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BIRATIONAL MAPS OF 3-FOLDS

Jungkai Alfred Chen

Abstract. We show that a 3-fold terminal flip or divisorial contraction can be
factored into a sequence of flops, blow-downs to a smooth curve in a smooth
3-fold or divisorial contractions to points with minimal discrepancies.

1. INTRODUCTION

A main task of birational geometry is to find a good model inside a birational
equivalence class and study the geometry of these models. This goal can be achieved
by the minimal model program. The minimal model conjecture asserts that for any
given nonsingular or mildly singular projective variety, there exists a minimal model
or a Mori fiber space after a sequence of flips and divisorial contractions. Moreover,
different minimal models are connected by a sequence of flops. Therefore divisorial
contractions, flips and flops are the elementary birational maps of the minimal model
program.

Together with some recent advances on the geometry of 3-folds, for example, the
recent result that a 3 fold of general type has a birational m-canonical maps for m ≥ 73,
and the canonical volume ≥ 1

2660 (cf. [3, 4]), one might hope to build up an explicit
classification theory for 3-folds similar to the theory of surfaces by using the minimal
model program explicitly. It is thus natural to ask what explicit information we have
about the birational maps of 3-fold minimal model program.

Moreover, explicit factorization of birational maps in dimension three is of funda-
mental importance in understanding new phenomena of higher dimensional algebraic
geometry. There are various newly developed invariants such as derived categories,
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Gromov-Witten invariants from the 1990s onward. Detailed studies of new invariants
in the case of 3-folds are expected to provide fruitful examples and hence are helpful
to understand higher dimensional geometry. Even though the minimal model program
for 3-folds was established more than 25 years ago by Mori and others, the more de-
tailed and explicit description of birational maps in the 3-dimensional minimal model
program has only recently became available, and is still not completely satisfactory.

We give a quick tour of known results: Mori and then Cutkosky classified bira-
tional maps from a nonsingular and Gorenstein 3-fold respectively [20, 7], and Tziolas
has a series of works on divisorial contractions to curves passing through Gorenstein
singularities (cf. [25, 26, 27]). The recent project of Mori and Prokhorov (cf. [22, 23])
on extremal contractions provide a treatment which is valid for divisorial contractions
to curves and conic bundles as well. They completely classified divisorial contractions
to curves of type IA, IC, and IIB. Divisorial contractions to points are probably the
best understood, due mainly to works of Kawamata, Hayakawa, Markushevich and
Kawakita (cf. [8, 9, 10, 11, 12, 13, 14, 15, 16, 19]). Also, the structure of flops
are studied in Kollár’s article [17]. Flips are still quite mysterious except for some
examples in [1, 18] and toric flips [24].

Instead of classifying birational maps completely, we work on the problem of fac-
torizing birational maps as a composite of simplest possible transformations. Such a
factorization can be very useful for comparing various invariants between birational
models. It is also useful in classifying birational maps. In previous joint work with
Christopher Hacon [5], we were able to factorize flips and divisorial contractions to
curves. Our previous work [2] factorizes divisorial contractions to a point of index
r > 1 with non-minimal discrepancy

a

r
>

1
r

.
The purpose of this note is to complete the factorization program. We show that

one can factor 3-fold birational maps in minimal model program into some simplest and
explicit ones by combing previous work [2, 5] and considering divisorial contraction
to a point of index r = 1.

Definition 1.1. A birational map f : X ��� Y between 3-folds is factorizable if it
admits a factorization into a sequence of birational maps:

X = X0 ��� X1 ��� · · · ��� Xn = Y,

such that each map Xi−1 ��� Xi is one of the following
(1) a divisorial contraction (or its inverse) to a point Pi ∈ Xi with minimal discrep-

ancy;
(2) a blowdown to a smooth curve in a smooth neighborhood;
(3) a flop.

Theorem 1.2. (Main Theorem). A 3-fold divisorial contraction f : X → W (resp.
flip φ : X ��� X+) is factorizable.
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Remark 1.3. Given a divisorial contraction to a point f : X → W � P with
exceptional divisor E , we can write KX = f∗KW + aE . We say that the contraction
f has discrepancy a.

Given P a terminal singularity of index r, the minimal discrepancy among all
divisorial contractions to P is

1
r

by [19] and [16]. If P ∈ W is a nonsingular point,
then the minimal discrepancy among all contractions to P is 2 by [11].

The key observation is that for any more complicated divisorial contraction X → W
(resp. flip X ��� X+), there exists one or more singular points of index r > 1 on
X . By choosing Q ∈ X a point of higher index and choosing a divisorial extraction
Y → X from the point Q ∈ X with minimal discrepancy 1

r , we prove that there exists
a diagram of birational maps:

(1.1)

Y Y �

X X �

W

�
g

� � � � � � � � � � � � � � � � � ��

�
g�

�
�

��
f

�
�

�� f �

where Y ��� Y � consists of a sequence of flips and flops, g� is a divisorial contraction,

and f � is also a divisorial contraction (resp. f � is the flipped map). We thus refer to
(1.1) as a factoring diagram for X → W (resp. X ��� X+).

The strategy of proof is as follows. If f is a weighted blowup, then the factoring
diagram can be constructed using toric geometry and a few computations. This was
the approach in [2]. For the remaining divisorial contractions which are not known to
be weighted blowups, there is usually a unique non-Gorenstein singularity P ∈ X of
pretty high index. By choosing a divisorial contraction g : Y → X to P with minimal
discrepancy, one verifies that the intersection numbers change rather little. Computation
shows that −KY/W is nef and one can thus play the so-called 2-ray game to obtain
the factoring diagram.

Moreover, by considering depth (introduced in [5]) together with the discrepancy,
one sees that Y, Y � and X � have milder singularities in some sense. Our result then
follows by induction using the factoring diagram.

The reader may find that our work here has similar flavor to that of Corti in 3-
fold Sarkisov Program, in which Corti proved that birational maps between Mori fiber
spaces can be factorized into Sarkisov links (cf. [6]). We expect that some log version
of our current work will be useful in various studies of geometry of 3-folds including
the Sarkisov Program.
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2. NOTATIONS AND PRELIMINARY

We always work on complex 3-folds with Q-factorial singularities (except the image
of a flipping contraction). Recall that 3-fold terminal singularities of index 1 are isolated
cDV points and terminal singularities of index r > 1 are classified by Mori (cf. [21]).

This work can be considered as a continuation of our previous work [2, 5]. We
usually adapt the constructions and notations there.

Given a 3-fold terminal singularity P ∈ X of index r > 1, by [8, 9], there exists
a partial resolution

(2.1) Xn → · · · → X1 → X0 = X

such that Xn has Gorenstein singularities and each Xi+1 → Xi is a divisorial contrac-
tion to a point Pi ∈ Xi of index ri > 1 with discrepancy 1

ri
. The definition of depth

was introduced in [5].

dep(P ∈ X) := min{n ∣∣ Xn → X � P is a partial resolution as in (2.1)}.

The following properties of depth are useful.

Proposition 2.1. The following properties of depth holds.

(1) Let φ : X ��� X+ be a flip (resp. flop). Then dep(X) > dep(X+) (resp.
dep(X) = dep(X+)).

(2) Let f : X → W be a divisorial contraction to a curve. Then dep(X) ≥ dep(W ).
Equality holds if and only if dep(X) = dep(W ) = 0.

(3) Let f : X → W be a divisorial contraction to a point. Then dep(X) + 1 ≥
dep(W ).

Proof. All the statements were proved in [5, Propositions 2.15, 3.5, 3.6] except
for the strict inequality for divisorial contractions to curves when dep(X) > 0. Recall
that by [5], there is a factoring diagram

Y Y �

X X �

W

�
g

� � � � � � � � � � � � � � � � � ��

�
g�

�
�

��
f

�
�

�� f �
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such that Y → X is a divisorial contraction to a point Q in X of higher index point
r(Q ∈ X) > 1 and discrepancy 1

r , and dep(Y ) = dep(X)−1. Moreover, Y � → X � is
a divisorial contraction to a curve and X � → W is a divisorial contraction to a point.

Suppose that dep(X) = 1. Then dep(W ) > 0 would imply that dep(W ) = 1,
since dep(X) ≥ dep(W ) (cf. [5, Proposition 3.6]). Then by definition of depth, it is
easy to see that W has only one quotient singularity of type 1

2 (1, 1, 1). It follows that
X → W is the weighted blowup with weights v = 1

2 (1, 1, 1) by [16], which is absurd.
We thus conclude that dep(W ) = 0 < dep(X).

In general dep(X) = d > 1. Then dep(Y �) ≤ dep(Y ) = d − 1. By induction, one
has dep(X �) < dep(Y �) ≤ d − 1. It follows that dep(W ) ≤ dep(X �) + 1 < d by [5,
Proposition 2.15].

3. DIVISORIAL CONTRACTIONS TO CURVES

The purpose of this section is to factorize 3-fold divisorial contraction to curves.
Let f : X → W be a divisorial contraction to a curve Γ ⊂ W such that X has at worst
terminal Gorenstein singularities. By [7, 20], it is known that W is smooth near Γ
and Γ ⊂ W is locally a plane curve. Moreover, f is the blowup of Γ over the general
point.

If Γ is a nonsingular curve, then f : X → W is nothing but the blowups of Γ. If the
curve Γ is singular at o, then one can factorize the divisorial contraction f : X → W
by the factoring diagram.

Proposition 3.1. Let Γ ⊂ W be a singular plane curve and suppose that τ =
multoΓ ≥ 2. Then there is a factoring diagram (1.1) such that

(1) Y ��� Y � consists of a sequence of flops;

(2) f � is the weighted blowup along o ∈ W with weight (1, 1, τ − 1);
(3) g� is the blowup of X � of Γ� over the general point, where Γ� is the proper

transform of Γ in X �;

(4) the induced map Γ� → Γ is isomorphic to the blowup of Γ at o;
(5) g is a divisorial contraction to a singular point Q ∈ X of type cA with discrep-

ancy 1.

Proof. Recall that a weighted blowup for a toric variety is obtained by barycentric
subdivision of its cone along a primitive vector v, with exceptional divisor correspond-
ing to the vector v. Also a weighted blowup for a complete intersection in a toric
variety is considered to be the induced map from its proper transform. For detailed
description, see [2] for example.
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By shrinking W , we may assume that W is an open subset in C3, Γ = (x3 =
h(x1, x2) = 0) ⊂ W ⊂ C3 and o ∈ Γ is the only singular point of Γ. Instead, we
consider another embedding W ↪→ C4 that W = (x4 − h(x1, x2) = 0).

We consider towers of weighted blowups X2
πg→ X1

πf→ X0, where X0 = C4, πg (resp
πf ) are weighted blowup along the vector v2 = (1, 1, τ − 1, τ) (resp v1 = (0, 0, 1, 1)).
More explicitly, πf is the blowup of X0 along Σ := (x3 = x4 = 0) and X1 is covered
by two affine pieces U3 ∪ U4. One sees also that πg is the weighted blowup over the
origin of U3 with weights (1, 1, τ − 1, 1).

Now Γ = W ∩ Σ and the given divisorial contraction f : X → W coincides with
the induced map πf |X . On X , there is a unique singularity Q3 of cA type locally given
by x3x4 − h(x1x2) = 0. Moreover, let Y be the proper transform of X in X2. The
induced map g : Y → X , which is the weighted blowup with weights (1, 1, τ − 1, 1)
over Q3, is clearly a divisorial contraction to Q3 with discrepancy 1.

Let l := f−1(o) ∼= P1 and lY be the proper transform of l in Y . It is easy to see
that l · KX = −1 and lY · KY = 0. We remark that there is only one singularity on
Y , which is a quotient singularity of index τ − 1 and is not contained in lY . By the
same argument in [5, Theorem 3.3], one has a factoring diagram (1.1) and a tower of
divisorial contractions Y � → X � → W .

On the other hand, we may consider Y ′ → X ′ → W by weighted blowup with
vector v2 = (1, 1, τ − 1, τ) and then v1 = (0, 0, 1, 1). By the same argument as in [2,
Theorem 2.7], the tower Y ′ → X ′ → W is isomorphic to Y � → X � → W .

Let Γ� be the proper transform of Γ in X �. Computation shows that Γ� → Γ are
isomorphic to the blowup over o ∈ Γ. Moreover, Y � → X � is the blowup of Γ� over
the general point. The only singularity on X � is a quotient singularity Q�

3 of index
τ −1 and Γ� does not contains Q

�
3. Therefore dep(X �) = dep(Y �) = τ −1 = dep(Y ).

It follows that Y ��� Y � consists of a sequence of flops only by Proposition 2.1. This
completes the proof.

4. DIVISORIAL CONTRACTIONS TO POINTS

Divisorial contractions to points were intensively studied by Kawamata, Hayakawa,
and Kawakita [8, 9, 11, 12, 13, 14, 15, 16]. We give a brief summary of the known
classification.

• If f : X → W � P is a divisorial contraction to a point P ∈ W of index r > 1
with discrepancy a

r ≥ 1
r , then f is completely classified. Any of these can be

realized as a weighted blowup explicitly (cf. [8, 9, 14, 15, 16]).
• If f : X → W � P is a divisorial contraction to a point P ∈ W of index r = 1

with discrepancy a > 1, then f is one of cases in the following Table A. Note that
in the case Ia, f is the weighted blowup with weight (1, m, n) and discrepancy
a = m + n.
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Table A.
type P ∈ W discrepancy w. blowup reference
Ia nonsingular m + n Yes [11, Theorem 1.1]
Ib cA a ≥ 1 Yes [14, Theorem 1.2.i]
Ic cD a > 1, odd Yes [14, Theorem 1.2.ii.a]
Id cD a > 1 Yes [14, Theorem 1.2.ii.b]
IIa cA1 4 Yes [12, Theorem 2.5]
IIb cE7,8 2 ? [14, Table 3, e9]
IIc cE7 2 ? [14, Table 3, e5]
IId cA2, cD, cE6 3 ? [14, Table 3, e3]
IIe cD, cE6,7 2 ? [14, Table 3, e2]
IIf cD 2 ? [14, Table 3, e1]
IIg cD 4 ? [14, Table 3, e1]

The purpose of this section is to construct a factoring diagram (1.1) for divisorial
contraction with non-minimal discrepancy a > 1 as listed in Table A. Given a divisorial
contraction with non-minimal discrepancy f : X → W � P . Let E be its exceptional
divisor. By the classification of [7, 20], X cannot be Gorenstein. We will pick a point
Q ∈ X of index p > 1.

For any divisor D on X passing through Q, we set DW = f∗D and DY = g−1∗ D
to be the proper transform of D on W and Y respectively. Let EY denotes the proper
transform of E on Y . We have

f∗DW = D +
c0

n
E, g∗D = DY +

q0

p
F, g∗E = EY +

q

p
F

for some c0, q0, q ∈ Z>0.

Proposition 4.1. [2, Proposition 2.4] Let f : X → W be a divisorial contraction
to a point P ∈ W of index n with discrepancy a

n and E the exceptional divisor of
f . Let g : Y → X be a divisorial contraction to a point Q ∈ E of index p with
discrepancy b

p . Suppose that there is a divisor D on X such that D∩E is irreducible.
Then −KY/W is nef if the following inequalities hold:{

T (f, g, D) := −ac0
n2 E3 + q0qb

p3 F 3 ≤ 0;

bc0 − aq0 ≤ 0.

In [15, Theorem 1.5], Kawakita give an affirmative answer to the General Elephant
Conjecture. In particular, let f : X → W be a divisorial contraction, then a general
element SX ∈ |−KX | is normal and has only Du Val singularities.

Proposition 4.2. [2, Proposition 2.5] Let f : X → W be a divisorial contraction
to a point with exceptional divisors E and let g : Y → X be a divisorial contraction
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to a point Q ∈ E ⊂ X of index p with discrepancy 1
p . Let F be the exceptional divisor

of g. Suppose that −KY/W is nef and there is an irreducible curve l ⊂ SX ∩ E such
that lY ·KY < 0. Then we have a factoring diagram (1.1) such that

(1) φ : Y ��� Y � is a sequence of flips and flops;
(2) g� is a divisorial contraction contracting EZ�;
(3) f � contracts FY � to the point P ∈ W .

We will need the following variant. The proof is almost the same as [2, Corol-
lary 2.6].

Corollary 4.3. Let f : X → W be a divisorial contraction to a point with excep-
tional divisor E and let g : Y → X be a divisorial contraction to a point Q ∈ E ⊂ X
of index p with discrepancy 1

p . Let F be the exceptional divisor of g. Suppose that
lY ·KY ≤ 0 for any irreducible curve l ⊂ SX ∩E and T (f, g) := −a2

n2 E3 + q
p3 F 3 < 0.

Then we have a factoring diagram (1.1) as in Proposition 4.2.

An immediate but useful consequence is the following:

Corollary 4.4. Keep the notation as in Corollary 4.3. Suppose that Q ∈ E is the
only non-Gorenstein point on E , which is of index p > 1. Suppose furthermore that
q
p3 F 3 < 1

p . Then there exists a factoring diagram (1.1) as in Proposition 4.2.

Proof. Suppose that [SX ∩ E] = [
∑

cili] as 1-cycle for some ci ∈ Z>0. Note
that li,Y · KY ≥ li · KX for all i. Hence for all i,

li,Y ·KY = li · KX + (li,Y · KY − li · KX)

≤ li · KX +
∑

i

ci(li,Y · KY − li · KX)

≤ −1
p

+
q

p3
F 3 < 0.

By Corollary 4.3, there exists a factoring diagram.

We remark that once there is a factoring diagram, then the induced map f � : X � →
W is a divisorial contraction to P ∈ W with exceptional divisor FX� and discrepancy
a := aq+n

p ∈ Z>0.
We now study the divisorial contraction to a Gorenstein point with non-minimal

discrepancies case by case (cf. Table A).

Case Ia. Suppose that P ∈ W is nonsingular.
By [11], f is the weighted blowup of weight (1, m, n) with (m, n) = 1, 1 ≤ m < n,

and the discrepancy is a = m + n.
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On X , the highest index point, say Q, is a terminal quotient singularity of type
1
n(1, m,−1). Let g : Y → X be the Kawamata blowup, which is the weighted blowup
of weights 1

n (t, 1, n−t), where t is the minimal positive integer satisfying mt = ns+1.
Clearly 1 ≤ t < n, 0 ≤ s < m.

Pick D = f−1∗ div(x2). Then l = D∩E is clearly irreducible. Since c0 = m, q0 =
1 and q = n − t, one has

T (f, g, D) = −m + n

n
+

1
nt

< 0.

Hence we have the factoring diagram by Proposition 4.2. By Theorem 2.7 of [2], one
sees that both f �, g� are weighted blowups. Indeed, the factoring diagram fits into the
following diagram.

Y Y �

Q3 ∈ X X � � Q�
1

W W

�

1
n

wt=w2

� � � � � � � � � � � � � � � � � � ��

�
s+t wt=w′

2

�
m+n wt=w1

�
m+n−s−t wt=w′

1

�

where
w1 = (1, m, n), w′

1 = (1, m− s, n − t),

w2 =
1
n

(t, 1, n− t), w′
2 = (1, s, t).

Remark 4.5. In the case that m = 1, then Y � → X � is a weighted blowup with
weights w′

2 = (1, 0, 1). Hence it is the blowup along a smooth curve in X �. Notice
also that dep(Y �) = dep(X �) = n − 2 = dep(Y ). Therefore, Y ��� Y � consists of a
sequence of flops in this situation. By induction on n, it follows in particular that a
weighted blowup over a smooth point of weights (1, 1, n) is factorizable.

Case Ib. This contraction is described in [11, Theorem 1.2.i]. In fact, the factoring
diagram is described in [2, Subsection 3.5] with n = 1. We give a brief review for the
reader’s convenience. The equation of P ∈ W is given by

(ϕ : x1x2 + g(x3, x4) = 0) ⊂ C4.

The map f is given by weighted blowup with weight v1 = (r1, r2, a, 1). We may write
r1 + r2 = da for some d > 0 with the term xd

3 ∈ ϕ. Moreover, (a, r1) = (a, r2) = 1.
Hence, there exist 0 < s∗i < ri and 0 < ai < a so that
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{
1 + a1r1 = s∗1a;
1 + a2r2 = s∗2a.

Note that as∗2 = 1 + a2r2 = 1 + a2(ad− r1). Therefore, a(s∗2 − a2d) = 1 − a2r1.

By (a, r1) = 1 and comparing it with as∗1 = 1 + a1r1, we have a1 = −a2 + ta for
some t ∈ Z. Since 0 < a1 + a2 < 2a, it follows that a1 + a2 = a.

Suppose that r1 > 1. We have the following factoring diagram.

Y Y �

Q1 ∈ X X � � Q�
4

W W

�

1
r1

wt=w2

� � � � � � � � � � � � � � � � � � ��

�
a1 wt=w′

2

�
a wt=w1

�
a2 wt=w′

1

�

where

w1 = (r1, r2, a, 1), w′
1 = (r1 − s∗1, r2 − a1d + s∗1, a2, 1)

w2 =
1
r1

(r1 − s∗1, d, 1, s∗1), w′
2 = (s∗1, a1d − s∗1, a1, 1).

Suppose that r2 > 1. We have the following factoring diagram.

Y Y �

Q2 ∈ X X � � Q�
4

W W

�

1
r2

wt=w2

� � � � � � � � � � � � � � � � � � ��

�
a2 wt=w′

2

�
a wt=w1

�
a1 wt=w′

1

�

where

w1 = (r1, r2, a, 1), w′
1 = (r1 + s∗2 − a2d, r2 − s∗2, a1, 1)

w2 =
1
r2

(d, r2 − s∗2, 1, s∗2), w′
2 = (a2d − s∗2, s∗2, a2, 1).

Case Ic. This contraction is described in [11, Theorem 1.2.ii.a] and the discussion
is parallel to that in [2, Subsection 3.2]. The local equation of P ∈ W is given by

(ϕ : x2
1 + x2

2x4 + x1q(x2
3, x4) + λx2x

2
3 + μx3

3 + p(x2, x3, x4) = 0) ⊂ C4,
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f is the weighted blowup with weights v1 = (r + 1, r, a, 1), where 2r + 1 = ad and
both a, d are odd. Notice that wtv1(ϕ) = 2r + 1 and we have that xd

3 ∈ p(x2, x3, x4)
otherwise Q3 ∈ X is singular of index a.

There are two quotient singularities Q1, Q2 of index r + 1, r respectively. We take
g : Y → X the weighted blowup with weights w2 = 1

r (d, r − d, 1, d) over Q2. Then

E3 =
2r + 1

ar(r + 1)
, F 3 =

r2

d(r − d)
, q = r − d, a = a − 2.

In this case, we pick S = f−1∗ div(x3) ∈ | − KX |, then S ∩ E is irreducible. Now

T (f, g) =
1
r

(
−a(2r + 1)

r + 1
+

1
d

)
< 0.

Therefore there exists a factoring diagram by Proposition 4.2.

Y Y �

Q2 ∈ X X � � Q�
4

W W

�

1
r

wt=w2

� � � � � � � � � � � � � � � � � � ��

�
2 wt=w′

2

�
a wt=w1

�
a−2 wt=w′

1

�

where

w1 = v1 = (r + 1, r, a, 1), w′
1 = v2 = (r + 1 − d, r − d, a− 2, 1),

w2 =
1
r
(d, r − d, 1, d), w′

2 = (d, d, 2, 1).

Case Id. In the case (1.2.ii.b), the local equation of P ∈ W is given by

(P ∈ W ) ∼= o ∈
(

ϕ1 : x2
1 + x2x5 + p(x2, x3, x4) = 0

ϕ2 : x2x4 + xd
3 + q(x3, x4)x4 + x5 = 0

)
⊂ C5,

f is a weighted blowup with weights v1 = (r+1, r, a, 1, r+2), where r+1 = ad. There
are quotient singularities Q2, Q5 of index r, r + 2 respectively. We take g : Y → X
the weighted blowup with weights w2 = 1

r+2 (d, 2d, 1, r− d + 2, d) over Q5. Then

E3 =
2r + 2

ar(r + 2)
, F 3 =

(r + 2)2

d(r − d + 2)
, q = d, a = 1.
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We pick D = f−1∗ div(x2). It is easy to check that E ∩ D is irreducible but
non-reduced. We have c0 = r, q0 = 2d, hence c0 − aq0 < 0 and moreover

T (f, g, D) =
1

r + 2

(
−(2r + 2) +

2d

r − d + 2

)
< 0.

There exists a factoring diagram by Proposition 4.2.

Y Y �

Q5 ∈ X X � � Q�
4

X X

�

1
r+2 wt=w2

� � � � � � � � � � � � � � � � � � ��

�
a−1 wt=w′

2

�
a wt=w1

�
1 wt=w′

1

�

where

w1 = v1 = (r + 1, r, a, 1, r + 2),

w2 =
1

r + 2
(d, 2d, 1, r− d + 2, d),

w′
1 = v2 = (d, d, 1, 1, d),

w′
2 = (r − d + 1, r − d, 2, a− 1, 1, r − d + 2).

Case IIa. This contraction is described in [12, Theorem 1.1.(2)]. The local equation
of P ∈ W is given by

(ϕ : x1x2 + x2
3 + x3

4 = 0) ⊂ C4,

and f is the weighted blowup with weights v1 = (1, 5, 3, 2).
There is a unique singularity Q2 on E , which is a quotient singularities of index 5.

We take g : Y → X the weighted blowup with weights w2 = 1
5 (4, 1, 2, 3) over Q2.

Thus q = 1, a = 1 and q
53 F 3 = 1

30 < 1
5 . Therefore there exists a factoring diagram by

Corollary 4.4.
Y Y �

Q2 ∈ X X � � Q�
1

W W

�

1
5

wt=w2

� � � � � � � � � � � � � � � � � � ��

�
3 wt=w′

2

�
4 wt=w1

�
1 wt=w′

1

�



Birational Maps of 3-Folds 1631

where
w1 = v1 = (1, 5, 3, 2), w′

1 = v2 = (1, 1, 1, 1),

w2 =
1
5
(4, 1, 2, 3), w′

2 = (1, 4, 2, 1).

Case IIb. f is of type e9 with discrepancy 2. This case was studied in [13]. We
summarize some results in [13]. There are two singularities Q1, Q2 of type 1

5 (1, 1,−1)
and 1

3(1, 1,−1) respectively. Pick any general elephant S ∈ |−KX |, then [S∩E] = 2[l],
where l ∼= P1 and l passes through both Q1, Q2 [13, Lemma 5.1]. We may assume that,
near Q1, S = div(x), E = div(y2) (after coordinate change) and l = (x = y = 0).
Now E3 = 1

15 and l ·E = −1
15 .

Let g : Y → X be the Kawamata blowup over Q1 with weights 1
5 (1, 1, 4). One

sees that q = 2, a = 1. Notice that

2lY ·KY = 2l · KX +
2
53

F 3 =
−2
15

+
2
20

< 0.

By Proposition 4.2, there exists a factoring diagram.

Y Y �

X X �

W

�
g 1

5

� � � � � � � � � � � � � � � � � ��

�
g�

�
�

��

a=2

f

�
�

��

1

f �

where f � is a divisorial contraction with exceptional divisor FX� and discrepancy a = 1.

Case IIc. f is of type e5 with discrepancy 2.
There is only one singularity Q ∈ X , which is of type 1

7 (1, 1, 6). Let g : Y → X be
the weighted blowup of weights 1

7 (1, 1, 6) over Q and let μ : Z → Y → X � Q be the
economic resolution by further weighted blowups. Clearly,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

KZ = μ∗KX +
6∑

j=1

j

7
Fj;

μ∗E = EZ +
6∑

j=1

qj

7
Fj ,

for some qj , where F1 = F is the exceptional divisor of g. Hence

KZ = μ∗f∗KW + 2EZ +
6∑

j=1

ajFj,Z
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with aj = 2qj+j
7 ∈ Z.

Suppose that E is given by (φ :
∑

cαβγx
αyβzγ = 0) ⊂ C3/1

7(1, 1, 6) locally
around Q. Then

qj := min{αj + βj + γ(7− j)|xαyβzγ ∈ φ} ≥ min{j, 7− j}.

By [19], there must exists an exceptional divisor with discrepancy 1 centering at
P ∈ W . Since Z → W is a Gorenstein partial resolution, the exceptional divisor
with discrepancy 1 must appear in Z, that is, among {Fj,Z}j=1,...,6. One can verify
that F1 is the only exceptional divisor with discrepancy 1 and q = q1 = 3. Hence
q
p3 F 3 = 1

14 < 1
7 . By Corollary 4.4, we have a factoring diagram so that f � : X � → W

is a divisorial contraction contracting FX� with discrepancy a = 1.

Case IId. f is of type e3 with discrepancy 3.
There is only one singularity Q ∈ X , which is of type cAx/4 with axial weight 2.
More precisely, Q ∈ X is given by

(ϕ : x2 + y2 + f(z, u) = 0) ⊂ C4/1
4(1, 3, 1, 2),

such that u3 ∈ ϕ and wt 1
4
(1,2)f(z, u) = 6

4 . By [8, Theorem 7.4], there is a unique
divisorial contraction g : Y → X over Q with discrepancy 1

4 , which is the weighted
blowup of weights 1

4 (5, 3, 1, 2). Take economic resolution ν : Z → Y over the unique
higher index point, which is a quotient singularity of index 5, and let μ : Z

g◦ν−−→ X .
Then we ends up with ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

KZ = μ∗KX +
1
4
F +

4∑
j=1

bj

4
Fj ;

μ∗E = EZ +
q

4
F +

4∑
j=1

qj

4
Fj,

where Fj are ν-exceptional divisors and (b1, b2, b3, b4) = (2, 2, 3, 4). Hence

KZ = (f ◦ μ)∗KW + aF +
4∑

j=1

ajFj,

where a = 1+3q
4 and aj = bj+3qj

4 . Since aj := bj+3qj

4 > 1 for all j, it follows that F
is the only exceptional divisor with discrepancy 1 over P ∈ W and hence q = 1 and
a = 1. Thus q

p3 F 3 = 1
20 < 1

4 . By Corollary 4.4, we have a factoring diagram such that
f � : X � → W is a divisorial contraction with exceptional divisor FX� and discrepancy
a = 1.
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Case IIe. f is of type e2 with discrepancy 2.
There is a unique higher index point Q ∈ X of type cA/r or cD/3 with axial

weight 2.

Subcase 1. Q is of type cD/3.
Let μ : Z → X be a common resolutions of Q dominating all divisorial contractions

with minimal discrepancies over Q. We have

KZ = μ∗KX +
N∑

j=1

1
3
Fj +

∑ cl

3
Gl,

where {Fj}j=1,...,N is the set all all exceptional divisors with discrepancy 1
3 over Q

and cl ≥ 2. Suppose that μ∗E = EZ +
∑ qj

3 Fj +
∑ tl

3 Gl, then

KX = μ∗f∗KW + 2EZ +
N∑

j=1

ajFj +
∑

blGl,

where aj = 2qj+1
3 and bl = 2tl+cl

3 > 1. Since there exists an exceptional divisor with
discrepancy 1 over P ∈ W , we may assume that a1 = 1.

By [10, Section 9], a cD/3 point can be classified as cD/3-1, cD/3-2 and cD/3-3.
Unless Q ∈ X is of type cD/3-3 and Equation ∗ holds (cf. [10, p. 549]), we know
that any exceptional divisor with minimal discrepancy 1

3 over a cD/3 point is obtained
by a divisorial contraction. Hence there is a divisorial contraction g : Y → X with
exceptional divisor F = F1 and discrepancy 1

3 . We thus have q = 1 and a = 1.
It is also straightforward to check that q

33F
3 = 1

12 for any such divisorial contraction
with discrepancy 1

3 . By Corollary 4.4, we have a factoring diagram such that f � : X � →
W is a divisorial contraction with exceptional divisor FX� and discrepancy 1.

In the remaining situation that Q ∈ X is of type cD/3-3 and Equation ∗ holds
(cf. [10, p. 549]), then there is only one divisorial contraction g : Y → X , which is
a weighted blowup with weights v1 = 1

3(5, 4, 1, 6). There is another valuation with
discrepancy 1

3 given by the weighted blowup with weights v2 = 1
3 (2, 4, 1, 3). We claim

that we have a = a1 = 1.
To this end, we write KZ = μ∗KX + 1

3F1 + 1
3F2 +

∑ cl
3 Gl, and

KZ = μ∗f∗KW + 2EZ + a1F1 + a2F2 +
∑

blGl,

where Fi corresponds to the valuation with weights vi for i = 1, 2.
Let (φ = 0) ⊂ C3/1

3(2, 1, 1, 0) be the local equation of E near Q. We know
that there exists a divisor with discrepancy 1. Suppose that a2 = 1, then q2 = 1 and
q2
3 = wtv2(φ) = 1

3 . One sees that φ contains z. It follows that q1
3 = wtv1(φ) = 1

3 and
hence q1 = 1 and a1 = 1 holds. This proves the claim.
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Now we have q
33 F 3 = 1

10 . By Corollary 4.4 again, we have a factoring diagram
such that f � : X � → W is a divisorial contraction with exceptional divisor FX� and
discrepancy 1.

Subcase 2. Q is of type cA/r.
After coordinate changes, we may assume that local equation near Q is given by

(ϕ : xy + ztr + u2 = 0) ⊂ C4/1
r (1,−1, 2, r) for some t ≥ 2. Set r = 2k + 1. Let

Y → X be the weighted blowup with weights v1 := 1
2k+1 (k+1, 3k+1, 1, 2k+1) with

exceptional divisor F . There are quotient singularities R1, R2 of index k + 1, 3k + 1.
Let Z → Y be the economic resolution of R1, R2. Then we have

KZ = μ∗KX +
1

2k + 1
F +

k∑
j=1

2j

2k + 1
Fj

+
k∑

i=1

(
2i + 1
2k + 1

G0i +
2i

2k + 1
G1i +

2i − 1
2k + 1

G2i

)
.

More explicitly, the resolution over R1 is obtained by weighted blowups of weights
1

k+1 (j, 2k + 2− 2j, j, k + 1− j) for 1 ≤ j ≤ k. Over Q these weights corresponds to
vectors 1

2k+1 (j, 4k+2− j, 2j, 2k+1). Similarly, the resolution over R2 is obtained by
weighted blowups of weights 1

3k+1 (2i, 3k+ 1− i, 3i, i), 1
3k+1 (2k + 2i, 2k+ 1− i, 3i−

1, k + i), and 1
3k+1 (4k + 2i, k + 1 − i, 3i − 2, 2k + i) for 1 ≤ i ≤ k. Over Q, these

weights corresponds to vectors⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2k + 1

(k + 1 + i, 3k + 1 − i, 2i + 1, 2k + 1),

1
2k + 1

(2k + 1 + i, 2k + 1− i, 2i, 2k + 1),

1
2k + 1

(3k + 1 + i, k + 1 − i, 2i− 1, 2k + 1).

for 1 ≤ i ≤ k respectively.
Suppose that E is given by (φ :

∑
cαβγδx

αyβzγuδ = 0) ⊂ C4/1
r (1,−1, 2, r)

locally around Q. We write μ∗E = EZ + q
2k+1F +

∑k
j=1

qj

2k+1Fj +
∑k

i=1(
t0i

2k+1G0i +
t1i

2k+1G1i + t2i
2k+1G2i) and hence

KZ = μ∗f∗KW + 2EZ + aF +
k∑

j=1

ajFj +
k∑

i=1

(b0iG0i + b1iG1i + b2iG2i),

with a := 2q+1
2k+1 , aj := 2qj+2j

2k+1 , b0i := 2t0i+2i+1
2k+1 , b1i := 2t1i+2i

2k+1 , b2i := 2t2i+2i−1
2k+1 .

There exists an exceptional divisor with discrepancy 1. Hence either a, b0i or b2i = 1
for some i because aj and b1i are even.
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Claim. a = 1.
Suppose that b0i = 1 for some i. Then t0i = k − i. Since

t01 = min{α(k + 1 + i) + β(3k + 1 − i) + γ(2i + 1) + δ(2k + 1) | xαyβzγuδ ∈ φ}.

It follows that φ contains zγ with γ(2i + 1) = k − i. Hence

q

2k + 1
= wtv1φ ≤ k − i

2k + 1
≤ k − 1

2k + 1

and a < 1, a contradiction.
Suppose that b2i = 1 for some i. Then similarly, one sees that φ contains zγ with

γ(2i − 1) = k − i + 1. This leads to the same contradiction unless b21 = 1 and φ

contains zk. Hence q = k and a = 1.

Now q
(2k+1)3

F 3 = 2k
(k+1)(3k+1)(2k+1)

< 1
2k+1 . By Corollary 4.4, there is a factoring

diagram such that f � is a divisorial contraction with discrepancy a = 1.

Case IIf. f is of type e1 with discrepancy 2.
In this case, there is a unique higher point Q of type 1

r (1,−1, 4).

Subcase 1. r = 4k + 3.
Let Y → X be the Kawamata blowup along Q with weights 1

4k+3 (k+1, 3k+2, 1).
Suppose that the local equation of E near Q is given by (φ :

∑
cαβγx

αyβzγ = 0).
Let μ : Z → X be the economic resolution over Q, which factors through Y . Then we
have ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

KZ = μ∗KX +
4k+2∑
j=1

j

4k + 3
Fj;

μ∗E = EZ +
4k+2∑
j=1

qj

4k + 3
Fj ,

where F1 = F and

qj := min{α(k + 1)j + β(3k + 2)j + γj | xαyβzγ ∈ φ}.

We have KZ = g∗f∗KW + 2EZ +
∑4k+2

j=1 ajFj with aj = 2qj+j
4k+3 ∈ Z. Note that

aj ≡ j (mod 2) and aj = 1 for some j.

Claim. a1 ≤ 3.
Suppose on the contrary that a1 ≥ 5. For all monomial xαyβzγ ∈ φ, we have

q1 = α(k + 1) + β(3k + 2) + γ ≥ 10k + 7. †1

If aj = 1 for some j, then
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qj =

{
2k − 2s + 1 = (k + s + 1)α + (3k − s + 2)β + (4s + 1)γ, if j = 4s + 1;

2k − 2s = (3k + s + 3)α + (k − s)β + (4s + 3)γ, if j = 4s + 3,

for some xαyβzγ ∈ φ, which is a contradiction to †1.
Notice that if a1 = 3, i.e., q1 = 6k + 4, then y2 ∈ φ and aj = 1 if and only if

j = 4s + 3 with s < k. In this case, there are exactly k − 1 exceptional divisors with
discrepancy 1. Hence k ≥ 2 in this situation. Also, if a1 = 1, then q1 = 2k + 1. Thus
in any event,

q

(4k + 3)3
F 3 =

2q

(k + 1)(3k + 2)(4k + 3)
≤ 4

3(4k + 3)
.

For any l ⊂ S∩E , one has l·E ≥ 1
4k+3 and hence l·KX ≤ −2

4k+3 . Therefore, lY ·KY < 0
for all i. Hence there exists a factoring diagram by Corollary 4.3. The resulting
divisorial contraction f � : X � → W is a divisorial contraction with discrepancy 1 or 3.

Subcase 2. r = 4k + 1.
Similarly, let Y → X be the Kawamata blowup along Q with weights 1

4k+1 (3k +
1, k, 1) and μ : Z → X be the economic resolution over Q, which factors through Y .

Thus we have KZ = g∗f∗KW + 2EZ +
∑4k

j=1 ajFj with aj = 2qj+j
4k+1 ∈ Z and

qj := min{α(3k + 1)j + βkj + γj | xαyβzγ ∈ φ}.
Note that aj ≡ j (mod 2) and aj = 1 for some j.

Claim. a1 = 1.
Suppose on the contrary that a1 ≥ 3. For all monomial xαyβzγ ∈ φ, we have

q1 = α(3k + 1) + βk + γ ≥ 6k + 1. †2
Suppose that aj = 1, it is straightforward to see that

qj =

{
2k − 2s + 1 = (k + s)α + (3k − s + 1)β + (4s− 1)γ, if j = 4s − 1;

2k − 2s = (3k + s + 1)α + (k − s)β + (4s + 1)γ, if j = 4s + 1,

for some xαyβzγ ∈ φ, which is a contradiction to †2.
Now a = a1 = 1, q = 2k and thus

q

(4k + 1)3
F 3 =

4
(3k + 1)(4k + 1)

≤ 1
4k + 1

.

For any l ⊂ S ∩ E , one has l · E ≥ 1
4k+1 and hence l · KX ≤ −2

4k+1 . Therefore,
lY · KY < 0 for all i. Hence there exists a factoring diagram by Corollary 4.3. The
resulting map f � : X � → W is a divisorial contraction with discrepancy 1.
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Case IIg. f is of type e1 with discrepancy 4.
In this case, there is a unique higher index point Q of type 1

r (1,−1, 8). One can
work out this case similar to Case IIf.

Subcase 1. r = 8k + 7.
Let Y → X be the Kawamata blowup along Q with weights 1

8k+7 (k+1, 7k+6, 1)
and μ : Z → X be the economic resolution over Q, which factors through Y . Suppose
that the local equation of E near Q is given by (φ :

∑
cαβγx

αyβzγ = 0). Thus we
have KZ = μ∗f∗KW + 4EZ +

∑8k+6
j=1 ajFj with aj = 4qj+j

8k+7 ∈ Z and

qj := min{α(k + 1)j + β(7k + 6)j + γj | xαyβzγ ∈ φ}.

Note that aj ≡ −j (mod 4) and aj = 1 for some j.

Claim. a1 = 3 or 7.1
Suppose on the contrary that a1 ≥ 11. For all monomial xαyβzγ ∈ φ, we have

q1 ≥ α(k + 1) + β(7k + 6) + γ ≥ 22k + 19. †3
Suppose that aj = 1, it is straightforward to see that

qj =

{
2k − 2s + 1 = (3k + s + 3)α + (5k − s + 4)β + (8s + 3)γ, if j = 8s + 3;
2k − 2s = (7k + s + 1)α + (k − s)β + (8s + 7)γ, if j = 8s + 7,

for some xαyβzγ ∈ φ, which is a contradiction to †3.

Now q ≤ 14k + 12 and thus

q

(8k + 7)3
F 3 =

2q

(k + 1)(7k + 6)(8k + 7)
≤ 4

(k + 1)(8k + 7)
.

For any li ⊂ S ∩ E , one has li · E ≥ 1
8k+7 and hence li · KX ≤ −4

8k+7 . Therefore,
li,Y ·KY ≤ 0 for all i and strictly < 0 for some i. Hence there exists a factoring diagram
by Proposition 4.3. The resulting map f � : X � → W is a divisorial contraction with
discrepancy 3 or 7.

Subcase 2. r = 8k + 5.2
Similar argument shows that a1 = 1 or 5 (since a1 ≡ 1 (mod 4)) and there exists

a factoring diagram by Corollary 4.3. The resulting map f � : X � → W is a divisorial
contraction with discrepancy 1 or 5.
1If a1 = 7, then y2 ∈ φ and aj = 1 if and only if j = 8s + 3 with s < k. In this case, there are exactly
k − 1 exceptional divisors with discrepancy 1.
2If a1 = 5, then y2 ∈ φ and aj = 1 if and only if j = 8s + 5 with s < k. In this case, there are exactly
k − 1 exceptional divisors with discrepancy 1.
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Subcase 3. r = 8k + 3.
Similar argument shows that a1 = 3 (since a1 ≡ −1 (mod 4)) and there exists a

factoring diagram by Proposition 4.3. The resulting map f � : X � → W is a divisorial
contraction with discrepancy 3.

Subcase 4. r = 8k + 1.
Similar argument shows that a1 = 1 (since a1 ≡ 1 (mod 4)) and there exists a

factoring diagram by Proposition 4.3. The resulting map f � : X � → W is a divisorial
contraction with discrepancy 1.

5. PROOF OF THE MAIN THEOREM

Proof. We prove by induction on depth and discrepancies.
1. Suppose first that dep(X) = 0, that is, X has at worst Gorenstein terminal

singularities. By the classification of Mori and Cutkosky [7, 20], f cannot be a flipping
contraction.

If f : X → W is a divisorial contraction to a point then f is a divisorial contraction
with minimal discrepancy (cf. [7, 20]).

If f : X → W be a divisorial contraction to a curve, then f is a blowup along a
lci curve in a smooth neighborhood by the classification of Mori and Cutkosky again.
By Proposition 3.1 and Remark 4.5, f is factorizable.

2. Let f : X → W be a divisorial contraction to a curve Γ with dep(X) = d > 0.
By [5], there is a factoring diagram

Y Y �

X X �

W

�
g

� � � � � � � � � � � � � � � � � ��

�
g�

�
�

��
f

�
�

�� f �

satisfying:

(1) Y → X is a divisorial contraction to a highest index point of index r > 1 with
discrepancy 1

r ;

(2) Y → Y � is a sequence of flips and flops;

(3) g� : Y � → X � is divisorial contraction to the proper transform of Γ;

(4) f � is a divisorial contraction to a point.
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Note that dep(Y ) = d − 1, and dep(Y �) ≤ dep(Y ) = d − 1. Therefore by
Proposition 2.1,

dep(X �) ≤ min(0, dep(Y �) − 1) < d.

It follows that X → W can be factored into

X ��� Y ��� Y � → X � → W

so that each map is factorizable by induction on depth.
3. Let f : X → W be a flipping contraction. By [5], there is a factoring diagram

as above so that f � : X � = X+ → W is the flipped contraction. Similarly, each map
of

X ��� Y ��� Y � → X � = X+

is factorizable by induction on depth.
4. Let f : X → W be a divisorial contraction to a point P ∈ W of index r with

dep(X) = d and discrepancy 1
r . Nothing to do.

5. Let f : X → W be a divisorial contraction to a point P ∈ W of index r > 1 with
dep(X) = d and discrepancy a

r > 1
r . By [2], there is a factoring diagram satisfying:

(1) Y → X is a divisorial contraction to a highest index point of index r > 1 with
discrepancy 1

r ;
(2) Y → Y � is a sequence of flips and flops;
(3) f � is a divisorial contraction with discrepancy a′

r < a
r ;

(4) g� is divisorial contraction to a point Q of index r with discrepancy a′′
r < a

r and
a′′ + a′ = a if P ∈ W is not of type cE/2;

(5) g� is divisorial contraction to a point Q of index 3 with discrepancy 1
3 if P ∈ W

is of type cE/2.

Notice that dep(Y �) ≤ dep(Y ) = d − 1 and dep(X �) ≤ dep(Y �) + 1 ≤ d. By
induction on depth, both Y ��� Y � and Y � → X � are factorizable. If dep(X �) <

dep(X), then we are done by induction. If dep(X �) = dep(X), then we may proceed
by induction on a which measures the discrepancy.

6. Let f : X → W be a divisorial contraction to a point P ∈ W of index 1 with
dep(X) = d and discrepancy a > 1.

6.1 If P ∈ W is a non-singular point, then by the study of Case Ia, f is factorizable
by induction on a.

6.2 P ∈ W is of type cA.
By the studies in Case Ib, IIa, and IId, there exists a factoring diagram such that

f � : X � → W has discrepancy a1 < a (Case Ib) or 1 (Case IIa, IId). Moreover
dep(X �) ≤ d. Therefore, f � is factorizable by induction on discrepancy a hence so is
f : X → W because Y ��� Y � → X � has dep < d.
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6.3 P ∈ W is of type cD or cE and the discrepancy a is odd.
This could be Case Ic, Id, IId. There exists a factoring diagram such that f � : X � →

W has discrepancy a2 < a (Case Ic) or 1 (Case Id, IId). Similarly f is factorizable by
induction on a and on depth.

6.4 P ∈ W is of type cD or cE and the discrepancy a is even.
This could be Case Id, IIb, IIc, IIe, IIf, and IIg. There exists a factoring diagram

such that f � : X � → W has odd discrepancy a1 (Case IIf, IIg) or 1 (other cases).
Therefore, f is factorizable by 6.3 and induction on depth.
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