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HALPERN TYPE ITERATIONS FOR STRONGLY QUASI-NONEXPANSIVE
SEQUENCES AND ITS APPLICATIONS

Hadi Khatibzadeh* and Sajad Ranjbar

Abstract. In this paper, we study the strong convergence of the Halpern type
algorithms for a strongly quasi-nonexpansive sequence of operators. These re-
sults extend the results of Saejung [11]. Some applications in infinite family of
firmly quasi-nonexpansive mappings, multiparameter proximal point algorithm,
constraint minimization and subgradient projection are presented.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈· · · , · · · 〉 and norm ‖ · · ·‖ and
C be a nonempty, closed and convex subset of H . We denote weak convergence
in H by ⇀ and strong convergence by →. Let T : C → C be a mapping and
F (T ) := {x ∈ C : Tx = x}. T is said to be nonexpansive (resp. quasi-nonexpansive)
iff ‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ C (resp. F (T ) 	= ∅ and ‖Tx − q‖ ≤ ‖x −
q‖, ∀(x, q) ∈ C × F (T )). Also, T is called a firmly nonexpansive mapping if

‖Tx − Ty‖2 ≤ ‖x − y‖2 − ‖x − Tx − (y − Ty)‖2, ∀x, y ∈ C,

and T is called a firmly quasi-nonexpansive mapping if F (T ) 	= ∅ and

‖Tx − p‖2 ≤ ‖x − p‖2 − ‖x− Tx‖2, ∀(x, p) ∈ C × F (T ).

A nonlinear (possibly multivalued) operator A : D(A) ⊂ H → H is called monotone
iff

〈u − v, x− y〉 ≥ 0, ∀x, y ∈ D(A), ∀u ∈ A(x), ∀v ∈ A(y).

The monotone operator A is called maximal iff R(I +A) = H , where I is the identity
operator on H . JA

λ := (I + λA)−1 is called the resolvent of A of order λ, for each
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λ > 0. It is a well-known result that if A is maximal monotone, then JA
λ is a single-

valued firmly nonexpansive mapping on H . Two of the most important problems
in nonlinear analysis are finding the solutions of the following nonlinear stationary
equations:

(FP) Find x ∈ C, such that Tx = x,

(MP) Find x ∈ D(A), such that 0 ∈ A(x),

specially when T : C → C is a nonexpansive mapping and A : D(A) → H is a
maximal monotone operator. A simple example shows that if T is nonexpansive, the
picard iteration (T nx), where x ∈ C, is not weakly convergent in general even if C is
convex and compact. Mann [9] proposed the following iterative method

(MI) xn+1 = αnxn + (1 − αn)Txn, n = 1, 2, 3, . . . ,

and proved the weak convergence of the sequence (xn) generated by (MI) to a fixed
point of T . In order to obtain the strong convergence, Halpern [7] suggested the
following iteration

xn+1 = n−θu + (1 − n−θ)Txn, n = 1, 2, 3, . . . ,

where θ ∈ (0, 1) and x1, u ∈ C. Wittmann [16] and Xu [17, 18] proposed the following
extension of Halpern iteration

(HI) xn+1 = αnu + (1 − αn)Txn, n = 1, 2, 3, . . . ,

where αn ∈ (0, 1) satisfies the following conditions
(1) limn αn = 0,
(2)

∑∞
n=1 αn = ∞,

(3)
∑∞

n=1 |αn+1 − αn| < ∞ or limn→∞ αn
αn+1

= 1.

It has been shown that the conditions (1) and (2) are necessary for the strong conver-
gence of the Halpern’s iteration. The following open question has been arose:
Q) Are conditions (1) and (2) sufficient to prove the strong convergence of the sequence
(xn) in (HI)?

Suzuki [14] and Chidume and Chidume [5], independently, proved that the condi-
tions (1) and (2) are sufficient for the strong convergence of the sequence (xn) in (HI)
to a fixed point of T if the nonexpansive operator T is a convex combination of the
identity operator and another nonexpansive operator. This type of iterations is called
the Halpern-Mann type algorithm. Saejung [11] proved sufficiency of the conditions
(1) and (2) for the strong convergence of the sequence (xn) in (HI) when T is a
strongly nonexpansive mapping.
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We recall that T : C → C is strongly nonexpansive (resp. strongly quasi-
nonexpansive) iff T is nonexpansive and xn − yn − (Txn − Tyn) → 0, whenever
(xn) and (yn) are sequences in C such that (xn − yn) is bounded and ‖xn − yn‖ −
‖Txn−Tyn‖ → 0 (resp. T is quasi-nonexpansive and xn −Txn → 0, whenever (xn)
is a bounded sequence in C such that ‖xn−q‖−‖Txn−q‖ → 0, for some q ∈ F (T )).
We also recall strongly nonexpansive and strongly quasi-nonexpansive sequences from
[4] that play an essential role in this paper. The sequence (Tn) of nonexpansive map-
pings is said to be strongly nonexpansive sequence iff xn − yn − (Tnxn − Tnyn) → 0,
whenever (xn) and (yn) are sequences in C such that (xn − yn) is bounded and
‖xn−yn‖−‖Tnxn−Tnyn‖ → 0. The sequence (Tn) of quasi-nonexpansive mappings is
said to be strongly quasi-nonexpansive sequence iff

⋂
n F (Tn) 	= ∅ and xn−Tnxn → 0,

whenever (xn) is a bounded sequence in C such that ‖xn − q‖ − ‖Tnxn − q‖ → 0
for some q ∈ ⋂n F (Tn). It is clear that a strongly nonexpansive sequence (Tn) with⋂

n F (Tn) 	= ∅ is a strongly quasi-nonexpansive sequence.
In this paper, we obtain the strong convergence of the Halpern type algorithm

(1.1) xn+1 = αnu + (1− αn)Tnxn, n = 1, 2, 3, . . . ,

where u, x1 ∈ C, (Tn) is a strongly quasi-nonexpansive sequence, and (αn) is a
sequence in (0, 1) such that satisfy limn αn = 0,

∑∞
n=1 αn = ∞. This result extends

the results that were presented in [11] in the case of Hilbert spaces.
This paper is organized as follows. In Section 2, we give some lammas that we

need in the sequel. Section 3 is devoted to the main result of the paper. In this
section, we prove the strong convergence of (1.1) to an element of

⋂
n F (Tn) when

(Tn) is a strongly quasi-nonexpansive sequence. In Section 4, we apply the results of
Section 3 to obtain the strong convergence for infinite family of firmly nonexpansive
mappings. In Section 5, we apply our main theorem to study the strong convergence
of multiparameter proximal point algorithm. Finally, in Section 6 of the paper, some
other applications in minimization and subgradient projection are presented.

2. SOME LEMMAS

Lemma 2.1. [1] Let {sn} be a sequence of nonnegative real numbers, {αn} a
sequence of real numbers in [0, 1] with

∑∞
n=1 αn = ∞, {un} a sequence of nonneg-

ative real numbers with
∑∞

n=1 un < ∞, and {tn} a sequence of real numbers with
limsupntn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αntn + un,

for all n ∈ N. Then limn→∞sn = 0.

Lemma 2.2. [13] Let {sn} be a sequence of nonnegative real numbers, {αn} be
a sequence of real numbers in (0, 1) with

∑∞
n=1 αn = ∞ and {tn} be a sequence of

real numbers. Suppose that
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sn+1 ≤ (1− αn)sn + αntn for all n ≥ 1.

If lim supk→∞ tmk
≤ 0 for every subsequence {smk

} of {sn} satisfying lim infk(smk+1

−smk
) ≥ 0, then limn→∞ sn = 0.

The following lemma is elementary, then we omit its proof.

Lemma 2.3. Suppose an > 0, ∀n ∈ N, sn =
∑n

k=1 ak and
∑∞

n=1 an < ∞. Then∑∞
n=1

an
sn

< ∞.

The following lemma is a well-known elementary lemma in Hilbert spaces.

Lemma 2.4. Let x, y ∈ H . Then

‖x + y‖2 ≤ ‖x‖2 + 2〈x + y, y〉.

3. CONVERGENCE RESULTS FOR A STRONGLY QUASI-NONEXPANSIVE SEQUENCE

In this section, we prove the strong convergence of the Halpern type iteration for
a strongly quasi-nonexpansive sequence (Tn) : C → C that satisfies the following
condition:

(3.1)

{
if (xnj) ⊂ C and (Tnj) ⊂ (Tn) such that

xnj ⇀ x ∈ C and xnj − Tnjxnj → 0, then x ∈ ⋂∞
n=1 F (Tn).

Note that the condition (3.1) can be regarded as a kind of demi-closedness property
for the sequence (Tn), which reduces to the classical demi-closedness property when
Tn ≡ T (see [6]), in the other word

(3.2)

{
for any sequence (zk) ⊂ H and z ∈ H,

zk ⇀ z, (I − T )zk → 0 ⇒ z ∈ F (T ).

The following theorem is a generalization of Corollary 8 in [11].

Theorem 3.1. Let (Tn) : C → C be a strongly quasi-nonexpansive sequence such
that (3.1) is satisfied and (αn) be a sequence in (0, 1) that satisfies the following
conditions:

(3.3)

⎧⎪⎪⎨
⎪⎪⎩

(i) limn αn = 0,

(ii)
∞∑

n=1

αn = ∞.

If (u, x1) ∈ C2 and (xn) is generated by:

xn+1 = αnu + (1 − αn)Tnxn,

then (xn) converges strongly to z = PSu ∈ S, where S =
⋂∞

n=1 F (Tn) and P is the
nearest point projection of C on S.
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Proof. Suppose z = PSu, then

‖xn+1 − z‖ = ‖αn(u − z) + (1− αn)(Tnxn − z)‖
≤ αn‖u − z‖ + (1− αn)‖Tnxn − z‖
≤ αn‖u − z‖ + (1− αn)‖xn − z‖ ≤ max{‖u− z‖, ‖xn − z‖}
≤ · · · ≤ max{‖u− z‖, ‖x1 − z‖}.

Thus (xn) is bounded. By Lemma 2.4, for all n ∈ N, we have:

‖xn+1 − z‖2 = ‖αn(u− z) + (1 − αn)(Tnxn − z)‖2

≤ ‖(1− αn)2(Tnxn − z)‖2 + 2αn〈u− z, xn+1 − z〉
≤ (1 − αn)‖xn − z‖2 + 2αn〈u − z, xn+1 − z〉.

So

(3.4) ‖xn+1 − z‖2 ≤ (1 − αn)‖xn − z‖2 + 2αn〈u− z, xn+1 − z〉.

By Lemma 2.2, it suffices to show that lim supk 2〈u−z, xmk+1 −z〉 ≤ 0 for every
subsequence (‖xmk

− z‖) of (‖xn − z‖) satisfying lim infk(‖xmk+1 − z‖− ‖xmk
−

z‖) ≥ 0.

For this, suppose that (‖xmk
− z‖) is a subsequence of (‖xn − z‖) such that

lim infk(‖xmk+1 − z‖ − ‖xmk
− z‖) ≥ 0. Then

0 ≤ lim infk(‖xmk+1 − z‖ − ‖xmk
− z‖)

≤ lim infk(αmk
‖u − z‖ + (1 − αmk

)‖Tmk
xmk

− z‖ − ‖xmk
− z‖)

≤ lim infk(‖Tmk
xmk

−z‖−‖xmk
−z‖)+lim supk(αmk

(‖u− z‖−‖Tmk
xmk

−z‖))
= lim infk(‖Tmk

xmk
−z‖−‖xmk

−z‖) ≤ lim supk(‖Tmk
xmk

− z‖−‖xmk
−z‖)

≤ lim supk(‖xmk
−z‖−‖xmk

− z‖) = 0.

Hence limk(‖Tmk
xmk

−z‖−‖xmk
−z‖) = 0, which by the assumption on the sequence

(Tn), we get: limk ‖Tmk
xmk

− xmk
‖ = 0.

Now, we show lim supk〈u−z, xmk
−z〉 ≤ 0. There exists subsequence (xmkt

) of
(xmk

) such that xmkt
⇀ x ∈ C and lim supk〈u−z, xmk

−z〉 = limt〈u−z, xmkt
−z〉 =

〈u− z, x− z〉.
Since xmkt

⇀ x and Tmkt
xmkt

− xmkt
→ 0, thus, the condition (3.1) implies

x ∈ ⋂∞
n=1 F (Tn) = S. Therefore by z = PSu, we obtain lim supk〈u−z, xmk

−z〉 ≤ 0.

Moreover, we have:

‖xmk+1 − xmk
‖ ≤ αmk

‖u − xmk
‖ + (1− αmk

)‖Tmk
xmk

− xmk
‖,
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which implies ‖xmk+1 − xmk
‖ → 0. Hence

lim sup
k

〈u − z, xmk+1 − z〉 = lim sup
k

(〈u − z, xmk+1 − xmk
〉 + 〈u − z, xmk

− z〉)

≤ lim supk(‖u − z‖‖xmk+1 − xmk
‖) + lim supk〈u− z, xmk

− z〉 ≤ 0.

Thus lim supk 2〈u−z, xmk+1−z〉 ≤ 0. Hence, by Lemma 2.2, we have ‖xn−z‖ → 0.
That is the desired result.

Remark 3.1. Theorem 3.1 is satisfied for a strongly nonexpansive sequence (Tn)
with a common fixed point.

The following condition on the sequence (Tn) was introduced by Aoyama et al. [1]
in a Banach space. Let (Tn)∞n=1 : C → C be a countable family of mappings. Family
(Tn) satisfies AKTT-condition if

(3.5)
∞∑

n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞,

for each bounded subset B of C.
If (Tn) satisfies AKTT-condition, then we can define a nonexpansive mapping

T : C → C such that

(3.6) Tx = lim
n→∞Tnx, (x ∈ C).

In this case, we also say (Tn, T ) satisfies AKTT-condition. The following condition is
used in some literature such as [1, 11] for a sequence of nonexpansive mappings (Tn).

(3.7)

⎧⎪⎨
⎪⎩

(A) (Tn, T ) satisfies AKTT-condition,

(B) F (T ) =
∞⋂

n=1

F (Tn).

In the following, it is shown that the condition (3.1) is strictly weaker than (3.7) for a
sequence of nonexpansive mappings.

Proposition 3.2. If the condition (3.7) is satisfied for sequence of nonexpansive
mappings (Tn), then (Tn) satisfy the condition (3.1).

Proof. Suppose that the condition (3.7) is satisfied and (Tnj) ⊂ (Tn), (xnj) ⊂ C

are subsequences such that xnj ⇀ x and xnj − Tnjxnj → 0. Then

0 ≤ ‖xnj − Txnj‖ ≤ ‖xnj − Tnjxnj‖+ ‖Tnjxnj − Txnj‖
≤ ‖xnj − Tnjxnj‖+ sup{‖Tnjy − Ty‖ : y ∈ (xnj )}

≤ ‖xnj − Tnjxnj‖+ sup{
∞∑

i=nj

‖Tiy − Ti+1y‖ : y ∈ (xnj )}

≤ ‖xnj − Tnjxnj‖+
∞∑

i=nj

sup{‖Tiy − Ti+1y‖ : y ∈ (xnj )}.
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Thus by the assumptions, we get ‖xnj − Txnj‖ → 0. Therefore, demiclosedness of
T implies that x ∈ F (T ). Hence, by part (B) of (3.7), we get x ∈ ⋂∞

n=1 F (Tn).
Consequently, the condition (3.1) is satisfied for (Tn).

Example 3.1. Set T1x = x and Tnx =

{
x
n , if n is even,
2x
n , if n is odd,

for n ≥ 2.

Then, clearly, the condition (3.1) holds for the sequence (Tn) but the sequence (Tn)
does not satisfy the condition (3.7).

Remark 3.2. If T is a strongly nonexpansive selfmapping on C, then the condition
(3.1) is satisfied when Tn ≡ T . Thus, by Remark 3.1 and Proposition 3.2, Theorem
3.1 extends and improves Theorem 4 and Theorem 10 of [11] in Hilbert spaces setting.

Theorem 3.3. Let (Tn) : H → H be a strongly nonexpansive sequence such that
(3.1) is satisfied and S =

⋂∞
n=1 F (Tn) 	= ∅. Suppose (αn) is a sequence in (0, 1) which

satisfies the condition (3.3) and (en) is a sequence in H such that
∑∞

n=1 ‖en‖ < ∞
or limn

‖en‖
αn

= 0. If (u, x1) ∈ H2 and (xn) is generated by:

xn+1 = αnu + (1 − αn)Tnxn + en,

then (xn) converges strongly to z = PSu ∈ ⋂∞
n=1 F (Tn).

Proof. Suppose that sequence (yn) is generated by the exact algorithm:

yn+1 = αnu + (1 − αn)Tnyn and y1 = x1,

then by Remark 3.1, (yn) converges strongly to z = PSu ∈ ⋂∞
n=1 F (Tn). Since for all

n ∈ N, Tn is nonexpansive, we have

‖xn+1 − yn+1‖ ≤ (1− αn)‖Tnxn − Tnyn‖ + ‖en‖ ≤ (1 − αn)‖xn − yn‖ + ‖en‖,

which by condition (ii) of (3.3) and Lemma 2.1, implies ‖xn − yn‖ → 0. Thus, the
inequality ‖xn − z‖ ≤ ‖xn −yn‖+‖yn − z‖ implies that the sequence (xn) converges
strongly to z = PSu ∈ ⋂∞

n=1 F (Tn).

4. INFINITE FAMILY OF FIRMLY QUASI-NONEXPANSIVE MAPPINGS

In this section, we apply the results of Theorems 3.1 and 3.3 to prove the strong con-
vergence of iterations of Halpern type for a infinite family of firmly quasi-nonexpansive
mappings.
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Proposition 4.1. Let R1, R2, R3, . . . be firmly quasi-nonexpansive selfmappings on
C such that

⋂∞
k=1 F (Rk) 	= ∅ and (θk

n) be a family of nonnegative real numbers with
indices k, n ∈ N such that k ≤ n. Consider the following conditions:

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i)
n∑

k=1

θk
n = 1, ∀n ∈ N,

(ii) lim
n→∞ θk

n > 0, ∀k ∈ N,

(iii)
∞∑

n=1

n∑
k=1

|θk
n+1 − θk

n| < ∞.

Set Tn =
∑n

k=1 θk
nRk, ∀n ∈ N.

(1) If (θk
n) satisfies (i), then for all n ∈ N, Tn is a well-defined selfmapping on C.

(2) If (θk
n) satisfies (i), (ii), then for all n ∈ N, F (Tn) =

⋂
k∈J F (Rk), where

J = {1 ≤ k ≤ n : θk
n 	= 0}. Hence

⋂∞
n=1 F (Tn) =

⋂∞
k=1 F (Rk).

(3) If (θk
n) satisfies (i), (ii), then the sequence (Tn) is a strongly quasi-nonexpansive

sequence.
(4) If (θk

n) satisfies (i), (ii) and (iii), then (Tn) satisfies (3.7). Consequently, by
Proposition 3.2, (Tn) satisfies (3.1).

(5) If for all k ∈ N, Rk satisfies (3.2) and (θk
n) satisfies (i), (ii), then (Tn) satisfies

(3.1).

Proof. For (1), (2) and (4), we refer the reader to [1, 8]. Notice that the proofs
of (2) and (4) that were presented in [1] for nonexpansive mappings remain true for
quasi-nonexpansive mappings.

In order to prove (3), suppose p ∈ ⋂∞
n=1 F (Tn) 	= ∅ and (xn) is a bounded sequence

in C such that ‖xn − p‖− ‖Tnxn − p‖ → 0. By the condition (i) and part (2), we get

‖xn − p‖ − ‖Tnxn − p‖ = ‖xn − p‖ −
∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

θk
nRkxn −

n∑
k=1

θk
np

∣∣∣∣∣
∣∣∣∣∣

≥ ‖xn − p‖ −
n∑

k=1

θk
n‖Rkxn − p‖ =

n∑
k=1

θk
n(‖xn − p‖ − ‖Rkxn − p‖).

Thus, limn
∑n

k=1 θk
n(‖xn −p‖−‖Rkxn −p‖) = 0. Moreover, there exists L > 0 such

that ‖xn − p‖ ≤ L. Thus, by firmly quasi-nonexpansivity of (Rk), we have

‖xn − Rkxn‖2 ≤ ‖xn − p‖2 − ‖Rkxn − p‖2

= (‖xn−p‖−‖Rkxn−p‖)(‖xn−p‖+‖Rkxn−p‖)
≤ 2L(‖xn−p‖−‖Rkxn−p‖)
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which implies ‖xn−Rkxn‖2 ≤ 2L(‖xn−p‖−‖Rkxn−p‖). Multiplying this inequality
by θk

n and then summing up from k = 1 to n, we obtain
n∑

k=1

θk
n‖xn − Rkxn‖2 ≤ 2L

n∑
k=1

θk
n(‖xn − p‖ − ‖Rkxn − p‖)

which implies limn
∑n

k=1 θk
n‖xn −Rkxn‖2 = 0. Now, by Cauchy{Schwarz inequality

and (i), we have

0 ≤ ‖xn − Tnxn‖ =

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

θk
n(xn − Rkxn)

∣∣∣∣∣
∣∣∣∣∣

≤
n∑

k=1

θk
n‖xn − Rkxn‖ ≤

(
n∑

k=1

θk
n

) 1
2
(

n∑
k=1

θk
n‖xn − Rkxn‖2

) 1
2

≤
(

n∑
k=1

θk
n‖xn − Rkxn‖2

) 1
2

that follows ‖xn − Tnxn‖ → 0 as n → ∞.
On the other hand, by (i), for all x ∈ C, p ∈ ⋂∞

n=1 F (Tn) and n ∈ N, we get

‖Tnx − p‖ =

∣∣∣∣∣
∣∣∣∣∣

n∑
k=1

θk
nRkx − p

∣∣∣∣∣
∣∣∣∣∣ ≤

n∑
k=1

θk
n‖Rkx − p‖

≤
n∑

k=1

θk
n‖x − p‖ = ‖x − p‖.

Hence for all n ∈ N, Tn is quasi-nonexpansive, as desired.
In order to prove (5), suppose that there exist (Tnj) ⊂ (Tn) and (xnj) ⊂ C such

that xnj ⇀ x ∈ C and xnj − Tnjxnj → 0 and q ∈ ⋂∞
k=1 F (Rk). Since each Rk is

quasi-nonexpansive, by (i), we have

1
2

nj∑
k=1

θk
nj
‖xnj − Rkxnj‖2

≤
nj∑

k=1

θk
nj
〈xnj − Rkxnj , xnj − q〉

=

〈
xnj −

nj∑
k=1

θk
nj

Rkxnj , xnj − q

〉
= 〈xnj − Tnjxnj , xnj − q〉.

Consequently, by using the boundedness of (xnj), we easily deduced that limj
∑nj

k=1 θk
nj

‖xnj − Rkxnj‖2 = 0. Thus for each k ∈ N, limj θk
nj
‖xnj − Rkxnj‖2 = 0. Hence

by (ii), for each k ∈ N, limj ‖xnj − Rkxnj‖ = 0. Since for each k ∈ N, Rk satisfies
(3.2), then x ∈ ⋂∞

k=1 F (Rk). Therefore by (2), x ∈ ⋂∞
n=1 F (Tn). Hence (Tn) satisfies

(3.1).
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Theorem 4.2. Let R1, R2, R3, . . . be firmly quasi-nonexpansive mappings of C

into itself such that S =
⋂∞

k=1 F (Rk) 	= ∅ and (θk
n) be a family of nonnegative real

numbers with indices k, n ∈ N with k ≤ n such that satisfies the conditions (i) and
(ii) of (4.1). Suppose one of the following conditions holds

(iii)
∞∑

n=1

n∑
k=1

|θk
n+1 − θk

n| < ∞,

(iv) ∀k ∈ N, Rk satisfies (3.2).

Also, let (αn) be a sequence in (0, 1) such that satisfies (3.3). If (u, x1) ∈ C2 and
(xn) is generated by:

xn+1 = αnu + (1− αn)
n∑

k=1

θk
nRkxn,

then (xn) converges strongly to z = PSu ∈ ⋂∞
k=1 F (Rk).

Proof. By setting Tn =
∑n

k=1 θk
nRk, ∀n ∈ N, the proof is an immediate con-

sequence of Proposition 4.1 and Theorem 3.1.

Theorem 4.3. Let R1, R2, R3, . . . be firmly quasi-nonexpansive mappings of C into
itself such that S =

⋂∞
k=1 F (Rk) 	= ∅ and (λn) ⊂ (0,∞) such that

∑∞
n=1 λn < ∞.

Suppose (αn) is a sequence in (0, 1) such that satisfies (3.3). If (u, x1) ∈ C2 and
(xn) is generated by:

xn+1 = αnu + (1 − αn)

⎛
⎝( n∑

i=1

λi

)−1 n∑
k=1

λkRk

⎞
⎠ xn,

then (xn) converges strongly to z = PSu ∈ ⋂∞
k=1 F (Rk).

Proof. Set θk
n =

{
λk∑n
i=1 λi

, k ≤ n,

0, k > n,

then for each n ∈ N,
∑n

k=1 θk
n =

∑n
k=1

λk∑n
i=1 λi

= 1 and since (λn) ⊂ (0,∞) such
that

∑∞
n=1 λn < ∞, we get

lim
n→∞ θk

n = lim
n→∞

λk
n∑

i=1

λi

> 0, ∀k ∈ N.

Also, by Lemma 2.3
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∞∑
n=1

n∑
k=1

|θk
n+1 − θk

n| =
∞∑

n=1

n∑
k=1

∣∣∣ λk

n+1∑
i=1

λi

− λk
n∑

i=1

λi

∣∣∣

=
∞∑

n=1

(
1 −

n∑
k=1

λk

n+1∑
i=1

λi

)
=

∞∑
n=1

λn+1∑n
i=1 λi

< ∞.

Hence, Theorem 4.2 implies the interested result.

Remark 4.1. By using Theorem 3.3 and Proposition 4.1, the inexact versions of
Theorems 4.2 and 4.3 are true when R1, R2, R3, . . . are firmly nonexpansive selfmap-
pings on H and the error sequence (en) ⊂ H satisfies the condition

∑∞
n=1 ‖en‖ <

∞ or limn
‖en‖
αn

= 0.

5. PROXIMAL POINT METHODS

By the main result of the paper (Theorem 3.1), we study the Halpern-Mann type
of the proximal point algorithm in the following.

Lemma 5.1. Let A ⊂ H×H be a maximal monotone operator such that A−1(0) 	=
∅.
(i1) If (λn) is a sequence in (0,∞), then (Jλn) is a strongly nonexpansive sequence.

(i2) If (λn) is a sequence in (0,∞) such that lim infn λn > 0, then the sequence
(Jλn) satisfies (3.1).

Proof. We can find the proof of part (i1) in [11]. For the proof of (i2), suppose
(xnk

) ⊂ H such that xnk
⇀ x and xnk

− Jλnk
xnk

→ 0, then for all y ∈ H , we have
〈Jλnk

xnk
− x, y〉 = 〈Jλnk

xnk
− xnk

, y〉+ 〈xnk
− x, y〉.

Hence Jλnk
xnk

⇀ x. Since lim infn λn > 0, we get λ−1
nk

(xnk
− Jλnk

xnk
) → 0. On

the other hand, λ−1
nk

(xnk
− Jλnk

xnk
) ∈ A(Jλnk

xnk
) and A is demiclosed (see [10]),

thus 0 ∈ A(x). In other words x ∈ A−1(0) = F (Jλ), ∀λ > 0.

Lemma 5.2. Let (Tn) be a sequence of selfmappings on C and (δn) is a sequence
in [0, 1] such that lim supn δn < 1. For each n ∈ N, set

Snx = δnx + (1 − δn)Tnx,

then
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(1) If (Tn) is strongly quasi-nonexpansive sequence (strongly nonexpansive sequence),
then (Sn) is also strongly quasi-nonexpansive sequence (resp. strongly nonex-
pansive sequence).

(2) If (Tn) satisfies (3.1), then (Sn) satisfies (3.1).

Proof. It is clear that F (Tn) = F (Sn), ∀n ∈ N. If (Tn) is strongly quasi-
nonexpansive sequence, then

⋂∞
n=1 F (Sn) =

⋂∞
n=1 F (Tn) 	= ∅. Let q ∈ F (Sn), then

since F (Tn) = F (Sn) and Tn is quasi-nonexpansive, for each x ∈ C

‖Snx − q‖ ≤ δn‖x − q‖ + (1 − δn)‖Tnx − q‖ ≤ ‖x − q‖.
Thus, Sn is quasi-nonexpansive. Suppose q ∈ ⋂∞

n=1 F (Sn) and (xn) is a bounded
sequence in C such that ‖Snxn − q‖ − ‖xn − q‖ → 0, then we get

‖Snxn − q‖ − ‖xn − q‖ ≤ (1− δn)(‖Tnxn − q‖ − ‖xn − q‖) ≤ 0,

which implies (1−δn)(‖Tnxn−q‖−‖xn−q‖) → 0. Since lim supn δn < 1, therefore
(‖Tnxn − q‖ − ‖xn − q‖) → 0. Since (Tn) is strongly quasi-nonexpansive sequence,
we get ‖Tnxn − xn‖ → 0. Moreover, ‖Snxn − xn‖ = (1 − δn)‖Tnxn − xn‖ implies
‖Snxn − xn‖ → 0. Hence, (Sn) is strongly quasi-nonexpansive sequence.

With a similar process, we deduce that if (Tn) is strongly nonexpansive sequence,
then (Sn) is also strongly nonexpansive sequence.

In order to prove (2), suppose (Snj) ⊂ (Sn), (xnj ) ⊂ C are subsequences such
that xnj ⇀ x and xnj − Snjxnj → 0. Since xnj − Snjxnj = (1− δnj )(xnj −Tnj xnj)
and lim supn δn < 1, we have xnj − Tnj xnj → 0. Since (Tn) satisfies (3.1), x ∈⋂∞

n=1 F (Tn) =
⋂∞

n=1 F (Sn). Therefore (Sn) satisfies (3.1).

The following theorem has essentially proved by Wang and Cui [15], which we
recall it as an application of Theorem 3.1.

Theorem 5.1. Let (λn) be a sequence in (0,∞) such that lim infn λn > 0 and
A ⊂ H × H be a maximal monotone operator such that A−1(0) 	= ∅. Suppose
(αn), (βn) and (γn) are sequences in (0, 1) that satisfy the following conditions:

(5.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i)αn + βn + γn = 1, ∀n ∈ N;

(ii) limn αn = 0,

∞∑
n=1

αn = ∞;

(iii) lim infn γn > 0.

and (en) is a sequence in H such that
∑∞

n=1 ‖en‖ < ∞ or limn
‖en‖
αn

= 0. If
(u, x1) ∈ H2 and (xn) is generated by:

xn+1 = αnu + βnxn + γnJλnxn + en,

then (xn) converges strongly to z = PA−1(0)u ∈ A−1(0).
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Proof. By Lemma 5.1, (Jλn) is a strongly nonexpansive sequence. Set Snx =
βn

1−αn
x + γn

1−αn
Jλnx, ∀x ∈ H . By the assumptions, Lemmas 5.1 and 5.2, (Sn) is a

strongly nonexpansive sequence that satisfies (3.1). Moreover, we have

xn+1 = αnu + (1− αn)Snxn + en.

Consequently, by Theorem 3.3, (xn) converges strongly to z = PA−1(0)u ∈ A−1(0).

The following corollary improves the main result of Yao and Shahzad [20], that
gave an answer to an open question by Boikanyo and Morosanu [3]. This question
was studied by Saejung [12] as well.

Corollary 5.2. Let (λn) be a sequence in (0,∞) such that lim infn λn > 0 and
A ⊂ H × H be a maximal monotone operator such that A−1(0) 	= ∅. Suppose
(αn), (βn), and (γn) are sequences in (0, 1) which satisfy conditions (5.1) and (dn)
is a sequence in H such that limn ‖dn‖ = 0. If x1 ∈ H and (xn) is generated by:

xn+1 = βnxn + γnJλnxn + αndn,

then (xn) converges strongly to z = PA−1(0)0.

Proof. By taking u = 0 and en = αndn in the iteration
xn+1 = αnu + βnxn + γnJλnxn + en, the proof is an immediate consequence of
Theorem 5.1.

In the following corollary, we verify the problem:

(5.2) Find x∗ ∈ S :=
⋂
k≥0

A−1
k (0),

where (Ak)k≥0 : H → 2H is an infinite countable family of maximal monotone
operators with

⋂
k≥0 A−1

k (0) 	= ∅.

Corollary 5.3. Suppose (θk) ⊂ (0,∞) and (λn) ⊂ (0,∞) such that
∑∞

n=1 λn <
∞ and (αn), (βn), and(γn) are sequences in (0, 1), which satisfy (5.1) and (en) is a
sequence in H such that

∑∞
n=1 ‖en‖ < ∞ or limn

‖en‖
αn

= 0. If (u, x1) ∈ H2 and
(xn) is generated by:

(5.3) xn+1 = αnu + βnxn + γn

⎛
⎝( n∑

i=1

λi

)−1 n∑
k=1

λkJ
Ak
θk

xn

⎞
⎠+ en,

then (xn) converges strongly to a solution of (5.2).
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Proof. Set Tn =
∑n

k=1 ηk
nJAk

θk
, ∀n ∈ N, where ηk

n =

{
λk∑n
i=1 λi

, k ≤ n,

0, k > n.

Since for each k ∈ N, JAk
θk

with θk ∈ (0,∞) is a firmly nonexpansive mapping, with a
similar proof of part (3) of Proposition 4.1, (Tn) is a strongly nonexpansive sequence.
Thus, Theorem 3.3 and Lemma 5.2 complete the proof.

6. OTHER APPLICATIONS

In this section, we give some applications in minimization and subgradient projec-
tion.
6.1. Constrained minimization and convex feasibility

Let (Dk)k≥0 be an infinite (or finite, with Dk = H , for k large enough) countable
family of convex and closed subset of H such that

⋂
k≥0 Dk 	= ∅, and consider the

following convex feasibility problem

(6.1) Find x∗ ∈
⋂
k≥0

Dk.

Corollary 6.1. Suppose (λn) ⊂ (0,∞) such that
∑∞

n=1 λn < ∞ and (αn), (βn),
and (γn) are sequences in (0, 1) such that satisfy (5.1) and (en) is a sequence in H

such that
∑∞

n=1 ‖en‖ < ∞ or limn
‖en‖
αn

= 0. If (u, x1) ∈ H2 and (xn) is generated
by:

xn+1 = αnu + βnxn + γn

⎛
⎝( n∑

i=1

λi

)−1 n∑
k=1

λkPDk

⎞
⎠ xn + en,

where P is the metric projection onto Dk, then (xn) converges strongly to a solution
of (6.1).

Proof. Set Tn =
∑n

k=1 θk
nPDk

, ∀n ∈ N, where θk
n =

{
λk∑n
i=1 λi

, k ≤ n,

0, k > n.

Since for each k ∈ N, PDk
is a firmly nonexpansive mapping with F (PDk

) = Dk,
thus with a similar proof of part (3) of Proposition 4.1 we can get that (Tn) is a strongly
nonexpansive sequence. Hence, the result is deduced from Theorem 3.3 and Lemma
5.2.

6.2. Subgradient projection methods
Assume that lev≤0(φ) := {x ∈ H | φ(x) ≤ 0} 	= ∅, where φ : H → R is a

continuous convex function. Recall that a subgradient projection relative to φ is a map
T(φ) : H → H with

T(φ)(x) :=

⎧⎨
⎩x − φ(x)

|φ′(x)|2φ′(x) if φ(x) > 0,

x otherwise,
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where φ′ : H → H is a selection of ∂φ : H → 2H (the Fenchel subdifferential
of φ) in the sense that φ′(x) ∈ ∂φ(x), for all x ∈ H . Clearly, T(φ) is a firmly
quasi-nonexpansive map and F (T(φ)) = lev≤0(φ). We can see some applications of
subgradient projection techniques in [2, 19].

The following corollary is finding x∗ in nonempty, closed, and convex subset S ={
x ∈ H | supk≥0 φk(x) ≤ 0

}
=
⋂

k≥0 F (T(φk)) of H , where (φk)k≥0 : H → R is an
infinite (or finite) countable family of continuous and convex functions such that, for
each k ≥ 0, lev≤0(φk) 	= ∅.

Corollary 6.2. Suppose (λn) ⊂ (0,∞) such that
∑∞

n=1 λn < ∞ and (αn), (βn),
and (γn) are sequences in (0, 1) which satisfy (5.1). If (u, x1) ∈ H2 and (xn) is
generated by:

xn+1 = αnu + βnxn + γn

⎛
⎝( n∑

i=1

λi

)−1 n∑
k=1

λkT(φk)

⎞
⎠xn,

then (xn) converges strongly to x∗ ∈ ⋂k≥0 F (T(φk)).

Proof. Set Tn =
∑n

k=1 θk
nT(φk), ∀n ∈ N, where θk

n =

{
λk∑n
i=1 λi

, k ≤ n,

0, k > n.
Since for each k ∈ N, T(φk) is a firmly quasi-nonexpansive mapping, by part (3) of
Proposition 4.1, (Tn) is a strongly quasi-nonexpansive sequence. Hence, by setting
Rk = T(φk), Theorem 3.1 and Lemma 5.2 imply the interested result.
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