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GLOBAL BEHAVIORS FOR A CLASS OF MULTI-GROUP SIRS
EPIDEMIC MODELS WITH NONLINEAR INCIDENCE RATE

Qian Tang, Zhidong Teng* and Haijun Jiang

Abstract. In this paper, we study a class of multi-group SIRS epidemic models
with nonlinear incidence rate which have cross patch infection between different
groups. The basic reproduction number R0 is calculated. By using the method of
Lyapunov functions, LaSalle’s invariance principle, the theory of the nonnegative
matrices and the theory of the persistence of dynamical systems, it is proved
that if R0 ≤ 1 then the disease-free equilibrium is globally asymptotically stable,
and if R0 > 1 then the disease in the model is uniform persistent. Furthermore,
when R0 > 1, by constructing new Lyapunov functions we establish the sufficient
conditions of the global asymptotic stability for the endemic equilibrium.

1. INTRODUCTION

In the theoretical study of epidemic dynamical models, in recent years the multi-
group epidemic models have been proposed to describe the spread of many infectious
diseases in heterogeneous populations, such as mumps, gonorrhea, measles, West-Nile
virus and HIV/AIDS (See, for example, [1-11]). A heterogeneous host population can
be divided into several homogeneous groups according to modes of transmission, contact
patterns, or geographic distributions, so that within-group and inter-group interactions
could be modeled separately.

In [1], Guo, Li and Shuai have first succeeded to establish the completely global
dynamics for a multi-group SIR model, by making use of the theory of non-negative
matrices, Lyapunov functions and a subtle grouping technique in estimating the deriva-
tives of Lyapunov functions guided by graph theory in 2006. Then, many researchers
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on different kinds of multi-group epidemic models, commonly follow this research to
study the global stability of equilibria of models.

For multi-group epidemic models, the difficult problem is to obtain the global
stability of endemic equilibrium. Many researches on the global stability of the en-
demic equilibrium for multi-group epidemic models are not perfect. Particularly, in [2]
Muroya, Enatsu and Kuniya studied the following multi-group SIRS epidemic model
with varying population sizes

(1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk

dt
= bk − μk1Sk − Sk

⎛
⎝ n∑

j=1

βkjIj

⎞
⎠+ δkRk,

dIk

dt
= Sk

⎛
⎝ n∑

j=1

βkjIj

⎞
⎠− (μk2 + γk)Ik,

dRk

dt
= γkIk − (μk3 + δk)Rk.

By using the Lyapunov function techniques, the authors established that, under the
conditions μk1 ≤ min{μk2, μk3} (k = 1, 2, . . . , n) and matrix B = (βkj)n×n is ir-
reducible, if basic reproduction number R0 ≤ 1, then disease-free equilibrium E0 =
(S0

1 , 0, 0, S0
2, 0, 0, . . . , S0

n, 0, 0) is globally asymptotically stable, and if R0 > 1, then
model (1) is permanent and there exists an endemic equilibrium E∗ = (S∗

1 ,I∗1 ,R∗
1,S

∗
2 ,I∗2 ,

R∗
2, . . . , S

∗
n, I∗n, R∗

n). Furthermore, if R0 > 1 and μk1S
∗
k −δkR∗

k ≥ 0 (k = 1, 2, . . . , n),
then E∗ also is globally asymptotically stable. In [3], Korobrinikov studied the follow-
ing multi-group SIR and SEIR models:

(2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= λ −

n∑
j=1

βjSIj − μS,

dIi

dt
= pi

n∑
j=1

βjSIj − δiIi,

dRi

dt
= ωiIi − μRi, i = 1, 2, . . . , n.

and

(3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= λ −

n∑
j=1

βjSIj − μS,

dE

dt
=

n∑
j=1

βjSIj +
n∑

j=1

rjIj − σE,

dIi

dt
= γiE − δiIi,

dRi

dt
= ωiIi − μRi, i = 1, 2, . . . , n.
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The author obtained the necessary and sufficient conditions for the global stability
of equilibria. That is, the disease-free equilibrium of models (2) and (3) is globally
asymptotically stable if and only if the basic reproduction number R0 ≤ 1, and the
endemic equilibrium of models (2) and (3) is globally asymptotically stable if and only
if R0 > 1.

Motivated by above works, as an extension of above model (1) we consider the
following multi-group SIRS epidemic model with nonlinear incidence rate:

(4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk

dt
= bk −

n∑
j=1

βkjfk(Sk)gj(Ij)− μk1Sk + δkRk,

dIk

dt
=

n∑
j=1

βkjfk(Sk)gj(Ij) − (μk2 + γk)Ik,

dRk

dt
= γkIk − (μk3 + δk)Rk, k = 1, 2, . . . , n.

We will study the dynamical behaviors of model (4). The basic reproduction number
R0 is calculated. Under basic assumption (H) (see Section 2), it is proved that only
when R0 ≤ 1 then the disease-free equilibrium is globally asymptotically stable by
using the method of Lyapunov functions, LaSalle’s invariance principle (See [13]) and
the properties of nonnegative irreducible matrices (See [12,18]), and only when R0 > 1
then the disease in the model is uniform persistent by using the theory of persistence
of dynamical systems (See [14]). Furthermore, when R0 > 1, we will establish new
sufficient conditions of the global asymptotic stability of the endemic equilibrium under
assumption (H∗) (see Theorem 2) by constructing new Lyapunov functions.

The organization of this paper is as follows. In the second section we give a model
description, and further obtain a result on the positivity and boundedness of solutions of
model (4). In the third section we discuss the existence and global asymptotic stability
of the disease-free equilibrium, and the uniform persistence of the disease for model
(4). In the fourth section we will study the global asymptotic stability of the endemic
equilibrium of model (4). Lastly, in the fifth section we will give a conclusion.

2. PRELIMINARIES

In model (4), for each k = 1, 2, . . . , n, Sk(t), Ik(t) and Rk(t) denote the numbers
of susceptible, infected and recovered individuals in k-th group at time t, respectively.
bk is the recruitment rate of the total population, μki (i = 1, 2, 3) are the natural death
rates of susceptible, infected and recovered individuals in k-th group, and death rate μk2

also includes the disease-related death rate of the infected individuals in k-th group. δk

is the rate at which recovered individuals in k-th group lose immunity and return to the
corresponding susceptible class. γk is the recovery rate of the infected individuals in
k-th group. In model (4), we assume that each two groups are connected by the direct
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transport such as airplanes or trains, etc. Therefore, for model (4), the only input is the
recruitment. Moreover, not only for infective individuals Ik in k-th group, the disease
is transmitted to the susceptible individuals Sk by the incidence rate βkkfk(Sk)gk(Ik)
with a transmission rate βkk, but also we consider cross path infection between different
groups such that for each Ij (j �= k, j = 1, 2, . . . , n), who travel from other j-th group
into k-th group, the disease is transmitted by the incidence rate βkjfk(Sk)gj(Ij) with a
transmission rate βkj . Furthermore, we assume that δk , βkj are nonnegative constants,
and bk, μk1, μk2, μk3 and γk are positive constants.

The initial condition for model (4) is given in the following form

(5) Sk(0) > 0, Ik(0) ≥ 0, Rk(0) ≥ 0, k = 1, 2, . . . , n.

We also have some special forms of nonlinear incidence rate in model (4), such as
fk(Sk) = Sk , fk(Sk) = Sk

1+λkSk
, gj(Ij) = Ij and gj(Ij) = Ij

1+αjIj
. In this paper, we

always assume that
(H) fk(Sk) and gk(Ik) satisfy the local Lipschitz condition and are strictly mono-

tone increasing on Sk ∈ [0,∞) and Ik ∈ [0,∞), respectively, gk(0) = 0, Ik
gk(Ik)

is
also strictly monotone increasing on Ik ∈ (0,∞), g′k(0) exists with g′k(0) > 0 for
k = 1, 2, . . . , n.

Remark 1. If function gk(Ik) (k = 1, 2, . . . , n) satisfies that second order
derivative g′′k(Ik) exists and g′′k(Ik) ≤ 0 for all Ik ∈ [0,∞), then we can easily prove
that Ik

gk(Ik) is monotone increasing on Ik ∈ (0,∞).
By the biological meanings of natural death rates μk1, μk2, μk3 of susceptible, in-

fected and recovered individuals, we may assume that

(6) μk1 ≤ min{μk2, μk3}, k = 1, 2, . . . , n.

Moreover, for simplicity in this paper, we also assume that

(7) n × n matrix B = (βkj)n×n is irreducible.

That is, an infected individual in the first group can cause infection to a susceptible
individual in the second group through an infection path.

Let S0
k = bk

μk1
, k = 1, 2, . . . , n, and S0 = (S0

1 , S0
2, . . . , S

0
n)T . The matrix M̃(S0)

is defined by

(8) M̃(S0) =
(

βkjfk(S0
k)g′j(0)

μk2 + γk

)
n×n

.

Further let

(9) R̃0 = ρ(M̃(S0)),
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where ρ(M̃(S0)) denotes the spectral radius of matrix M̃(S0).
Firstly, on the positivity and ultimate boundedness of solutions of model (4) with

initial condition (5), we have the following results.

Lemma 1. For any solution (Sk(t), Ik(t), Rk(t), 1 ≤ k ≤ n) of model (4) with
initial condition (5), we have

(1) if Sk(0) > 0, Ik(0) > 0, Rk(0) > 0, 1 ≤ k ≤ n, then Sk(t) > 0, Ik(t) > 0 and
Rk(t) > 0 for 1 ≤ k ≤ n and t ≥ 0;

(2) if condition (6) holds, then for each k = 1, 2, . . . , n

(10)
lim sup
t→+∞

Nk(t) ≤ S0
k, lim sup

t→+∞
Sk(t) ≤ S0

k,

lim sup
t→+∞

Ik(t) ≤ S0
k , lim sup

t→+∞
Rk(t) ≤ S0

k.

Proof. Firstly, from assumption (H) for any initial condition (5) model (4) has a
unique solution (Sk(t), Ik(t), Rk(t), 1 ≤ k ≤ n). Let m(t) = min{Sk(t), Ik(t), Rk(t),
1 ≤ k ≤ n}, then m(0) > 0 by Sk(0) > 0, Ik(0) > 0 and Rk(0) > 0 for any
k = 1, 2, . . . , n. By the continuity of solutions of model (4), if there exists a positive
t1 such that m(t1) = 0, then we can assume that m(t) > 0 for all 0 ≤ t < t1.

If there exists a positive integer k1 ∈ {1, 2, . . . , n} such that m(t1) = Sk1(t1) = 0,
then by the derivative definition, we have dSk1

(t1)

dt ≤ 0. But, by the first equations of
model (4),

dSk1(t1)
dt

= bk1 + δk1Rk1(t1) ≥ bk1 > 0,

which leads to a contradiction.
If there exists a positive integer k1 ∈ {1, 2, . . . , n} such that m(t1) = Ik1(t1) = 0,

by the second equations of model (4), for any t ∈ [0, t1),

dIk1

dt
=

n∑
j=1

βk1jfk1(Sk1)gj(Ij) − (μk12 + γk1)Ik1 ≥ −(μk12 + γk1)Ik1 .

Hence, we obtain
Ik1(t) ≥ Ik1(0)e−(μk12+γk1

)t

for any t ∈ [0, t1), then by the continuity of solutions, we have

Ik1(t1) ≥ Ik1(0)e−(μk12+γk1
)t1 > 0,

which leads to a contradiction.
Similarly, if there exists a positive integer k1 ∈ {1, 2, . . . , n} such that m(t1) =

Rk1(t1) = 0, then we also can obtain a contradiction.
Therefore, m(t) > 0 for all t ≥ 0, which implies Sk(t) > 0, Ik(t) > 0 and

Rk(t) > 0 for all t ≥ 0 and k = 1, 2, . . . , n.
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Let Nk(t) = Sk(t) + Ik(t) + Rk(t), 1 ≤ k ≤ n, then from model (4) we have

dNk(t)
dt

= bk − μk1Sk(t) − μk2Ik(t) − μk3Rk(t).

This shows that in model (4), total population size Nk(t) is variable along with time.
By (6), we have

dNk(t)
dt

≤ bk − μk1Nk(t), k = 1, 2, . . . , n,

from this we obtain (10). This completes the proof.

3. EXTINCTION AND PERMANENCE

In order to clearly study the persistence of the disease for model (4), we firstly
introduce some notations and results on the uniformly persistence of dynamical systems
given by Kuang in [14].

Let X be a complete metric space with metric d, and let X0 be an open set of X

such that X = X0 ∪ ∂X0, where ∂X0 is the boundary of X0. We assume that ∂X0

is nonempty. Suppose that T (t) : X → X, t ≥ 0 is a C0-semigroup on X , that is,
T (0) = I an identity, T (t+s) = T (t)T (s) for any t, s ≥ 0 and T (t)x is continuous in
(t, x) ∈ [0,∞)×X . T (t) is said to be point dissipative in X if there is a bounded set
B ⊂ X such that, for any x ∈ X , there is a t0 = t0(x, B) > 0 such that T (t)x ∈ B
for all t ≥ t0. For any x ∈ X , γ+(x) = {T (t)x : t ≥ 0} is said to be the positive
orbit through x, and its ω-limit set ω(x) is defined by

ω(x) = {y ∈ X : there is a sequence tn → ∞ (n → ∞) such that lim
n→∞T (tn)x = y}.

A set B in X is said to be invariant if T (t)B ⊂ B for all t ≥ 0, where T (t)B =
{T (t)x : x ∈ B}. Let B ⊂ X be invariant, then we easily prove that there is a negative
orbit γ−(x) defined for all t ≤ 0 through each point x ∈ B that belongs to B, and
we can further define the α-limit set α(x) of γ−(x) in a similar manner. A nonempty
invariant subset M of X is called an isolated invariant set if it is the maximal invariant
set of a neighborhood of itself. The stable set W s(A) of a compact invariant set A is
defined by

W s(A) = {x ∈ X : ω(x) �= ∅, ω(x) ⊂ A}
and its unstable set Wu(A) is defined by

Wu(A) = {x ∈ X : α(x) �= ∅, α(x) ⊂ A}.

Further, we assume that T (t) for any t ≥ 0 satisfies

T (t) : X0 → X0, T (t) : ∂X0 → ∂X0.
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This shows that X0 and ∂X0 are the invariant sets in X . Let A and B be two isolated
invariant sets, A is said to be chained to B, written as A → B, if there exists a
point x ∈ X , and x /∈ A ∪ B, such that x ∈ Wu(A) ∩ W s(B). A finite sequence
M1, M2, . . . , Mk of isolated invariant sets is called a chain if M1 → M2 → · · · → Mk ,
and if Mk = M1 the chain is called a cycle.

Lastly, we have that T (t) is said to be uniformly persistent if there is a constant
η > 0 such that, for any x ∈ X0,

lim inf
t→∞ d(T (t)x, ∂X0) ≥ η.

Now, on the uniform persistence of T (t) we have the following result which is
given in [14]. See Theorem 2.4 in [14, Chapter 8].

Lemma 2. Suppose that T (t) satisfies
(i) T (t) is compact for t ≥ 0 and point dissipative in X;

(ii) there exists a finite sequence M = {M1, M2, . . . , Mk} of compact and isolated
invariant sets such that

(a) Mi ∩ Mj = ∅ for any i, j = 1, 2, . . . , k and i �= j;
(b) Ω(∂X0) � ∪x∈∂X0ω(x) ⊂ ∪k

i=1Mi;
(c) no subset of M forms a cycle in ∂X0;
(d) W s(Mi) ∩ X0 = ∅ for each i = 1, 2, . . . , k.

Then T (t) is uniformly persistent.

It is easy to see that disease-free equilibrium E0 = (S0
1 , 0, 0, S0

2, 0, 0, . . . , S0
n, 0, 0)

of model (4) always exist. On the global stability of E0 and the uniformly persistence
of model (4), we have the following theorem. The technique used in the proof is similar
to those of Guo et al. in [1] and Muroya et al. in [2].

Theorem 1. Assume that conditions (6) and (7) hold.
(i) If R̃0 ≤ 1, then disease-free equilibrium E0 is the unique equilibrium of model

(4) and it is globally asymptotically stable in Γ.
(ii) If R̃0 > 1, then E0 is unstable and model (4) is uniformly persistent in Γ0,

where Γ0 is the interior of the feasible region Γ, and Γ = Γ1 × Γ2 × · · · × Γn

with

Γk = {(Sk, Ik, Rk) ∈ R3
+ : Sk + Ik + Rk ≤ S0

k}, k = 1, 2, . . . , n.

Proof. (i) Let S = (S1, S2, . . . , Sn)T , I = (I1, I2, . . . , In)T , and put

M(S) =
(βkjfk(Sk)gj(Ij)

(μk2 + γk)Ij

)
n×n

.
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Since in Γ, it holds that 0 ≤ Sk ≤ S0
k , gk(Ik) ≤ g′k(0)Ik for k = 1, 2, . . . , n, we

have 0 ≤ M(S) ≤ M̃(S0). Since B is irreducible, we obtain that M̃(S0) and M(S)
are also irreducible. Therefore, ρ(M(S)) < ρ(M̃(S0)), provided S �= S0. (See, for
example, Lemma 2.3 in [12]).

If R̃0 = ρ(M̃(S0)) ≤ 1, then for S �= S0, we have ρ(M(S)) < ρ(M̃(S0)) ≤ 1,
and the equation

M(S)I = I

has only trivial solution I = 0. This shows that E0 is the unique equilibrium of model
(4).

Let (α1, α2, . . . , αn) be the positive left eigenvector of M̃(S0) corresponding to
the spectral radius ρ(M̃(S0)), that is,

(α1, α2, . . . , αn)ρ(M̃(S0)) = (α1, α2, . . . , αn)M̃(S0).

Define the Lyapunov function as follows

L =
n∑

k=1

αk

μk2 + γk
Ik.

Calculating the time derivative of L along any solution of model (4), when R̃0 ≤ 1,
we obtain

dL

dt
=

n∑
k=1

αk

μk2 + γk

[ n∑
j=1

βkjfk(Sk)gj(Ij) − (μk2 + γk)Ik

]

=
n∑

k=1

αk

[ n∑
j=1

βkjfk(Sk)gj(Ij)
(μk2 + γk)

− Ik

]

= (α1, α2, . . . , αn)[M(S)I − I]

≤
n∑

k=1

αk

[ n∑
j=1

βkjfk(S0
k)g′j(0)Ij

(μk2 + γk)
− Ik

]

= (α1, α2, . . . , αn)[M̃(S0)I − I]

= [ρ(M̃(S0))− 1](α1, α2, . . . , αn)I

≤ 0.

If R̃0 < 1, then dL
dt = 0 if and only if I = 0. If R̃0 = 1, then dL

dt = 0 implies

(11) (α1, α2, . . . , αn)M(S)I = (α1, α2, . . . , αn)I.

If S �= S0, then we have

(α1, α2, . . . , αn)M(S) < (α1, α2, . . . , αn)M̃(S0) = (α1, α2, . . . , αn).



Global Behaviors for Multi-group SIRS Epidemic Models 1517

Hence, (11) has only trivial solution I = 0. Therefore, dL
dt = 0 implies that I = 0 or

S = S0. It can be verified that the maximal invariant subset of the set

{(S1, I1, R1, S2, I2, R2, . . . , Sn, In, Rn) ∈ Γ :
dL

dt
= 0}

is the singleton {E0}. By the LaSalle’s invariance principle (See Theorem 6.4 in [13,
Chapter 2]), we obtain that E0 is globally asymptotically stable.

(ii) If R̃0 > 1 and I �= 0, we know that

(α1, α2, . . . , αn)M̃(S0) − (α1, α2, . . . , αn) = [ρ(M̃(S0)) − 1](α1, α2, . . . , αn) > 0

and hence
dL

dt
= (α1, α2, . . . , αn)[M(S)I− I] > 0

in a neighborhood of E0 in Γ0 by the continuity of functions fk(Sk) and gk(Ik). This
implies that E0 is unstable.

Now, we prove the uniform persistence of model (4) if R̃0 > 1 by using Lemma 2.
Here, the technique given by Li et al. in [15] is developed. Let

X = X1 × X2 × · · · ×Xn, X0 = X0
1 ×X0

2 × · · · × X0
n

and
∂X0 = ∂X0

1 × ∂X0
2 × · · · × ∂X0

n,

where for each k = 1, 2, . . . , n

Xk = {(Sk, Ik, Rk) : Sk > 0, Ik ≥ 0, Rk ≥ 0},

X0
k = {(Sk, Ik, Rk) : Sk > 0, Ik > 0, Rk ≥ 0}

and ∂X0
k = {(Sk, Ik, Rk) : Sk > 0, Ik = 0, Rk ≥ 0}. We have X = X0 ∪ ∂X0.

Let Y (t) = (Sk(t), Ik(t), Rk(t), 1 ≤ k ≤ n) be the solution of model (4) with initial
value Y (0) = Y0 in X, then Y (t) ∈ X for all t ≥ 0. For any t ≥ 0 we define a map
T (t) : X → X as follows

T (t)Y0 = Y (t).

It is clear that T (t) is a C0-semigroup, that is, From Lemma 1, we can easily prove
that T (t) is compact for t ≥ 0 and point dissipative in X , and X0 and ∂X0 are the
positively invariable sets for T (t). In ∂X0, we have I = 0, and hence,

(12)

dSk

dt
= bk − μk1Sk + δkRk,

dRk

dt
= −(μk3 + δk)Rk.
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It is clear that system (12) has a globally asymptotically stable equilibrium (S0
1 , 0, S0

2, 0,

. . . , S0
n, 0). This shows that the disease-free equilibrium E0 in ∂X0 is a global attractor

of T (t), which implies that Ω(∂X0) = {E0} and M = {M1} with M1 = {E0}.
Therefore, the conditions (i), (ii)(a), (ii)(b) and (ii)(c) in Lemma 2 are satisfied.

Now, we prove the condition (ii)(d) of Lemma 2. From R̃0 > 1, there is a small
enough constant ε0 > 0 such that ρ(M̃(S0, ε0)) > 1, where

M̃(S0, ε0) =
(

βkjfk(S0
k − ε0)gj(ε0)

(μk2 + γk)ε0

)
n×n

.

If W s(E0) ∩ X0 �= ∅, then there is a solution (Sk(t), Ik(t), Rk(t), 1 ≤ k ≤ n) of
model (4) with the initial value in X0 such that (Sk(t), Ik(t), Rk(t)) → (S0

k, 0, 0) for
each k = 1, 2, . . . , n as t → ∞, then there is a T > 0 such that Sk(t) > S0

k − ε0 and
Ik(t) < ε0 for all t ≥ T and k = 1, 2, . . . , n. Thus, from assumption (H) and the
second equation of model (4) we have

(13)
dIk(t)

dt
≥

n∑
j=1

βkjfk(S0
k − ε0)

gj(ε0)
ε0

Ij(t) − (d2 + γ)Ik(t), k = 1, 2, . . . , n

for all t ≥ T . Since B is irreducible, we obtain that M̃(S0, ε0) is also irreducible.
Let (α1, α2, . . . , αn) be the positive left eigenvector of M̃(S0, ε0) corresponding to the
spectral radius ρ(M̃(S0, ε0)), that is,

(α1, α2, . . . , αn)ρ(M̃(S0, ε0)) = (α1, α2, . . . , αn)M̃(S0, ε0).

Define the Lyapunov function as follows

L(t) =
n∑

k=1

αk

μk2 + γk
Ik(t).

Calculating the time derivative of L(t), from (13) we obtain

dL(t)
dt

≥
n∑

k=1

αk

μk2 + γk

[ n∑
j=1

βkjfk(S0
k − ε0)

gj(ε0)
ε0

Ij(t) − (μk2 + γk)Ik(t)
]

=
n∑

k=1

αk

[ n∑
j=1

βkjfk(S0
k)gj(ε0)

(μk2 + γk)ε0
Ij(t) − Ik(t)

]

= (α1, α2, . . . , αn)[M̃(S0, ε0)I(t) − I(t)]

= [ρ(M̃(S0, ε0))− 1](α1, α2, . . . , αn)I(t)

> 0

for all t ≥ T . This implies L(t) ≥ L(T ) > 0 for all t ≥ T , which leads to a contradic-
tion with limt→∞ L(t) = 0. Therefore, W s(E0) ∩ X0 = ∅. Thus, from Lemma 2 we
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have that T (t) is uniformly persistent. Consequently, model (4) is uniformly persistent.
This completes the proof.

The ultimate boundedness of solutions in Γ0, together with the uniform persistence
of model (4), implies the existence of a positive equilibrium of model (4) (See, Theorem
D.3 in [16] or Theorem 2.8.6 in [17]). Therefore, we have the following corollary.

Corollary 1. Assume that conditions (6) and (7) hold. If R̃0 > 1, then model (4)
has at least one endemic equilibrium E∗ = (S∗

1 , I∗1 , R∗
1, S

∗
2, I

∗
2 , R∗

2, . . . , S
∗
n, I∗n, R∗

n).

4. GLOBAL STABILITY FOR ENDEMIC EQUILIBRIUM E∗

In this section, we assume R̃0 > 1, and we will prove that the endemic equilibrium
of model (4) is globally asymptotically stable in Γ0. The method that we use here is
to construct the appropriate Lyapunov functions and use Lemma 2.1 given in [1]. By
Corollary 1, there exists an endemic equilibrium E∗ = (S∗

1 , I∗1 , R∗
1, S

∗
2 , I∗2 , R∗

2, . . . , S
∗
n,

I∗n, R∗
n) ∈ Γ0 which satisfies

(14)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

bk −
n∑

j=1

βkjfk(S∗
k)gj(I∗j ) − μk1S

∗
k + δkR∗

k = 0,

n∑
j=1

βkjfk(S∗
k)gj(I∗j )− (μk2 + γk)I∗k = 0,

γkI
∗
k − (μk3 + δk)R∗

k = 0, k = 1, 2, . . . , n.

Consider the auxiliary function as follows.

U1 =
n∑

k=1

vk

{∫ Sk

S∗
k

(
1 − fk(S∗

k)
fk(u)

)
du +

∫ Ik

I∗k

(
1− gk(I∗k)

gk(u)

)
du
}
,

where constants vi (i = 1, 2, · · · , n) are positive which will be determined in the
following Lemma 4. We give the following symbols

(15)
xk =

Sk

S∗
k

, yk =
Ik

I∗k
, zk =

Rk

R∗
k

,

fk(xk) =
fk(Sk)
fk(S∗

k)
, gk(yk) =

gk(Ik)
gk(I∗k)

, k = 1, 2, . . . , n.

and h(x) = x − 1 − ln x.

Lemma 3. Assume that condition (7) holds. If R̃0 > 1, then
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(16)

dU1(t)
dt

=
n∑

k=1

vk

{
−μk1S

∗
k

(
1− 1

fk(xk)

)
(xk−1)+δkR

∗
k

(
1− 1

fk(xk)

)
(zk−1)

}

+
n∑

k=1

vk

[
1 − 1

gk(yk)

][
gk(yk) − yk

]{ n∑
j=1

βkjfk(S∗
k)gj(I∗j )

}

−
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

[
h

(
1

fk(xk)

)
+ h

(
fk(xk)gj(yj)

gk(yk)

)]

+
n∑

k=1

{ n∑
j=1

vjβjkfj(S∗
j )gk(I∗k) − vk(μk2 + γk)I∗k

}
h
(
gk(yk)

)
.

Proof. By model (4), and (14) and (15), we have

dSk

dt
= bk −

n∑
j=1

βkjfk(Sk)gj(Ij) − μk1Sk + δkRk

−
⎡
⎣bk −

n∑
j=1

βkjfk(S∗
k)gj(I∗j ) − μk1S

∗
k + δkR

∗
k

⎤
⎦

= −
n∑

j=1

βkj[fk(Sk)gj(Ij) − fk(S∗
k)gj(I∗j )] − μk1(Sk − S∗

k) + δk(Rk − R∗
k)

= −
n∑

j=1

βkjfk(S∗
k)gj(I∗j )[fk(xk)gj(yj) − 1] − μk1S

∗
k(xk − 1) + δkR∗

k(zk − 1),

and

dIk

dt
=

n∑
j=1

βkjfk(Sk)gj(Ij) − (μk2 + γk)Ik

−
⎡
⎣ n∑

j=1

βkjfk(S∗
k)gj(I∗j ) − (μk2 + γk)I∗k

⎤
⎦

=
n∑

j=1

βkj[fk(Sk)gj(Ij) − fk(S∗
k)gj(I∗j )]− (μk2 + γk)[Ik − I∗k ]

=
n∑

j=1

βkjfk(S∗
k)gj(I∗j )[fk(xk)gj(yj)− 1]− (μk2 + γk)I∗k [yk − 1]

=
n∑

j=1

βkjfk(S∗
k)gj(I∗j )[fk(xk)gj(yj)− yk].

Differentiating U1(t) and by the second equations of (14), we can obtain
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(17)

dU1(t)
dt

=
n∑

k=1

vk

{[
1 − fk(S∗

k)
fk(Sk)

]dSk

dt
+
[
1 − gk(I∗k)

gk(Ik)

]dIk

dt

}

=
n∑

k=1

vk

[
1 − fk(S∗

k)
fk(Sk)

]{
−

n∑
j=1

βkj[fk(Sk)gj(Ij)− fk(S∗
k)gj(I∗j )]

−μk1(Sk − S∗
k) + δk(Rk − R∗

k)
}

+
n∑

k=1

vk

[
1 − gk(I∗k)

gk(Ik)

]{ n∑
j=1

βkjfk(Sk)gj(Ij) − (μk2 + γk)Ik

}

=
n∑

k=1

vk

{
−μk1S

∗
k

(
1− 1

fk(xk)

)
(xk−1)+δkR

∗
k

(
1− 1

fk(xk)

)
(zk−1)

}

−
n∑

k=1

vk

[
1 − fk(S∗

k)
fk(Sk)

]{ n∑
j=1

βkj[fk(Sk)gj(Ij) − fk(S∗
k)gj(I∗j )]

}

+
n∑

k=1

vk

[
1− gk(I∗k)

gk(Ik)

]{ n∑
j=1

βkjfk(Sk)gj(Ij)− Ik

I∗k

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

}
.

For the last term of (17), we have

(18)

n∑
k=1

vk

[
1− gk(I∗k)

gk(Ik)

]{ n∑
j=1

βkjfk(Sk)gj(Ij) − Ik

I∗k

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

}

=
n∑

k=1

vk

[
1 − gk(I∗k)

gk(Ik)

]{ n∑
j=1

βkjfk(Sk)gj(Ij) − Ik

I∗k

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

+
gk(Ik)
gk(I∗k)

n∑
j=1

βkjfk(S∗
k)gj(I∗j )− gk(Ik)

gk(I∗k)

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

}

=
n∑

k=1

vk

[
1 − gk(I∗k)

gk(Ik)

]{[gk(Ik)
gk(I∗k)

− Ik

I∗k

] n∑
j=1

βkjfk(S∗
k)gj(I∗j )

+
n∑

j=1

βkj

[
fk(Sk)gj(Ij) − gk(Ik)

gk(I∗k)
fk(S∗

k)gj(I∗j )
]}

=
n∑

k=1

vk

[
1 − gk(I∗k)

gk(Ik)

][gk(Ik)
gk(I∗k)

− Ik

I∗k

]{ n∑
j=1

βkjfk(S∗
k)gj(I∗j )

}

+
n∑

k=1

vk

[
1− gk(I∗k)

gk(Ik)

]{ n∑
j=1

βkj

[
fk(Sk)gj(Ij) − gk(Ik)

gk(I∗k)
fk(S∗

k)gj(I∗j )
]}

.

It is obvious that[
1 − gk(I∗k)

gk(Ik)

][ gk(Ik)
gk(I∗k)

− Ik

I∗k

]
=

Ik

gk(I∗k)

[
1 − gk(I∗k)

gk(Ik)

][gk(Ik)
Ik

− gk(I∗k)
I∗k

]
≤ 0.
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Hence, from the first term of (18), we obtain

n∑
k=1

vk

[
1 − gk(I∗k)

gk(Ik)

][gk(Ik)
gk(I∗k)

− Ik

I∗k

]{ n∑
j=1

βkjfk(S∗
k)gj(I∗j )

}

=
n∑

k=1

vk

[
1 − 1

gk(yk)

][
gk(yk) − yk

]{ n∑
j=1

βkjfk(S∗
k)gj(I∗j )

}

≤ 0.

From the second term of (17) and the second term of (18), we further have

(19)

n∑
k=1

vk

[
1 − gk(I∗k)

gk(Ik)

]{ n∑
j=1

βkj

[
fk(Sk)gj(Ij) − gk(Ik)

gk(I∗k)
fk(S∗

k)gj(I∗j )
]}

−
n∑

k=1

vk

[
1 − fk(S∗

k)
fk(Sk)

]{ n∑
j=1

βkj[fk(Sk)gj(Ij)− fk(S∗
k)gj(I∗j )]

}

=
n∑

k=1

vk

[
1 − 1

gk(yk)

]{ n∑
j=1

βkjfk(S∗
k)gj(I∗j )[fk(xk)gj(yj) − gk(yk)]

}

−
n∑

k=1

vk

[
1 − 1

fk(xk)

]{ n∑
j=1

βkjfk(S∗
k)gj(I∗j )[fk(xk)gj(yj) − 1]

}

=
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

{
[fk(xk)gj(yj) − gk(yk)]

[
1− 1

gk(yk)

]

−[fk(xk)gj(yj) − 1]
[
1 − 1

fk(xk)

]}

=
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

[
2− fk(xk)gj(yj)

gk(yk)
−gk(yk)+gj(yj)− 1

fk(xk)

]

=
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

[
h
(
gj(yj)

)− h
(
gk(yk)

)

−h

(
1

fk(xk)

)
− h

(
fk(xk)gj(yj)

gk(yk)

)]

=
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

[
h
(
gj(yj)

)− h
(
gk(yk)

)]

−
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

[
h

(
1

fk(xk)

)
+ h

(
fk(xk)gj(yj)

gk(yk)

)]
.

For the first term of (19), we have
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(20)

n∑
k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

[
h
(
gj(yj)

)− h
(
gk(yk)

)]

=
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )h

(
gj(yj)

)

−
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )h

(
gk(yk)

)

=
n∑

j=1

vj

n∑
k=1

βjkfj(S∗
j )gk(I∗k)h

(
gk(yk)

)−
n∑

k=1

vk(μk2 + γk)I∗kh
(
gk(yk)

)

=
n∑

k=1

{ n∑
j=1

vjβjkfj(S∗
j )gk(I∗k)− vk(μk2 + γk)I∗k

}
h
(
gk(yk)

)
.

Thus, from (17)-(20) we finally obtain

(21)

dU1(t)
dt

=
n∑

k=1

vk

{
−μk1S

∗
k

(
1− 1

fk(xk)

)
(xk − 1)+δkR

∗
k

(
1− 1

fk(xk)

)
(zk−1)

}

+
n∑

k=1

vk

[
1 − 1

gk(yk)

][
gk(yk)− yk

]{ n∑
j=1

βkjfk(S∗
k)gj(I∗j )

}

−
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

[
h

(
1

fk(xk)

)
+ h

(
fk(xk)gj(yj)

gk(yk)

)]

+
n∑

k=1

{ n∑
j=1

vjβjkfj(S∗
j )gk(I∗k) − vk(μk2 + γk)I∗k

}
h
(
gk(yk)

)
.

Therefore, (16) is obtained. This completes the proof.

Now, we consider the following equation

n∑
k=1

{ n∑
j=1

vjβjkfj(S∗
j )gk(I∗k) − vk(μk2 + γk)I∗k

}
h
(
gk(yk)

)
= 0.

We give the following lemma which comes from the well-known techniques in Guo et
al. [1].

Lemma 4. Assume that condition (7) holds. Let

β̃kj = βkjfk(S∗
k)gj(I∗j ), k, j = 1, 2, . . . , n.

and
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B̃ =

⎡
⎢⎢⎢⎣

∑
j �=1 β̃1j −β̃21 · · · −β̃n1

−β̃12
∑

j �=2 β̃2j · · · −β̃n2

. . . . . . . . . . . .

−β̃1n −β̃2n · · · ∑
j �=n β̃nj

⎤
⎥⎥⎥⎦ .

Further, let x = (v1, v2, . . . , vn)T , where vk (k = 1, 2, . . . , n) denotes the cofactor of
the k-th diagonal entry of B̃. Then, vk > 0 and

(22)
n∑

j=1

vjβjkfj(S∗
j )gk(I∗k) = vk(μk2 + γk)I∗k , k = 1, 2, . . . , n.

Proof. Since B is irreducible, we have that matrices (β̃kj)n×n and B̃ are also
irreducible. From Lemma 2.1 in [1], we know that x = (v1, v2, . . . , vn)T is the
solution of the following linear equation

(23) B̃x = 0,

and we have vi > 0 for i = 1, 2, . . . , n. Then, from (23), we obtain

⎡
⎢⎢⎣

β̃11 β̃21 · · · β̃n1

β̃12 β̃22 · · · β̃n2

. . . . . . . . . . . .

β̃1n β̃2n · · · β̃n

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

v1

v2
...

vn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

(∑n
j=1 β̃1j

)
v1(∑n

j=1 β̃2j

)
v2

...(∑n
j=1 β̃nj

)
vn

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Therefore, we have
n∑

j=1

vjβ̃jk = vk

n∑
j=1

β̃kj, k = 1, 2, . . . , n.

From this, we finally obtain

n∑
j=1

vjβjkfj(S∗
j )gk(I∗k) = vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j ) = vk(μk2 + γk)I∗k, k = 1, 2, . . . , n.

This completes the proof.

Let Nk = Sk + Ik + Rk, N ∗
k = S∗

k + I∗k + R∗
k, Ñk = Sk + Ik + c̃kRk, Ñ ∗

k =
S∗

k + I∗k + c̃kR
∗
k, nk = Nk

N∗
k

and ñk = Ñk

Ñ∗
k

. Furthermore, for each k = 1, 2, . . . , n, we
define the constants c̃k and ε̃k as follows

c̃k =
μk2 − μk1

γk
+ 1, ε̃k = c̃k(μk3 − μk1 + δk)− δk.
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Lemma 5. For each k = 1, 2, . . . , n, we have the following two cases:
(1) Assume μk1 = μk2 = μk3 = μk , and Wk is defined by

(24) Wk =
(Rk − R∗

k)
2

2
+

γ2
k

4μk(μk + γk + δk)
(Nk − N ∗

k )2

2
,

then it holds that

(25)
dWk

dt
= −(μk + γk + δk)

(
R∗

k(zk − 1) − γkN
∗
k

2(μk + γk + δk)
(nk − 1)

)2

−γkR
∗
kS

∗
k(zk − 1)(xk − 1).

(2) Otherwise, and Wk is defined by

(26) Wk =
(Rk − R∗

k)
2

2
+

γk

ε̃k

(Ñk − Ñ ∗
k )2

2
,

then it holds that

(27)
dWk

dt
= −(γkc̃k + μk3 + δk)(R∗

k)
2(zk − 1)2 − γkμk1

ε̃k
(Ñ ∗

k)2(ñk − 1)2

−γkR
∗
kS

∗
k(zk − 1)(xk − 1).

Proof. Directly from model (4), we have

dRk

dt
= γkIk − (μk3 + δk)Rk − [γkI

∗
k − (μk3 + δk)R∗

k]

= γk(Ik − I∗k) − (μk3 + δk)(Rk − R∗
k)

= γk[(Nk − N ∗
k ) + (Sk − S∗

k) + (Rk − R∗
k)] − (μk3 + δk)(Rk − R∗

k)

= γk[(Ñk − Ñ ∗
k ) − (Sk − S∗

k) − c̃k(Rk − R∗
k)] − (μk3 + δk)(Rk − R∗

k)

= γk(Ñk − Ñ ∗
k )− γk(Sk − S∗

k) − (γkc̃k + μk3 + δk)(Rk − R∗
k).

Hence, we obtain

(28)

d

dt

(
(Rk − R∗

k)
2

2

)

= (Rk − R∗
k)

dRk

dt
= (Rk − R∗

k)[γk(Ñk − Ñ ∗
k )− γk(Sk − S∗

k)

−(γkc̃k + μk3 + δk)(Rk − R∗
k)]

= −γkR
∗
kS

∗
k(zk − 1)(xk − 1) + γkR

∗
kÑ

∗
k (zk − 1)(ñk − 1)

−(γkc̃k + μk3 + δk)(R∗
k)

2(zk − 1)2,
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Since Ñk = Nk + (c̃k − 1)Rk, directly from model (4) we have

dÑk

dt
= bk − μk1Sk − μk2Ik − μk3Rk + (c̃k − 1)[γkIk − (μk3 + δk)Rk]

= −μk1(Sk − S∗
k)− (μk2 + γk − c̃kγk)(Ik − I∗k)

−[c̃k(μk3 + δk)− δk](Rk − R∗
k)

= −μk1[(Ñk − Ñ ∗
k ) − (Ik − I∗k) − c̃k(Rk − R∗

k)]

−(μk2 + γk − c̃kγk)(Ik − I∗k)

−[c̃k(μk3 + δk)− δk](Rk − R∗
k)

= −μk1(Ñk − Ñ ∗
k ) − [(μk2 + γk − μk1) − c̃kγk](Ik − I∗k)

−[c̃k(μk3 + δk − μk1) − δk](Rk − R∗
k)

= −μk1(Ñk − Ñ ∗
k ) − ε̃k(Rk − R∗

k).

Hence, we obtain

(29)

d

dt

(
(Ñk − Ñ ∗

k )2

2

)
= (Ñk − Ñ ∗

k )
dÑk

dt
= (Ñk − Ñ ∗

k )[−μk1(Ñk − Ñ ∗
k ) − ε̃k(Rk − R∗

k)]

= −μk1(Ñ ∗
k )2(ñk − 1)2 − ε̃kÑ ∗

kR∗
k(ñk − 1)(zk − 1).

(1) Assume μk1 = μk2 = μk3 = μk , then c̃k = 1 and ε̃k = 0, for the Wk defined
by (24), from (28) and (29), we have

dWk

dt
=

d

dt

((Rk − R∗
k)

2

2

)
+

γ2
k

4μk(μk + γk + δk)
d

dt

((Nk − N ∗
k )2

2

)

= [−γkR
∗
kS

∗
k(zk − 1)(xk − 1) − (γk + μk + δk)(R∗

k)
2(zk − 1)2

+γkR
∗
kN

∗
k (zk − 1)(nk − 1)] +

γ2
k

4μk(μk + γk + δk)
[−μk(N ∗

k )2(nk − 1)2]

= −γkR
∗
kS

∗
k(zk − 1)(xk − 1)− (γk + μk + δk)

[
(R∗

k)
2(zk − 1)2

− γkR
∗
kN

∗
k

γk + μk + δk
(zk − 1)(nk − 1) +

γ2
k

4(μk + γk + δk)2
(N ∗

k )2(nk − 1)2
]

= −(μk + γk + δk)
(
R∗

k(zk − 1)− γkN
∗
k

2(μk + γk + δk)
(nk − 1)

)2

−γkR
∗
kS

∗
k(zk − 1)(xk − 1).

(2) Otherwise, for the Wk defined by (26), from (28) and (29) we have
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dWk

dt
=

d

dt

((Rk − R∗
k)

2

2

)
+

γk

ε̃k

d

dt

((Ñk − Ñ ∗
k )2

2

)

= [−γkR
∗
kS

∗
k(zk − 1)(xk − 1) − (γkc̃k + μk3 + δk)(R∗

k)
2(zk − 1)2

+γkR
∗
kÑ

∗
k (zk − 1)(ñk − 1)]

+
γk

ε̃k
[−μk1(Ñ ∗

k )2(ñk − 1)2 − ε̃kÑ ∗
kR∗

k(ñk − 1)(zk − 1)]

= −(γkc̃k + μk3 + δk)(R∗
k)

2(zk − 1)2 − γkμk1

ε̃k
(Ñ ∗

k)2(ñk − 1)2

−γkR
∗
kS

∗
k(zk − 1)(xk − 1).

Therefore, we finally obtain (25) and (27). This completes the proof.

Now, we consider the following function

U = U1 + U2,

where

U2 =
n∑

k=1

vk
ωkδk

γk
Wk,

where ωk (k = 1, 2, . . . , n) are positive constants which will be determined in the
following assumption (H∗), and vk (k = 1, 2, . . . , n) have been determined in above
Lemma 4. We obtain the following lemma.

Lemma 6. Assume that condition (7) holds. If R̃0 > 1, then for x = (v1, v2, . . . ,
vn)T given in Lemma 4, we have

(30)

dU(t)
dt

=
n∑

k=1

vk

[
1 − 1

gk(yk)

][
gk(yk) − yk

]{ n∑
j=1

βkjfk(S∗
k)gj(I∗j )

}

−
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

[
h
( 1
fk(xk)

)
+ h

(fk(xk)gj(yj)
gk(yk)

)]

+
n∑

k=1

vk

(
1 − 1

fk(xk)

)
(Sk − S∗

k)
{
− μk1 + δk(Rk − R∗

k)

×
(

1
Sk − S∗

k

− ωkfk(Sk)
fk(Sk) − fk(S∗

k)

)}
−

n∑
k=1

vk
ωkδk

γk
Wk0,

where for each k = 1, 2, . . . , n. When μk1 = μk2 = μk3 = μk , then

Wk0 = (μk + γk + δk)
[
R∗

k(zk − 1) − γkN
∗
k

2(μk + γk + δk)
(nk − 1)

]2
,
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and otherwise, then

Wk0 = (γkc̃k + μk3 + δk)(R∗
k)

2(zk − 1)2 +
γkμk1

ε̃k
(Ñ ∗

k)2(ñk − 1)2,

Proof. For k = 1, 2, . . . , n, we consider the following two cases.
(1) When μk1 = μk2 = μk3 = μk , then from (21), (22) and (25) we have

(31)

dU(t)
dt

=
n∑

k=1

vk

{
−μk1S

∗
k

(
1− 1

fk(xk)

)
(xk−1)+δkR

∗
k

(
1− 1

fk(xk)

)
(zk−1)

}

+
n∑

k=1

vk

[
1 − 1

gk(yk)

][
gk(yk)− yk

]{ n∑
j=1

βkjfk(S∗
k)gj(I∗j )

}

−
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

[
h

(
1

fk(xk)

)
+h

(
fk(xk)gj(yj)

gk(yk)

)]

+
n∑

k=1

vk
ωkδk

γk
[−γkR

∗
kS

∗
k(zk − 1)(xk − 1) − Wk0]

=
n∑

k=1

vk

[
1 − 1

gk(yk)

][
gk(yk) − yk

]{ n∑
j=1

βkjfk(S∗
k)gj(I∗j )

}

−
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

[
h

(
1

fk(xk)

)
+h

(
fk(xk)gj(yj)

gk(yk)

)]

+
n∑

k=1

vk

{
−μk1S

∗
k

(
1− 1

fk(xk)

)
(xk−1)+δkR

∗
k

(
1− 1

fk(xk)

)
(zk−1)

−ωkδkR∗
kS

∗
k(zk − 1)(xk − 1)

}
−

n∑
k=1

vk
ωkδk

γk
Wk0.

For the last equation of (31), we further have

−μk1S
∗
k

(
1 − 1

fk(xk)

)
(xk − 1) + δkR

∗
k

(
1 − 1

fk(xk)

)
(zk − 1)

−ωkδkR
∗
kS

∗
k(zk − 1)(xk − 1)

=
(
1 − 1

fk(xk)

)
(Sk − S∗

k)
{
− μk1 + δk

Rk − R∗
k

Sk − S∗
k

− ωkδk
(Rk − R∗

k)fk(Sk)
fk(Sk) − fk(S∗

k)

}

=
(
1 − 1

fk(xk)

)
(Sk − S∗

k)
{
− μk1 + δkRk

(
1

Sk − S∗
k

− ωkfk(Sk)
fk(Sk) − fk(S∗

k)

)

−δkR∗
k

(
1

Sk − S∗
k

− ωkfk(Sk)
fk(Sk) − fk(S∗

k)

)}
.
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Hence, we finally obtain

dU(t)
dt

=
n∑

k=1

vk

[
1 − 1

gk(yk)

][
gk(yk) − yk

]{ n∑
j=1

βkjfk(S∗
k)gj(I∗j )

}

−
n∑

k=1

vk

n∑
j=1

βkjfk(S∗
k)gj(I∗j )

[
h

(
1

fk(xk)

)
+ h

(
fk(xk)gj(yj)

gk(yk)

)]

+
n∑

k=1

vk

(
1 − 1

fk(xk)

)
(Sk − S∗

k)
{
− μk1 + δk(Rk − R∗

k)

×
(

1
Sk − S∗

k

− ωkfk(Sk)
fk(Sk) − fk(S∗

k)

)}
−

n∑
k=1

vk
ωkδk

γk
Wk0.

This shows that (30) holds.
(2) Otherwise, then a similar argument as in above, we also can obtain (30). This

completes the proof.

In order to obtain that the derivative dU(t)
dt given in (30) is non-positive in region

Γ, we need to introduce the following assumption.
(H∗) There exist constants ωk > 0 such that for any Sk > 0 and Sk �= S∗

k (k =
1, 2, . . . , n)

1
Sk − S∗

k

− ωkfk(Sk)
fk(Sk) − fk(S∗

k)
≤ 0,

μk1 + δkR∗
k

(
1

Sk − S∗
k

− ωkfk(Sk)
fk(Sk) − fk(S∗

k)

)
≥ 0.

Therefore, by Lemmas 3-6, we can obtain the following theorem on the global
stability of endemic equilibrium E∗.

Theorem 2. Suppose that assumptions (H), (H∗) and conditions (6), (7) hold.
If R̃0 > 1, then endemic equilibrium E∗ of model (4) is globally asymptotically stable
in Γ0.

Proof. From assumptions (H) and (H∗), and h(x) = x − 1 − lnx > 0 when
x �= 1, we can easily obtain from (30) that dU(t)

dt ≤ 0 in Γ. When dU(t)
dt = 0, we have

[
1 − 1

gk(yk)

][
gk(yk) − yk

]
= 0, k = 1, 2, . . . , n

and
fk(xk) = 1, k = 1, 2, . . . , n

which imply that xk = 1 and yk = 1 for k = 1, 2, . . . , n. From xk = 1 and yk = 1
for k = 1, 2, . . . , n we can further obtain that Sk = S∗

k , Ik = I∗k and Rk = R∗
k
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for k = 1, 2, . . . , n. Therefore, by the global asymptotic stability theorem on the
Lyapunov functions we finally obtain that E∗ is globally asymptotically stable in Γ0.
This completes the proof.

In model (4), when fk(Sk) = Sk
1+λkSk

(k = 1, 2, . . . , n), where λk is nonnegative
constant, then by choosing ωk = 1

S∗
k(1+λkS∗

k )
(k = 1, 2, . . . , n) we easily obtain

1
Sk − S∗

k

− ωkfk(Sk)
fk(Sk) − fk(S∗

k)
= − 1

S∗
k

< 0,

and
μk1 + δkR

∗
k

(
1

Sk − S∗
k

− ωkfk(Sk)
fk(Sk)− fk(S∗

k)

)
=

1
S∗

k

(μk1S
∗
k − δkR∗

k).

Therefore, as the corollary of Theorem 2 we have the following results.

Corollary 2. Assume that conditions (6) and (7) hold, and fk(Sk) = Sk
1+λkSk

(k =
1, 2, . . . , n) in model (4) with λk ≥ 0 is constant. If R̃0 > 1 and μk1S

∗
k − δkR∗

k ≥
0 (k = 1, 2, . . . , n), then endemic equilibrium E∗ of model (4) is globally asymptoti-
cally stable in Γ0.

Remark 2. From Corollary 2 we easily see that the results obtained in this paper
improve and extend the corresponding results given by Muroya et al. in [2].

Remark 3. From Theorem 1 we see that only under assumption (H) and con-
ditions (6), (7) we easily obtained the global asymptotical stability of the disease-free
equilibrium and the uniform persistence of model (4). However, in Theorem 2, in
order to obtain the global asymptotical stability of the endemic equilibrium we must
introduce assumption (H∗). Therefore, an interesting and important open problem can
be proposed, that is, whether we also can obtain the global asymptotical stability of the
endemic equilibrium only under assumption (H).

5. CONCLUSION

In this paper, we study the global asymptotic stability of the equilibria for a multi-
group SIRS epidemic model with nonlinear incidence rate. By the theory on matrix and
by constructing new Lyapunov functions we established the new results on the global
asymptotic stability of the disease-free equilibrium and endemic equilibrium for model
(4). That is, under conditions (6) and (7), the disease-free equilibrium E0 is globally
asymptotically stable if the threshold value R̃0 ≤ 1, and the endemic equilibrium E∗

is globally asymptotically stable if the threshold value R̃0 > 1 and assumption (H∗)
holds. As we can see, the results obtained in this paper improve the corresponding
results given in [2].

However, from Corollary 2 we see that assumption (H∗) holds for fk(Sk) =
Sk

1+λkSk
(k = 1, 2, . . . , n), where λk is nonnegative constant. Therefore, an important
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open problem is whether the results obtained in this paper can be extended to model
(4) without condition (6) and assumption (H∗). We hope to get these results in in the
future.

In addition, the results obtained in this paper whether can be extended to the
following multi-group SEIRS epidemic model with nonlinear incidence rate

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= λ −

n∑
j=1

βjf(S)gj(Ij) − μS +
n∑

i=1

δiRi,

dE

dt
=

n∑
j=1

βjf(S)gj(Ij) +
n∑

j=1

rjIj − σE,

dIi

dt
= γiE − δiIi,

dRi

dt
= ωiIi − μRi − δiRi, i = 1, 2, . . . , n

still is an interesting open problem.
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