΔTk+1

w|f |pdt

≤
n−1∑

k=−∞
λp(k+2)

∫
ΔTk+1

wdt = λ2p
n−1∑

k=−∞
λpk

∫
ΔTk+1

wdt

= λ2p(1− λ−p)
n−1∑

k=−∞

(∫
ΔTk+1

wdt

k∑
i=−∞

λpi

)

= λp(λp − 1)
n−1∑

i=−∞
λpi

n−1∑
k=i

∫
ΔTk+1

wdt

≤ λp(λp − 1)
n−1∑

i=−∞
λpi

∫
Ti+1

wdt

≤ λp(λp − 1)
n−1∑

i=−∞
λpi
∑

j

∫ βi
j

αi
j

wdt.

From the definition (2.4) of Br,w and the definitions (2.2), (2.3) of functions ϕ−, ϕ+

and taking into account α < ci
j < αi

j , βi
j < di

j < β, we have
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(2.15)
∫ βi

j

αi
j

wdt ≤ Br,w

(
ϕ−(α, αi

j) +
∫ βi

j

αi
j

r(t)dt + ϕ+(βi
j, β)

)
,

(2.16) ϕ−(α, αi
j) ≤

(∫ αi
j

ci
j

ρ1−p′dt

)1−p

+
∫ αi

j

ci
j

r(t)dt

and

(2.17) ϕ+(βi
j, β) ≤

(∫ di
j

βi
j

ρ1−p′dt

)1−p

+
∫ di

j

βi
j

r(t)dt.

By using (2.15), (2.16) and (2.17) from the above inequality, we obtain

(2.18)

∫ β

α

w|f |pdt

≤ Br,wλp(λp − 1)
n−1∑

i=−∞
λpi
∑

j

(
ϕ−(α, αi

j) +
∫ βi

j

αi
j

r(t)dt + ϕ+(βi
j, β)

)

≤ Br,wλp(λp − 1)
{ n−1∑

i=−∞

∑
j

[
λpi

(∫ αi
j

ci
j

ρ1−p′dt

)1−p

+λpi

(∫ di
j

βi
j

ρ1−p′dt

)1−p]
+

n∑
i=−∞

λpi
∑

j

∫ di
j

ci
j

r(t)dt

}
.

On the other hand, by using (2.13), (2.14) and taking into account (2.12) we have
the following estimates

(2.19)

n−1∑
i=−∞

∑
j

[
λpi

(∫ αi
j

ci
j

ρ1−p′dt

)1−p

+ λpi

(∫ di
j

βi
j

ρ1−p′dt

)1−p ]

≤ 1
(λ − 1)p

n−1∑
i=−∞

∑
j

(∫ αi
j

ci
j

ρ|f ′|pdt +
∫ αi

j

βi
j

ρ|f ′|pdt

)

≤ 1
(λ − 1)p

n∑
i=−∞

∫
ΔTi

ρ|f ′|pdt =
1

(λ − 1)p

∫ β

α

ρ|f ′|pdt

and
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(2.20)

n∑
i=−∞

λpi
∑

j

∫ di
j

ci
j

rdt =
n∑

i=−∞
λpi

∫
Ti

rdt=
n∑

i=−∞
λpi

n∑
k=i

∫
ΔTk

rdt

=
n∑

k=−∞

∫
ΔTk

rdt

k∑
i=−∞

λpi =
1

1−λ−p

n∑
k=−∞

λpk

∫
ΔTk

rdt

≤ λp

λp − 1

n∑
k=−∞

∫
ΔTk

r|f |pdt

=
λp

λp − 1

∫ β

α
r|f |pdt.

Combining (2.19) and (2.20) with (2.18), we have

∫ β

α

w|f |pdt ≤ Br,wλp(λp − 1) max
{

1
(λ − 1)p

,
λp

λp − 1

}∫ β

α

(ρ|f ′|p + r|f |p)dt.

Since the first part of the above inequality is independent of λ > 1, the following
inequality can be obtained using Lemma 2.1,

β∫
α

w|f |pdt ≤ Br,w inf
λ>1

{
λp(λp − 1) max

{
1

(λ − 1)p
,

λp

λp − 1

}∫ β

α
(ρ|f ′|p + r|f |p)dt

}

= Br,w min
{

inf
1<λ<λ0

λp (λp − 1)
(λ − 1)p

, inf
λ≥λ0

λ2p

}∫ β

α
(ρ|f ′|p + r|f |p)dt

= γpBr,w

∫ β

α
(ρ|f ′|p + r|f |p)dt.

Thus the inequality (2.1) holds with C ≤ γpBr,w where C is the best constant
which together with (2.10) gives (2.5). This completes the proof.

Now, we consider the inequality

(2.21)
∫ β

α
w|f |pdt ≤ C

∫ β

α
ρ|f ′|pdt, f ∈ W̊ 1

p (ρ; I0)

where W̊ 1
p (ρ; I0) is the closure of ÅCp(I0) in the norm

‖f‖W 1
p (ρ) =

(∫ β

α
ρ|f ′(t)|pdt

)1/p

+ |f(x0)|,

and x0 ∈ I0 is a fixed point. In case r ≡ 0 from (2.2) and (2.3) we have
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ϕ−
0 (α, x) =

(∫ x

α
ρ1−p′(t)dt

)1−p

, ϕ+
0 (x, β) =

(∫ β

x
ρ1−p′(t)dt

)1−p

.

From the proof of the Theorem 2.1 follows

Theorem 2.2. Let a ≤ α < β ≤ b. The inequality (2.21) holds if and only if
Bw(α, β) < ∞. Moreover the best constant C in (2.3) satisfies

Bw ≤ C ≤ γ̃pBw,

where

Bw := Bw(α, β)

= sup
α<c<d<β

(∫ d

c

w(t)dt

)[(∫ c

α

ρ1−p′(t)dt

)1−p

+
(∫ β

d

ρ1−p′(t)dt

)1−p]−1

and
γ̃p = inf

1<λ

λp(λp − 1)
(λ − 1)p

.

Inequality (2.21) is the Hardy inequality in differential form. It is well studied
(see., e.g., [1, 11, 18]). Compared to previous studies, Theorem 2.2 gives a criterion
for the inequality (2.21), regardless of summability or nonsummability function ρ1−p′

at the ends of the interval I0.

3. APPLICATIONS OF WEIGHTED HARDY TYPE INEQUALITIES TO OSCILLATION RESULTS

OF HALF-LINEAR DIFFERENTIAL EQUATIONS

We consider the following second order differential equation on the interval I =
(a, b), −∞ ≤ a < b ≤ +∞:(

ρ(t)|y′|p−2y′
)′

+ v(t)|y|p−2y = 0,(3.1)

where 1 < p < ∞, ρ and v are continuous functions on I . Moreover ρ(t) > 0 for any
t ∈ I . When p = 2, the equation (3.1) becomes the linear Sturm-Liouville equation

(3.2)
(

ρ(t)y′
)′

+ v(t)y = 0.

The investigation on qualitative properties of the solution of this equation was
started by J. Sturm [21]. When p 
= 2, the equation (3.1) is called half-linear because
the set of its solutions has the property of homogeneity but not additivity.

By a solution of (3.1), we mean a function y : I ⊂ R → R such that y and
ρ|y′|p−2y, are continuously differentiable and satisfy (3.1) for t ∈ I . A nontrivial
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solution of equation (3.1) is called oscillatory at t = b (t = a), if it has infinite number
of zeros converging to b(a), otherwise it is called nonoscillatory at t = b (t = a).
Equation (3.1) is called oscillatory (nonoscillatory), if all its nontrivial solutions are
oscillatory (nonoscillatory). Since Sturm Theorems hold for equation (3.1), Eq. (3.1) is
oscillatory (nonoscillatory), if one of its nontrivial solution is oscillatory(nonoscillatory)
[5].

To investigate the oscillation properties of (3.1) it is proper to use the notations such
as conjugacy and disconjugacy. Equation (3.1) is called disconjugate on the interval
(α, β) ⊂ I , if of its any nontrivial solution has no more than one zero on (α, β).
Otherwise it is called conjugates on (α, β).

Currently, there is plenty of work devoted to the study of the oscillatory solutions
of the equation (3.1) using different methods [2, 3, 22, 23, 24, 25, 26]. Many of the
results on oscillatory solutions of (3.1) are related to the integrability of the coefficient
functions ρ and v. Some of these results are given in terms of the global integral
functions ρ, v and some of them depend on whether or not the functions ρ1−p′ and v
are integrable on the end points of the integral I (see, e.g., [5, Sections 2 and 3]).

In [20], Rehak discusses that integrability of ρ1−p′ is not required at the ends of the
interval I to study the behavior of solution of (3.1). This gave us the idea that behavior
oscillation of (3.1) can be studied whether or not ρ1−p′ and v are integrable at the
ends of the interval I . On the other hand, when the function v in (3.1) is nonpositive,
then equation (3.1) is nonoscillatory. Therefore the oscillation of (3.1) depends of the
positive part of v. This raises the following question: What are the contributions of
negative and positive part of v and integrability or nonintegrability of ρ1−p′ at the ends
of the interval I for the oscillation of (3.1)? The same question also arises in the study
of perturbed equations. Our study is associated with the above issues.

Consider the equation

(3.3)
(

ρ(t)|y′|p−2y′
)′

+ w(t)|y|p−2y − r(t)|y|p−2y = 0, t ∈ I,

where w, r nonnegative continuous functions on I . Equation (3.1) is a special case
of equation (3.3), since v = v+ − v−, where v+(t) = max(0, v(t)) and v−(t) =
max(0,−v(t)) for t ∈ I . Equation (3.3) can be considered as a perturbation of the
nonoscillation Equation

(3.4)
(

ρ(t)|y′|p−2y′
)′

− r(t)|y|p−2y = 0.

One of the fundamental results in the qualitative theory of half-linear equation is the
“Roundabout theorem” [5]. Our study of the equations (3.1) and (3.3) is based on the
variational principle derived from “Roundabout theorem.” According to Theorem 5.8.1
from [5] we have the following result.
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Lemma 3.2. Let a < α < β < b. Equation (3.1) is disconjugate on I0 = (α, β) if
and only if

F (f ; α, β) ≡
∫ β

α

(
ρ(t)|f ′|p − v(t)|f |p

)
dt ≥ 0(3.5)

for all f ∈ W̊ 1
p (I0).

Remark 4. If in Lemma 3.1 the interval (α, β) is replaced by the closed interval
[α, β] then by Theorem 1.2.2 from [5] the sign ≥ in the inequality (3.5) is replaced by
the symbol >.

Since v ∈ C[α, β] and f ∈ C[α, β], then
∫ β
α v(t)|f(t)|pdt < ∞. Thus the inequal-

ity (3.5) is equivalent to∫ β

α
v(t)|f(t)|pdt ≤

∫ β

α
ρ(t)|f ′(t)|pdt(3.6)

for all f ∈ W̊ 1
p (I0).

On the other hand, since w ∈ C[α, β] and r ∈ C[α, β] then in case v = w − r the
inequality (3.6) are equivalent to∫ β

α
w(t)|f(t)|pdt ≤

∫ β

α

(
ρ(t)|f ′(t)|p + r(t)|f(t)|p

)
dt(3.7)

for all f ∈ W̊ 1
p (I0).

We have the following

Lemma 3.3. Let a < α < β < b. Then W̊ 1
p (I0) = W̊ 1

p (ρ, r; I0) and their norms
are equivalent.

Proof. Let γp
1 = max{maxα≤t≤β ρ(t), maxα≤t≤β r(t)}. Then it is obvious that

‖f‖W 1
p (ρ,r;I0) ≤ γ1‖f‖W 1

p (I0), f ∈ W̊p(I0)

and, hence

W̊ 1
p (I0) ↪→ W̊ 1

p (ρ, r; I0).(3.8)

Since ρ > 0 on I and ρ ∈ C[α, β] then∫ β

α
|f ′|pdt ≤ max

α≤s≤β

(
ρ(s)

)−1
∫ β

α
ρ|f ′|pdt.(3.9)
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Using f(α) = f(β) = 0 for f ∈ ÅCp(I0) and f(t) =
∫ t
α f ′(s)ds for all t ∈ I0 and by

Hölder’s inequality for every f ∈ ÅCp(I0) we have

(3.10)

∫ β

α
|f(t)|pdt =

∫ β

α

∣∣∣∣∫ t

α
f ′(s)ds

∣∣∣∣p dt

≤
∫ β

α

(∫ t

α
ρ1−p′(s)ds

)p−1

dt

(∫ β

α
ρ(t)|f ′(t)|pdt

)
≤ (β − α)

(∫ β

α
ρ1−p′

)p−1 ∫ β

α
ρ|f ′|pdt.

By using (3.9) and (3.10), we have∫ β

α

|f(t)|pdt +
∫ β

α

|f ′(t)|pdt ≤ γ2

(∫ β

α

ρ(t)|f ′(t)|pdt

)
(3.11)

for all f ∈ ÅCp(I0), where

γp
2 = max

{
(β − α)

(∫ β

α
ρ1−p′(t)dt

)p−1

, max
α≤s≤β

(
ρ(s)

)−1
}

.

Since the set ÅCp(I0) is dense in W̊ 1
p (ρ, r; I0), then the inequality ‖f‖W 1

p (I0) ≤
γ2‖f‖W 1

p (ρ,r;I0) holds for all f ∈ W 1
p (ρ, r; I0). Hence

W̊ 1
p (ρ, r; I0) ↪→ W̊ 1

p (I0).(3.12)

Then by (3.8) and (3.12) we have W̊ 1
p (ρ, r; I0) = W̊ 1

p (I0) and their norms are equiva-
lent.

By using Lemmas 3.1 and 3.2, we have the following result.

Theorem 3.1. Let a < α < β < b. Then the equation (3.3) is disconjugate on the
interval I0 if and only if∫ β

α
w(t)|f(t)|pdt ≤

∫ β

α

(
ρ(t)|f ′(t)|p + r(t)|f(t)|p

)
dt(3.13)

for all nontrivial f ∈ W̊ 1
p (ρ, r; I0).

Remark 5. According to Remark 3, if in Theorem 3.1 the interval (α, β) is replaced
by the closed interval [α, β] then the sign ≤ in the inequality (3.13) is replaced by the
symbol <.
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Following Theorem 3.1, we can extend the above result to the general interval I ,
where the functions ρ1−p′ , r and w can not be summable on the interval I .

Theorem 3.2. Let a ≤ α < β ≤ b. The equation (3.3) is disconjugate on the
interval I0 if and only if the inequality (3.13) holds.

Proof. We will prove this by a contradiction. Suppose that (3.13) holds but
the equation (3.3) is conjugate on (α, β) i.e. if the solution y of (3.3) have conjugate
points t1, t2 such that α < t1 < t2 < β, then there exist c ∈ (α, t1) and d ∈ (t2, β)
such that the equation (3.3) is conjugate on (c, d) ⊂ (α, β). From Theorem 3.1, there
exists f̃ ∈ W̊ 1

p

(
ρ, r; (c, d)

)
= W̊ 1

p (c, d) such that∫ d

c

w|f̃|pdt >

∫ d

c

(
ρ|f̃ ′|p + r|f̃ |p

)
dt.

Define
˜̃
f(t) =

{
f̃(t) t ∈ (c, d) ,

0 t ∈ (α, β)\(c, d).

Then ˜̃
f ∈ W̊ 1

p

(
ρ, r; (α, β)

)
and ˜̃

f satisfies the following∫ β

α
w| ˜̃f |pdt >

∫ β

α

(
ρ| ˜̃f ′|p + r| ˜̃f |p

)
dt

which contradicts with (3.13). Hence equation (3.3) is disconjugate on I = (α, β).
Conversely, we assume that the equation (3.3) is disconjugate on I but the inequality

(3.13) does not hold. Then (3.3) is also disconjugate on all (c, d) ⊂ (α, β). Then for
arbitrary (c, d) ⊂ (α, β) (but (c, d) 
= (α, β)), by Theorem 3.1 we have

(3.14)
∫ d

c
w|f |pdt ≤

∫ d

c

(
ρ|f ′|p + r|f |p

)
dt, for all f ∈ W̊ 1

p

(
ρ, r; (c, d)

)
.

Since supp f ⊂ (α, β) for f ∈ ÅCp(α, β), then there exists (c, d) ⊂ (α, β) such that
supp f ⊂ (c, d). Then from (3.14) we obtain that the inequality (3.13) holds for all
f ∈ ÅCp(α, β). Because the set ÅCp(α, β) dense in W̊ 1

p

(
ρ, r; (α, β)

)
then inequality

(3.13) holds for all f ∈ W̊ 1
p

(
ρ, r; (α, β)

)
which contradicts with our assumption. Thus

the proof of Theorem 3.2 is completed.

Theorems 2.1 and 3.2 give the following criterion, for the equation (3.3).

Theorem 3.3. Let a ≤ α < β ≤ b. Then,
(i) for the disconjugacy of equation (3.3) on the interval I0 = (α, β), the necessary

condition is Br,w(α, β) ≤ 1 and the sufficient condition is γpBr,w(α, β) ≤ 1.
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(ii) for the conjugacy of equation (3.3) on the interval I0 = (α, β), the necessary
condition is γpBr,w(α, β) > 1 and the sufficient condition is Br,w(α, β) > 1.

Proof. Assertions (i) and (ii) are equivalent. We prove assertion (ii). Let
the Equation (3.3) is conjugate on the interval I0 = (α, β). Then by Theorem 3.2
the inequality (3.13) does not hold. Hence C > 1, where the best constant C is
given in (2.1). Then in view of (2.5) we obtain γpBr,w(α, β) > 1. Conversely, if
Br,w(α, β) > 1, then from (2.5) we have C > 1 for the best constant C in (2.1).
Therefore the inequality (3.13) does not hold. Then by using Theorem 3.2 the equation
(3.3) is conjugate on the interval I0 = (α, β).

From Theorem 3.3 we have the following:

Corollary 3.1. Let a ≤ α < β ≤ b. If there exist α < c < d < β such that∫ d

c
w(t)dt > ϕ−(α, c) +

∫ d

c
r(s)ds + ϕ+(d, β)

then the equation (3.3) is conjugate on the interval I0 = (α, β). If the equation (3.3)
is conjugate on the interval I0 then there exists an interval (c, d) ⊂ I0 such that

(3.15)
∫ d

c

w(t)dt > γ−1
p

(
ϕ−(α, c) +

∫ d

c

r(s)ds + ϕ+(d, β)
)

.

If the equation (3.3) is disconjugate on the interval I0 then

(3.16)
∫ d

c
w(t)dt ≤ ϕ−(α, c) +

∫ d

c
r(s)ds + ϕ+(d, β)

for all an interval (c, d) ⊂ I0.

Remark 6. Let a < α < β < b in Corollary 3.1. If the interval I0 is replaced by the
closed interval [α, β] then in Corollary 3.1 the (c, d) ⊂ I0 is replaced by [c, d] ⊆ [α, β]
and all sign > (resp.≤) is replaced by symbol ≥ (resp.<).

Remark 7. Corollary 3.1 shows that the local behavior of the perturbation w can
turn the disconjugate equation (3.4) to the conjugate equation (3.3). For example, let
α < c < d < β and w = μw1, where w1 is a continuous function on I0 = (α, β) such
that supp w1 ⊂ (c, d) and

∫ d
c w1(t)dt = 1. Then, for μ > ϕ−(α, c) +

∫ d
c r(s)ds +

ϕ+(d, β) the equation (3.3) is conjugate on the interval I0.

In the next theorem we give a criterion of oscillatory or nonoscillatory of equation
(3.3) without assuming the integrability or not integrability of functions ρ1−p′ at the
end of the interval I .
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Theorem 3.4. If limα→b Br,w(α, b) > 1 (limβ→a Br,w(a, β) > 1), then the equa-
tion (3.3) is oscillatory at t = b (t = a). If there exists an α ∈ I (β ∈ I) such that
γpBr,w(α, b) ≤ 1 (γpBr,w(a, β) ≤ 1) then the equation (3.3) is nonoscillatory at t = b

(t = a).

Proof. We prove only for t = b, and for t = a, the proof is similar. Let
limα→b Br,w(α, b) > 1. Then there exists a sequence

{
αk

}∞
k=1

such that limk→∞ αk =
b, Br,w(αk, b) > 1, and by Theorem 3.3 the equation (3.3) on the interval (α, b) has
at least two conjugate points, i.e. there is a nontrivial solution of the equation (3.3)
with two zeros in this interval. Then there exists a subsequence

{
α̃n

}∞
n=1

⊂ {αk

}∞
k=1

such that for each interval (α̃n, α̃n+1) there exists a nontrivial solution of the equation
(3.3) which has two zeros in it. Consequently, by Sturm theory, there is a nontrivial
solution of the equation (3.3) having at least one zero xn ∈ (α̃n, α̃n+1) at each interval
(α̃n, α̃n+1). Since limn→∞ αn = b, then limn→∞ xn = b. Hence this solution is
oscillatory at t = b, and therefore, all solutions of the equation (3.3) is oscillatory, i.e.
Equation (3.3) is oscillatory at t = b.

Now, suppose that there exists a point α ∈ I such that γpBr,w(α, b) ≤ 1. Then by
Theorem 3.3 equation (3.3) is disconjugate on the interval (α, b), i.e. all non-trivial
solutions of the equation (3.3) does not have more than one zero in the interval (α, b).
Hence the equation (3.3) is nonoscillatory at t = b.

From Theorems 3.3 and 3.4 we have the following:

Corollary 3.2. If there exist the sequences of numbers αk, ck, dk, k ≥ 1 such that
a < αk < ck < dk < ck+1 < b, αk → b as k → ∞ and∫ dk

ck

w(t)dt > ϕ−
r (αk, ck) +

∫ dk

ck

r(t)dt + ϕ+
r (dk, b)

for all k ≥ 1 then the equation (3.3) is oscillatory at t = b; If the equation (3.3) is
oscillatory at t = b then there exist the sequences of numbers αk, ck, dk, k ≥ 1 such
that a < αk < ck < dk < ck+1 < b, αk → b as k → ∞ and∫ dk

ck

w(t)dt > γ−1
p

(
ϕ−

r (αk, ck) +
∫ dk

ck

r(t)dt + ϕ+
r (dk, b)

)
.

Remark 8. Under the conditions of Corollary 3.2, we set w =
∑∞

k=1 μkwk, where
μk > 0 and the function wk, k ≥ 1 is continuous on I and satisfy the conditions
supp wk ⊂ (ck, dk) and

∫ dk

ck
wk(t)dt = 1. If μk > ϕ−

r (αk, ck)+
∫ dk

ck
r(t)dt+ϕ+

r (dk, b)
for all sufficiently large k, then the equation (3.3) oscillatory at t = b, i.e. repetitive
impulse perturbations translate nonoscillatory equation (3.4) to the oscillatory equation
(3.3).
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In particular, from Theorems 3.3, 3.4 and Corollaries 3.1, 3.2 we have

Theorem 3.5. Let a ≤ α < β ≤ b. If Bv−,v+(α, β) > 1, then equation (3.1) is
conjugate on the interval I0 = (α, β) and if the equation (3.1) is conjugate on the
interval I0 = (α, β) then γpBv− ,v+(α, β) > 1.

If γpBv− ,v+(α, β) ≤ 1, then the equation (3.1) is disconjugate on (α, β) and if the
equation (3.1) is disconjugate in (α, β) then Bv− ,v+(α, β) ≤ 1.

Theorem 3.6. If limα→b Bv− ,v+(α, b) > 1 (limβ→a Bv− ,v+(a, β) > 1), then the
equation (3.1) is oscillatory at t = b (t = a). If there exists an α ∈ I (β ∈ I) such that
γpBv− ,v+(α, b) ≤ 1 (γpBv−,v+(a, β) ≤ 1) then the equation (3.1) is nonoscillatory at
t = b (t = a).

Corollary 3.3. Let a ≤ α < β ≤ b.
(i) If there exist α < c < d < β such that∫ d

c
v+(t)dt > ϕ−

v−(α, c) +
∫ d

c
v−(s)ds + ϕ+

v−(d, β)

or ∫ d

c

v(t)dt > ϕ−
v−(α, c) + ϕ+

v−(d, β)

then the equation (3.1) is conjugate on the interval I0 = (α, β).
(ii) If the equation (3.1) is conjugate on the interval I0 then there exists an interval

(c, d) ⊂ I0 such that∫ d

c
v+(t)dt > γ−1

p

(
ϕ−(α, c) +

∫ d

c
v−(s)ds + ϕ+(d, β)

)
.

(iii) If the equation (3.1) is disconjugate on the interval I0 then∫ d

c

v(t)dt ≤ ϕ−(α, c) + ϕ+(d, β)

for all interval (c, d) ⊂ I0.

Remark 9. Let a < α < β < b in Theorem 3.5 and Corollary 3.3. If the interval
I0 is replaced by the closed interval [α, β] then in Theorem 3.5 and Corollary 3.3 the
(c, d) ⊂ I0 is replaced by [c, d] ⊆ [α, β] and all sign > (≤) is replaced by symbol ≥
(<).

Corollary 3.4. Let b = ∞. Equation (3.1) is oscillatory at t = ∞ if any one of
the conditions holds:
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(i) there exist the sequences of numbers αk, ck, dk, k ≥ 1 such that a < αk <

ck < dk < ck+1 < b, αk → b as k → ∞ and∫ dk

ck

v(t)dt > ϕ−
v−(αk, ck) + ϕ+

v−(dk,∞)

for all k ≥ 1;
(ii) for some h > 0

lim sup
c→∞

∫ c+h
c v(t)dt

ϕ−(c− h, c) + ϕ+(c + h, b)
> 1.

Remark 10. Under the conditions of assertion (i) of Corollary 3.4 if v−(t) =
0, ∀t ∈ (ck, dk), ∀k ≥ 1 and∫ dk

ck

v+(t)dt > ϕ−
v−(αk, ck) + ϕ+

v−(dk,∞)

for all sufficiently large k then the equation (3.1) is oscillatory at t = ∞.

In the case of v ≥ 0 from Theorems 3.5 and 3.6 we get the following results:

Theorem 3.7. Let a ≤ α < β ≤ b and v ≥ 0. If Bv(α, β) > 1 then the equa-
tion (3.1) is conjugate on the interval I0, and if limα→b Bv(α, b) > 1 the equation (3.1)
is oscillatory at t = b. If γ̃pBv(α, β) ≤ 1, then the equation (3.1) is disconjugate on
the interval I0 and if there is a point c ∈ I such that γ̃pBv+(c, b) ≤ 1 then the
equation (3.1) is nonoscillatory at t = b.

The general results for half-linear equations in Theorems 3.5, 3.6 and 3.7 and
Corollaries 3.2 and 3.3 also hold for the linear equation when we assert p = 2.
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