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CARLEMAN INEQUALITIES FOR FRACTIONAL LAPLACIANS
AND UNIQUE CONTINUATION

Ihyeok Seo

Abstract. We obtain a unique continuation result for fractional Schrödinger
operators with potential in Morrey spaces. This is based on Carleman inequalities
for fractional Laplacians.

1. INTRODUCTION

The aim of this paper is to obtain a unique continuation result for the fractional
Schrödinger operator (−Δ)α/2+V (x), 0 < α < n. Recently, this operator has attracted
interest from mathematics as well as mathematical physics. This is because Laskin [9]
introduced the fractional quantum mechanics governed by the fractional Schrödinger
equation

i∂tΨ(x, t) = ((−Δ)α/2 + V (x))Ψ(x, t),

where the fractional Schrödinger operator plays a central role.
More generally, we will consider the following differential inequality

(1.1) |(−Δ)α/2u(x)| ≤ V (x)|u(x)|, x ∈ R
n, n ≥ 3,

where (−Δ)α/2 is defined for 0 < α < n by means of the Fourier transform Ff
(= f̂ ), as follows:

F [(−Δ)α/2f ](ξ) = |ξ|αf̂ (ξ).

The problem is now to find conditions on the potential V (x) that imply the unique
continuation property which means that a solution of (1.1) vanishing in an open subset
of R

n must vanish identically.
In the classical case α = 2, the property was extensively studied in connection with

the problem of absence of positive eigenvalues of the Schrödinger operator −Δ+V (x).
Among others, Jerison and Kenig [4] proved the property for V ∈ L

n/2
loc , n ≥ 3. Around
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the same time, an extension to L
n/2,∞
loc was obtained by Stein [16] with the smallness

assumption that
sup
a∈Rn

lim
r→0

‖χB(a,r)V ‖Ln/2,∞

is sufficiently small. (Here, χB(a,r) denotes the characteristic function of the ball with
center a ∈ R

n and radius r > 0.) Note that this assumption is trivially satisfied for
V ∈ L

n/2
loc because L

n/2
loc ⊂ L

n/2,∞
loc . Also, the above-mentioned results later turn out to

be optimal in the context of Lp potentials (see [5, 7]).
Recently, there was an attempt [13] to deal with the fractional case where n− 1 ≤

α < n. After that, the author [14] extended Stein’s result completely to 0 < α < n.
Namely, it turns out that (1.1) has the unique continuation property for V ∈ L

n/α,∞
loc

with the corresponding smallness assumption that

sup
a∈Rn

lim
r→0

‖χB(a,r)V ‖Ln/α,∞

is sufficiently small. See also [8, 12] for higher orders where α/2 are positive integers,
and for some fractional elliptic equations see [3, 10, 11].

In this paper we improve the class of potentials to the Morrey class Lα,p which is
defined for α > 0 and 1 ≤ p ≤ n/α by

V ∈ Lα,p ⇔ ‖V ‖Lα,p := sup
Q cubes in Rn

|Q|α/n
( 1
|Q|

∫
Q

V (y)pdy
) 1

p
< ∞.

In particular, Lα,p = Lp when p = n/α, and even Ln/α,∞ ⊂ Lα,p for p < n/α. Our
result is the following theorem.

Theorem 1.1. Let n ≥ 3 and 0 < α < n. Assume that V ∈ Lα,p for p >

(n− 1)/α. Let u ∈ L2 ∩L2(V ) be a solution of (1.1) vanishing in a non-empty open
subset of R

n. Then u ≡ 0 if

(1.2) sup
a∈Rn

lim
r→0

‖χB(a,r)V ‖Lα,p

is sufficiently small. Here, L2(V ) = L2(V (x)dx).

Let us give some remarks about the assumptions in the theorem. First, L2∩L2(V )
is the solution space for which we have unique continuation. It should be noted that the
space is dense in L2. In fact, consider Dn = {x ∈ R

n : V 1/2 ≤ n}. Then, for f ∈ L2,
χDnf is contained in L2 ∩ L2(V ), and χDnf → f as n → ∞. Now the Lebesgue
dominated convergence theorem gives that χDnf → f in L2. Thus, the solution space
is dense in L2.

Next, by taking the rescaling uε(x) = u(εx), the equation (−Δ)α/2u = V u
becomes (−Δ)α/2uε = Vεuε, where Vε(x) = εαV (εx). It is also easy to see that
‖Vε‖Lα,p = ‖V ‖Lα,p . Hence, Lα,p is invariant under the scaling.
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The above theorem is a consequence of the following Carleman inequalities which
can be seen as natural extensions to the fractional Laplacians (−Δ)α/2 of those in [2]
for the case α = 2.

Proposition 1.2. Let n ≥ 3 and 0 < α < n. Assume that V ∈ Lα,p for p >

(n − 1)/α. Then there exist sequence {tm : m = 0, 1, . . .} and constants C, β > 0
independent of m and r such that∥∥χB(0,r)|x|−tm−n−α

2 f
∥∥

L2(V )
≤ C‖χB(0,r)V ‖β

Lα,p

∥∥|x|−tm−n−α
2 (−Δ)α/2f

∥∥
L2(V −1)

for f, (−Δ)α/2f ∈ C∞
0 (Rn \ {0}). Here, tm → ∞ as m → ∞.

Throughout the paper, we will use the letter C to denote positive constants possibly
different at each occurrence.

2. UNIQUE CONTINUATION

Here we prove Theorem 1.1 assuming Proposition 1.2 which will be shown in the
next section.

Without loss of generality, we may prove that the solution u must vanish identically
if it vanishes in a sufficiently small neighborhood of the origin.

Since we are assuming that u ∈ L2 ∩ L2(V ) vanishes near the origin, by (1.1),
(−Δ)α/2u ∈ L2(V −1) vanishes also near the origin. Now, from the Carleman inequal-
ity in Proposition 1.2 (with a standard limiting argument involving a C∞

0 approximate
identity), one can easily see that

(2.1)

∥∥χB(0,r)|x|−tm−n−α
2 u

∥∥
L2(V )

≤ C‖χB(0,r)V ‖β
Lα,p

∥∥|x|−tm−n−α
2 (−Δ)α/2u

∥∥
L2(V −1)

.

Note also that from (1.1)∥∥|x|−tm−n−α
2 (−Δ)α/2u

∥∥
L2(V −1)

≤ C
∥∥χB(0,r)|x|−tm−n−α

2 u
∥∥

L2(V )

+ C
∥∥(1−χB(0,r))|x|−tm−n−α

2 (−Δ)α/2u
∥∥

L2(V −1)
.

So, if we choose r small enough so that ‖χB(0,r)V ‖β
Lα,p is sufficiently small (see (1.2)),

then the first term on the right-hand side can be absorbed into the left-hand side of
(2.1). Thus we get∥∥χB(0,r)|x|−tm−n−α

2 u
∥∥

L2(V )
≤ C

∥∥(1− χB(0,r))|x|−tm−n−α
2 (−Δ)α/2u

∥∥
L2(V −1)

≤ Cr−tm−n−α
2

∥∥(−Δ)α/2u
∥∥

L2(V −1)
,
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which in turn implies

∥∥χB(0,r)

( r

|x|
)tm+n−α

2 u
∥∥

L2(V )
≤ C

∥∥(−Δ)α/2u
∥∥

L2(V −1)
< ∞.

By letting m → ∞ we conclude that u = 0 on B(0, r). Now, u ≡ 0 by a standard
connectedness argument.

3. CARLEMAN INEQUALITIES

In this section we will obtain the Carleman inequality in Proposition 1.2 by using
Stein’s complex interpolation [15], as in [2], on an analytic family of operators St,α

z

defined by

St,α
z g(x) =

V (x)
z
2α

Γ((n − z)/2)

∫
Rn

Kz(x, y)V (y)
z
2α g(y)dy,

where 0 ≤ Re z ≤ n and

Kz(x, y) = Cz

( |y|
|x|

)t+(n−z)/2(
|x − y|−n+z −

m−1∑
j=0

1
j!

( ∂

∂s

)j|sx − y|−n+z
∣∣∣
s=0

)
.

Here, St,2
z coincides with the analytic family of operators St

z in [2]. Note also that

(3.1) St,α
α

(
(−Δ)α/2f(y)

V (y)1/2|y|t+(n−α)/2

)
(x) =

f(x)V (x)1/2

|x|t+(n−α)/2

(see Lemma 2.1 in [13]).
Let m be nonnegative integers. Now it is enough to show that there exist constants

C, β > 0 independent of m and r such that

(3.2) ‖χB(0,r)S
tm,α
α g‖L2 ≤ C‖χB(0,r)V ‖β

Lα,p‖g‖L2

for q > (n − 1)/α, 0 < ε < α(q − (n − 1)/α) and tm = m − 1 + (1 − ε)/2. Indeed,
from (3.1) and (3.2),∥∥∥∥χB(0,r)

f(x)V (x)1/2

|x|tm+(n−α)/2

∥∥∥∥
L2

≤ C‖χB(0,r)V ‖β
Lα,p

∥∥∥∥ (−Δ)α/2f(y)
V (y)1/2|y|tm+(n−α)/2

∥∥∥∥
L2

,

which is equivalent to∥∥∥∥χB(0,r)
f(x)

|x|tm+(n−α)/2

∥∥∥∥
L2(V )

≤ C‖χB(0,r)V ‖β
Lα,p

∥∥∥∥(−Δ)α/2f(y)
|y|tm+(n−α)/2

∥∥∥∥
L2(V −1)

as desired.
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To show (3.2), we use Stein’s complex interpolation between the following two
estimates for the cases of Re z = 0 and n − 1 < Re z < αq:

(3.3) ‖χB(0,r)S
tm,α
iγ g‖L2 ≤ Cec|γ|‖g‖L2

and

(3.4) ‖χB(0,r)S
tm,α
n−1+ε+iγg‖L2 ≤ Cec|γ|‖χB(0,r)V ‖(n−1+ε)/2α

Lα,p ‖g‖L2,

where γ ∈ R, p > (n−1)/α, 0 < ε < α(p− (n−1)/α) and tm = m−1+(1− ε)/2.
Indeed, since n − 1 < n − 1 + ε < αp ≤ n and p > 1, we can easily get (3.2) using
the complex interpolation between (3.3) and (3.4).

It remains to show (3.3) and (3.4). The first estimate (3.3) follows immediately
from Lemma 2.3 in [4]. Indeed, consider the family of operators T t

z given by

T t
zg(x) =

1
Γ((n − z)/2)

∫
Rn

Hz(x, y)g(y)|y|−ndy,

where

Hz(x, y) = Cz |x|−t|y|n+t−z

(
|x− y|−n+z −

m−1∑
j=0

1
j!

( ∂

∂s

)j|sx − y|−n+z

∣∣∣∣
s=0

)
.

Then it is clear that (3.3) follows from

‖T tm
iγ g‖L2(dx/|x|n) ≤ Cec|γ|‖g‖L2(dx/|x|n)

which is Lemma 2.3 of [4].
For the second one, we first recall from [2] (see (3.9) there) that

∣∣∣∣|x − y|−n+z −
m−1∑
j=0

1
j!

( ∂

∂s

)j |sx − y|−n+z
∣∣∣
s=0

∣∣∣∣
≤ Cec|Im z|

( |x|
|y|

)m−1+n−Re z

|x − y|−n+Re z

for n − 1 < Re z < n. From this, we then get

|Stm,α
n−1+ε+iγg(x)| ≤ Cec|γ|V (x)(n−1+ε)/2α

∫
Rn

|x−y|n−1+ε−nV (y)(n−1+ε)/2α|g(y)|dy

if 0 < ε < 1. Hence it follows that

(3.5)
‖χB(0,r)S

tm,α
n−1+ε+iγg‖L2

≤ Cec|γ|‖χB(0,r)In−1+ε(V (y)(n−1+ε)/2α|g(y)|)‖L2(V (n−1+ε)/α),
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where Iα denotes the fractional integral operator defined for 0 < α < n by

Iαf(x) =
∫

Rn

f(y)
|x− y|n−α

dy.

Here we will use the following lemma to show (3.4), which characterizes weighted L2

inequalities for Iα, due to Kerman and Sawyer [6] (see Theorem 2.3 there and also
Lemma 2.1 in [1]):

Lemma 3.1. Let 0 < α < n. Assume that w is a nonnegative measurable function
on R

n. Then there exists a constant Cw depending on w such that the following two
equivalent estimates

‖Iα/2f‖L2(w) ≤ Cw‖f‖L2

and
‖Iα/2f‖L2 ≤ Cw‖f‖L2(w−1)

are valid for all measurable functions f if and only if

(3.6) sup
Q

(∫
Q

w(x)dx

)−1 ∫
Q

∫
Q

w(x)w(y)
|x − y|n−α

dxdy

is finite. Here the sup is taken over all dyadic cubes Q in R
n, and the constant Cw

may be taken to be a constant multiple of the square root of (3.6).

Indeed, it is known that ‖w‖Lα,p < ∞ for p > 1 is a sufficient condition for the
finiteness of (3.6) (see Subsection 2.2 in [1]). Namely, (3.6) ≤ C‖w‖Lα,p for p > 1.
Using this fact and applying the above lemma with α = n − 1 + ε, from (3.5) and
Iα/2Iα/2 = Iα, we see that for 1 < q ≤ n/(n − 1 + ε)

‖χB(0,r)S
tm,α
n−1+ε+iγg‖L2

≤ Cec|γ|‖χB(0,r)V
(n−1+ε)/α‖1/2

Ln−1+ε,q‖I(n−1+ε)/2(V (y)(n−1+ε)/2α|g(y)|)‖L2

≤ Cec|γ|‖χB(0,r)V
(n−1+ε)/α‖1/2

Ln−1+ε,q

× ‖V (n−1+ε)/α‖1/2
Ln−1+ε,q‖V (n−1+ε)/2αg‖L2(V −(n−1+ε)/α)

= Cec|γ|‖χB(0,r)V
(n−1+ε)/α‖1/2

Ln−1+ε,q‖V (n−1+ε)/α‖1/2
Ln−1+ε,q‖g‖L2

= Cec|γ|‖χB(0,r)V ‖(n−1+ε)/2α

Lα,q(n−1+ε)/α‖V ‖(n−1+ε)/2α

Lα,q(n−1+ε)/α‖g‖L2.

Since (n−1)/α < (n−1+ε)/α < q(n−1+ε)/α ≤ n/α and V ∈ Lα,p, by choosing
q, ε so that p = q(n − 1 + ε)/α, we now get the desired estimate (3.4).
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11. A. Rüland, On some quantitative unique continuation properties of fractional Schrödinger
equations: doubling, vanishing order and nodal domain estimates, arxiv:1407.0817.

12. I. Seo, Remark on unique continuation for higher powers of the Laplace operator, J.
Math. Anal. Appl., 397 (2013), 766-771.

13. I. Seo, On unique continuation for Schrödinger operators of fractional and higher orders,
Math. Nachr., 287 (2014), 699-703.

14. I. Seo, Unique continuation for fractional Schrödinger operators in three and higher
dimensions, Proc. Amer. Math. Soc., 143 (2015), 1661-1664.

15. E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc., 83 (1956),
482-492.



1540 Ihyeok Seo

16. E. M. Stein, Appendix to “unique continuation”, Ann. of Math., 121 (1985), 489-494.

Ihyeok Seo
Department of Mathematics
Sungkyunkwan University
Suwon 440-746
Republic of Korea
E-mail: ihseo@skku.edu


