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ON A NEW MULTIPLE CRITICAL POINT THEOREM AND SOME
APPLICATIONS TO ANISOTROPIC PROBLEMS

Marek Galewski

Abstract. Using the Fenchel-Young duality and mountain pass geometry we
derive a new multiple critical point theorem. In a finite dimensional setting it
becomes three critical point theorem while in an infinite dimensional case we
obtain the existence of at least two critical points. The applications to anisotropic
problems show that one can obtain easily that all critical points are nontrivial.

1. INTRODUCTION

Let E be a real reflexive Banach space. Given two continuously Fréchet differen-
tiable convex functionals Φ, H : E →R with derivatives ϕ, h : E → E∗ respectively,
we undertake the existence and multiplicity of solutions to

(1) ϕ (u) = h (u) , u ∈ E

under some geometric conditions related to the existence of a minimizer over a certain
set, a mountain pass geometry and, in a finite dimensional context, a direct global
maximization. We denote by J : E →R the action functional connected with (1), i.e.
J (u) = Φ (u)− H (u) and therefore solutions to (1) correspond in a 1 − 1 manner to
critical points of J . Thus we will provide a type of a multiple critical point theorem
with applications to anisotropic boundary value problems, i.e. containing the continuous
and discrete variable exponent Laplacian.

The method of obtaining the existence of multiple critical points differs somehow
from the scheme within which such results were considered by Ricceri, see [20], and
his followers, since we do not employ a type of a min-max inequality. Instead the
existence of a first critical point is sought on a set - which need not be open - with
the aid of the Fenchel-Young transform. Such ideas originate from [18] but we give
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here much simpler approach which we put into the context of the existence of a critical
point to some functional and not to the direct investigation of a boundary value problem.
Later several authors worked on improving the methodology contained in [18], see for
example [10, 11] and references therein. The result which we present in this work
seems to provide a most applicable version of all those mentioned which is connected
with the so called dual method.

The second critical point is obtained with the aid of a general type of a Mountain
Pass Lemma. In a finite dimensional case, we obtain a third critical point through
the direct variational method. Thus in a finite dimensional case we use somehow
different methodology from the one applied typically in the context of a three critical
point theorems and which is suggested by the following observation: get two local
minima/extrema and obtain a third through a mountain pass. In this work apart from
the mountain pass solution we have a global minimizer over some set and a global
maximizer.

We started related investigations in [11] but in this work we put them into some
different framework and we apply our results for more general boundary value problems
since we illustrate our results by examining the solvability of a Dirichlet problem with
discrete and continuous p (x)−Laplacian. Anisotropic boundary value problems are
known to be mathematical models of various phenomena arising in the study of elastic
mechanics (see [25]), electrorheological fluids (see [21]) or image restoration (see [5]).
Variational continuous anisotropic problems have been started by Fan and Zhang in [8]
and later considered by many methods and authors- see [13] for an extensive survey of
such boundary value problems. In the discrete setting see for example [14, 16, 22] for
the most recent results. For a background on variational methods we refer to [15, 24]
while for a background on difference equations to [1]. The ideas connected with three
critical point theorems - different from those used in this work - are to be found for
example in [2, 20]. Let us mention [19] for some recent results concerning a general
type of critical point theorem and [17] for some recent related result.

2. A MULTIPLE CRITICAL POINT THEOREM

We start this section with necessary mathematical prerequisites which are needed
for the proof of the main multiplicity result. The Fenchel-Young dual for a convex
Fréchet differentiable function H : E →R, see [6], reads

H∗ (v) = sup
u∈E

{〈u, v〉 − H (u)} , H∗ : E∗ → R,

〈u, v〉 stands for the duality pairing. Note that H∗ and H∗∗, where H∗∗ is defined in
an obvious manner, are always convex l.s.c. functionals. The derivative of H at u is
the subdifferential of H at u in the sense of convex analysis. We have the following
relations

H (u) + H∗ (v) = 〈u, v〉 ⇐⇒ v = h (u) ,
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where h stand for the Fréchet derivative, and Fenchel-Young inequality

〈p, u〉 ≤ H (u) + H∗ (p)

which is valid for any p ∈ E∗, u ∈ E .
We also recall the following version of a Mountain Pass Lemma from [9]. Func-

tional J : E →R satisfies the Palais-Smale condition (PS-condition for short) if
every sequence (un) such that {J(un)} is bounded and J ′(un) → 0, has a convergent
subsequence.

Lemma 1. (Mountain Pass Lemma, MPL Lemma). [9] Let E be a Banach space
and assume that J ∈ C1(E,R ) satisfies the PS-condition. Let S be a closed subset of
E which disconnects E . Let x0 and x1 be points of E which are in distinct connected
components of E\S. Suppose that J is bounded below in S, and in fact the following
condition is verified for some b

(2) inf
x∈S

J(x) ≥ b and max{J(x0), J(x1)} < b.

If we denote by Γ the family of continuous paths γ : [0, 1] → E joining x0 and x1,

then
c := inf

γ∈Γ
max
s∈[0,1]

J(γ(s)) ≥ max{J(x0), J(x1)} > −∞

is a critical value and J has a non-zero critical point x at level c.

Now we can state our main result.

Theorem 2. Let E be a infinite dimensional reflexive Banach space.
(i) Let X ⊂ E and let there exist u, v ∈ X satisfying ϕ (v) = h (u) , and such that

J (u) ≤ inf
x∈X

J (x) .

Then u is a critical point to J , and thus it solves (1).
(ii) Let S be a set disconnecting E such that

J (u) ≤ inf
x∈X

J (x) < inf
x∈S

J (x) .

Assume that there exists w ∈ E with limt→∞ J (tw) = −∞ and that J satisfies the
PS-condition. If u belongs to a bounded component of E \ S, then there exists a
non-zero critical point z different from u.

Proof. The proof that u is a critical point, i.e. the proof of part (i) follows
by Theorem 1 from [11] but we provide it for readers convenience shortening and
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simplifying some arguments used there. We put p = ϕ (v) = h (u). Since d
duΦ = ϕ,

d
duH = h we have by the definition of p

(3) Φ (v) = 〈v, p〉 − Φ∗ (p) and H (u) = 〈u, p〉 − H∗ (p) .

By the Fenchel-Young inequality −H (v) ≤ H∗ (p)−〈p, v〉 and by the first relation in
(3) we have

Φ (u) − H (u) = J (u) ≤ J (v) = Φ (v)− H (v)
= 〈v, p〉 − Φ∗ (p)− H (v) ≤ H∗ (p)− Φ∗ (p) .

So by the Fenchel-Young inequality,

〈u, p〉 ≤ Φ (u) + Φ∗ (p) ≤ H (u) + H∗ (p) = 〈u, p〉 .
Thus 〈u, p〉 = Φ (u) + Φ∗ (p) , and so, recalling the definition of p we see that p =
d
duΦ (u) = ϕ (u) = h (u). This means that u is a critical point.

In order to prove part (ii), i.e. in order to get the second critical point, we will use
Lemma 1. Since limt→∞ J (tw) = −∞, so there exists some w1 such that J (w1) ≤
infx∈X J (x) < infx∈S J (x). Thus we have condition (2) satisfied taking x0 = u and
x1 = w1. The existence of a second non-zero critical point readily follows.

In a finite dimensional context, we get easily the existence of a third critical point
as follows:

Theorem 3. Let E be a finite dimensional Banach. Let X ⊂ E and let there exist
u, v ∈ X satisfying ϕ (v) = h (u) , and such that

J (u) ≤ inf
x∈X

J (x) .

Then u is a critical point to J , and thus it solves (1). Let S be a set disconnecting
E and assume that J is anti-coercive and that u belongs to a bounded component of
E \ S. If moreover,

J (u) ≤ inf
x∈X

J (x) < inf
x∈S

J (x)

then there exists additional two distinct critical points, both different from u, one of
which is non-zero.

Proof. Note that in a finite dimensional setting an anti-coercive functional neces-
sarily satisfies the PS-condition. Thus the existence of two distinct solutions, u and
some z �= 0, follows by Theorem 2. Since J is anti-coercive and continuous it has an
argument of a maximum which we denote by w. Since J is differentiable it follows
that w is a critical point. Since

max {J (z) , J (u)} ≤ inf
x∈X

J (x) < inf
x∈S

J (x) ≤ sup
x∈S

J (x) ≤ sup
x∈E

J (x)

we see that w is a third critical point distinct from the previous ones.
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Remark 4. Somehow related results are also contained in [4], where it is proved
that if J : E →R satisfies the PS-condition and if X ⊂ E is an open set such that

inf
x∈X

J (x) < inf
x∈∂X

J (x)

then there is some u which is a critical point to J such that infx∈X J (x) = J (u).
The difference between this result and ours is that we do not assume the PS-condition
to be satisfied and we do not use the Ekelend’s variational principle in the proof, but
instead we impose convexity and use the Fenchel-Young transform. Moreover, we do
not need to assume that X is open and u need not to be global minimizer.
The multiplicity result in [4] is also obtained with the aid of Mountain Pass Lemma
in the following context. Let X be an open ball centered at 0 with radius r and let
J (0) = 0, J : E →R satisfies the PS-condition, there exists an element e ∈ E\X
such that J (e) ≤ 0. If additionally

−∞ < inf
x∈X

J (x) < 0 < inf
x∈∂X

J (x) ,

then J has two critical points. Compared with our results we do not need to take X
as a ball and also we do need to know that infx∈∂X J (x) > 0.

By using methods mentioned in the above remark in [23] the Author obtains the
existence of at least two non-zero solutions for some periodic and Neumann problems
with the discrete p(k)−Laplacian.

3. APPLICATION TO THE DISCRETE ANISOTROPIC EQUATIONS

For fixed a, b such that a < b < ∞, a ∈ N ∪ {0}, b ∈ N we denote N(a, b) =
{a, a + 1, . . . , b− 1, b}. Consider the following anisotropic discrete problem

(4)
−Δ

(
φp(k−1) (Δx(k − 1))

)
= λf (k, x(k)) , k ∈ N(1, T ),

x(0) = x(T + 1) = 0

where λ > 0 is a numerical parameter, φp(k)(t) = |t|p(k)−2t, p : N(0, T ) → R,
p+ = maxk∈N(0,T ) p (k) ≥ 2; Δ is the forward difference operator defined by Δx(k) =
x(k+1)−x(k). Let F (t, ξ) =

∫ ξ
0 f(t, s)ds for (t, ξ) ∈ (N(1, T )×R). We also denote

p− = mink∈N(0,T ) p (k).
We will employ the following assumptions.

H0 f ∈ C(N(1, T )× R; R);

H1 function x → F (k, x) is convex on R for all k ∈ N(1, T );
H2 there exist constants μ > p+, c1 > 0, c2 ∈ R, d > 0 and m > d such that

F (k, x) ≥ c1|x|μ + c2

for all k ∈ N(1, T ) and all |x| ≥ m.
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The assumptions employed here are not very restrictive. There are many functions
satisfying both H1 and H2. See for example F (k, x) = c1|x|μ + c2 with even and
sufficiently large μ. By a solution x of (4) we mean such a function x : N(0, T +1) →
R which satisfies the given equation on N(1, T ) and the given boundary conditions.
Solutions to (4) will be investigated in a space E of functions x : N(0, T + 1) → R

such that x(0) = x(T + 1) = 0; E is considered with the following equivalent norms

‖x‖ =

(
T+1∑
k=1

|Δx(k − 1)|2
) 1

2

and ‖x‖0 =

(
T∑

k=1

|x(k)|2
) 1

2

.

Note that for cb = 1
2 and ca = (T (T + 1))1/2 we have

(5) cb ‖x‖ ≤ ‖x‖0 ≤ ca ‖x‖ for all x ∈ E .

As in [3] we can use the Luxemburg norm

‖x‖p(·) = inf

{
v > 0 :

T+1∑
k=1

∣∣∣∣Δx(k − 1)
v

∣∣∣∣
p(k−1)

≤ 1

}

such that there exist constants L1 > 0, L2 > 1

(6) L1 ‖x‖p(·) ≤ ‖x‖ ≤ L2 ‖x‖p(·) for all x ∈ E .

Now, if ϕ : E →R

ϕ (x) =
T+1∑
k=1

|Δx(k − 1)|p(k−1),

then we have the following inequalities

(7) ‖x‖p−
p(·) ≤ ϕ (x) ≤ ‖x‖p+

p(·) for ‖x‖p(·) > 1.

Solutions to (4) correspond to the critical points to the following C1 functional
I : E→ R

I(x) =
T+1∑
k=1

1
p(k−1) |Δx(k − 1)|p(k−1) − λ

T∑
k=1

F (k, x(k)).

Lemma 5. Assume that H0, H2 are satisfied. Then for any λ > 0 functional I is
anti-coercive, i.e. I(x) → −∞ as ||x|| → +∞.

Proof. From Hölder’s inequality, by H2 and(5) we get for any x ∈ E

T∑
k=1

F (k, x(k)) ≥ c1T
2−µ

2 (cb)
μ ||x||μ + c2T.
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We see for ‖x‖p(·) > 1 by relations (6), (7) that

I(x) ≤ 1
p−

T+1∑
k=1

|Δx(k − 1)|p(k−1) − λc1

T∑
k=1

|x(k)|μ − λc2T

≤ 1
p− ‖x‖p+

p(·) − λc1T
2−µ

2 (L1cb)
μ ||x||μp(·) − λc2T.

Hence I(x) → −∞ as ||x|| → +∞.

Theorem 6. Assume that conditions H0-H2 are satisfied. There exists λ∗ > 0
such that for all 0 < λ ≤ λ∗ problem (4) has at least three nontrivial solutions.

Proof. By Lemma 5 functional I is anticoercive. Therefore there is some element
z ∈ E such that J (z) < 0. Let us define a set D ⊂ E as a ball with radius r > 1
with respect to the Luxemburg norm, i.e.

D =
{
x ∈ E : ‖x‖p(·) ≤ r

}
,

where r > 1 is chosen so that z ∈ D. Let S = ∂D. Denote by d the maximal value

of functional x →
√

T∑
k=1

f2(k, x(k)) over D. Put

λ∗ =
rp−−1

L2dca

and fix λ ∈ (0, λ∗] . We shall apply Theorem 3. Define Φ, H : E → R

Φ(x) =
T+1∑
k=1

1
p(k−1) |Δx(k − 1)|p(k−1), H (x) = λ

T∑
k=1

F (k, x(k))

and note that these are convex C1 functionals.
Since I is continuous and D is closed and bounded, we see that there exists an

argument of a minimum of I over D, which we denote by u. Note that u belongs
to a bounded component of E \ S and that J (u) ≤ J (z) < 0 so that u �= 0 since
J (0) = 0. Consider the auxiliary Dirichlet problem

(8)
−Δ

(
φp(k−1) (Δx(k − 1))

)
= λf (k, u(k)) , k ∈ N(1, T ),

x(0) = x(T + 1) = 0.

Note that problem (8) is uniquely solvable by some v ∈ E . This follows since the
action functional corresponding to (8)

J1(x) =
T+1∑
k=1

1
p(k−1) |Δx(k − 1)|p(k−1) − λ

T∑
k=1

f(k, u(k))x(k)



1502 Marek Galewski

is coercive, C1 and strictly convex.
We shall prove that v ∈ D. Suppose ‖v‖p(·) ≥ 1. Multiplying (8) with x = v by

v and summing from 1 to T we have

(9)
T+1∑
k=1

|Δv(k − 1)|p(k−1) = λ

T∑
k=1

f(k, u(k))v(k).

By relation (7) we see that
T+1∑
k=1

|Δv(k − 1)|p(k−1) ≥ ‖v‖p−
p(·). By Schwartz inequality

and the definition of d we obtain by (5), (6) that

T∑
k=1

f(k, u(k))v(k) ≤
√√√√ T∑

k=1

f2(k, u(k))‖v‖0 ≤ L2dca ‖v‖p(·) .

Since λ ≤ rp−−1

L2dca
we see from (9) that ‖v‖p−−1

p(·) ≤ λL2d ≤ r. If ‖v‖p(·) ≤ 1 the
conclusion is immediate. Thus v ∈ D and so Theorem 3 applies.

When convexity is not assumed, it is easy to see that problem (4) has at least one
solution for an λ > 0 since functional J is anti-coercive and continuous and the space
E is finite dimensional. Thus we have the following

Theorem 7. Assume that conditions H0-H2 are satisfied. Then for any λ > 0
problem (4) has at least one solution.

4. APPLICATIONS TO CONTINUOUS ANISOTROPIC PROBLEMS

In this section we mean for applications to continuous problems. Let p, q ∈
C ([0, π] , R

+), 1/p (t) + 1/q (t) = 1 for t ∈ [0, π]. We assume

p− = inf
t∈[0,π]

p (t) > 1

and we let p+ = supt∈[0,π] p (t). In the space W
1,p(t)
0 (0, π) (see [7, 8]) we consider

the following norm

‖x‖
W

1,p(t)
0

=
∥∥∥∥ d

dt
x

∥∥∥∥
Lp(t)

= inf

⎧⎨
⎩λ > 0

∣∣∣∣
∫ π

0

∣∣∣∣∣
d
dtx (t)

λ

∣∣∣∣∣
p(t)

dt ≤ 1

⎫⎬
⎭ ,

where d
dt stands for an a.e. derivative. From [7] we see that there exists a constant

C1 > 0 such that (Poincaré inequality)

(10) ‖x‖Lp(t) ≤ C1

∥∥∥∥ d

dt
x

∥∥∥∥
Lp(t)

for all x ∈ W
1,p(t)
0 (0, π) .
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The Hölder’s type inequality reads for x ∈ Lp(t) (0, π) and y ∈ Lq(t) (0, π)

(11)
∫ π

0
x (t) y (t) dt ≤

(
1
p−

+
1
q−

)
‖x‖Lp(t) ‖y‖Lq(t) ≤ 2 ‖x‖Lp(t) ‖y‖Lq(t).

The functional x → ∫ π
0

∣∣ d
dtx (t)

∣∣p(t)
dt is called a modular for W

1,p(t)
0 (0, π). We have

the following relation between a modular and a norm
∫ π

0

∣∣∣∣ d

dt
x (t)

∣∣∣∣
p(t)

dt ≥ min

{∥∥∥∥ d

dt
x

∥∥∥∥
p−

Lp(t)

,

∥∥∥∥ d

dt
x

∥∥∥∥
p+

Lp(t)

}

and ∫ π

0

∣∣∣∣ d

dt
x (t)

∣∣∣∣p(t)

dt ≤ max

{∥∥∥∥ d

dt
x

∥∥∥∥p−

Lp(t)

,

∥∥∥∥ d

dt
x

∥∥∥∥p+

Lp(t)

}
.

Let us consider an operator L : W
1,p(t)
0 (0, π) →

(
W

1,p(t)
0 (0, π)

)∗
given by

(12) 〈L (x) , v〉 =
∫ π

0

∣∣∣∣ d

dt
x (t)

∣∣∣∣
p(t)−2 d

dt
x (t)

d

dt
v (t) dt

for x, v ∈ W
1,p(t)
0 (0, π). Then L is a homeomorphism [8, Theorem 3.1] and the

Gâteaux derivative of x → ∫ π
0

∣∣ d
dtx (t)

∣∣p(t)
dt is given by (12).

For regularity of solutions to the problem under consideration we shall need a
Fundamental Lemma of the Calculus of Variation in the form given by [26].

Lemma 8. [26] If g, h ∈ L1 (0, π) and∫ π

0

(
g (t) y (t) + h (t)

d

dt
y (t)

)
dt = 0

for all y ∈ C∞
0 (0, π), then d

dth = g a.e. on [0, π] and d
dth ∈ L1 (0, π).

Now we may state the problem under consideration. We consider the problem of
solving in W

1,p(t)
0 (0, π)

(13)
− d

dt

(∣∣ d
dtx (t)

∣∣p(t)−2 d
dtx (t)

)
= λf (t, x (t))

x (0) = x (π) = 0

with a numerical parameter λ > 0. Let F (t, v) =
∫ v
0 f (t, τ) dτ . We assume that

H3 f : [0, π]× R → R is a Caratheodory function;
H4 there exists a constant θ > p+ such that for v ∈ R, v �= 0 and a.e. t∈ [0, π]

0 < θF (t, v) ≤ vf (t, v) ;
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H5 there exist constants β1, α > 0, β2 ≥ 0 with α > p+ and such that for all
v ∈ R and a.e. t∈ [0, π]

|f (t, v)| ≤ β1 |v|α−1 + β2;

H6 limv→0
|f(t,v)|
|v|p+−1

= 0 uniformly for a.e. t∈ [0, π];

H7 function x → F (t, x) is convex on R for a.e. t ∈ [0, π].
By convexity we get only that F (t, v) ≤ vf (t, v) for v ∈ R and a.e. t∈ [0, π] thus

we need to assume the A-R condition. Relaxed version of the A-R conditions could
also be assumed.

Following remarks about the modular and using the growth conditions we see that
the action functional J : W

1,p(t)
0 (0, π) → R given by

(14) J (x) =
∫ π

0

1
p (t)

∣∣∣∣ d

dt
x (t)

∣∣∣∣
p(t)

− λ

∫ π

0
F (t, x (t)) dt

is continuously Gâteaux differentiable. Thus it is a C1 functional. Weak solutions to
(13) are critical points to J . By Lemma 8 it follows that any weak solution, i.e. a
function x satisfying∫ π

0

∣∣∣∣ d

dt
x (t)

∣∣∣∣p(t)−2

v (t) dt = λ

∫ π

0
f (t, x (t)) v (t) dt for all v ∈ W

1,q(t)
0 (0, π)

is a classical one, i.e. it is an absolutely continuous function such that d2

dt2
x exists for

a.e. t ∈ [0, π] and d2

dt2
x ∈ L1 (0, π). From [12] we get the two lemmas concerning the

mountain geometry for (13). While in [12] these are given for the impulsive problem,
it is to derive their counterparts for the non-impulsive one.

Lemma 9. Suppose that H3, H4, H5 hold. Then for any λ > 0 the functional J
given by (14) satisfies the PS-condition.

Lemma 10. Suppose that H3-H6 hold. Then for any λ > 0 there exist numbers
η, ξ > 0 such that J (x) ≥ ξ for all x ∈ W

1,p(t)
0 (0, π) with ‖x‖

W
1,p(t)
0

= η. Moreover,

there exists an element z ∈ W
1,p(t)
0 (0, π) with ‖z‖

W
1,p(t)
0

> η and such that J (z) < 0.

Using Mountain Pass Lemma 1 we get the following

Proposition 11. Suppose that H3-H6 hold. Then for any λ > 0 problem (13) has
at least one nontrivial solution.

Concerning the multiple solutions we have the main result of this section

Theorem 12. Assume that conditions H3-H7 are satisfied. Then there exists λ∗ > 0
such that for all 0 < λ ≤ λ∗ problem (13) has at least two nontrivial solutions.
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Proof. From Lemma 10 it follows that there exists an element z ∈ W
1,p(t)
0 (0, π)

with ‖z‖
W

1,p(t)
0

> η and such that J (z) < 0. Let us define a set D ⊂ E as a closed
ball with radius r > 1 centred at 0 and containing z. Let S = ∂D. Consider a
functional J1 : W

1,p(t)
0 (0, π) → R

J1 (x) = ‖f (·, x (·))‖Lq(t)

over D. Since J1 is considered on W
1,p(t)
0 (0, π), it is immediate that any function

from D is continuous, thus we see by H5 and classical Weierstrass Theorem that J1

is bounded from the above on D. Let {xk}∞k=1 ⊂ D be a maximizing sequence,
which, since D is closed, bounded and convex, has a weakly convergent subsequence
in W

1,p(t)
0 (0, π) and this subsequence can be chosen so that it converges strongly in

C [0, π]. Thus standard arguments show that J1 has an argument of maximum u1 over
D and let us denote by d the corresponding maximal value.

Note that J is weakly l.s.c. and D is weakly compact, so J has an argument of a
minimum over D which we denote by u. Note that J (u) < 0 since z ∈ D such that
J (z) < 0. Thus u �= 0. Note that u belongs to a bounded component of E \ S. Put

λ∗ =
rp+−1

C1

(
1

p− + 1
q−

)
d

and fix λ ∈ (0, λ∗] .
We shall apply Theorem 2. By Lemma 9 functional J satisfies the PS-condition.

Put Φ, H : W
1,p(t)
0 (0, π) → R by formulas

Φ(x) =
∫ π

0

1
p (t)

∣∣∣∣ d

dt
x (t)

∣∣∣∣
p(t)

, H (x) = λ

∫ π

0
F (t, x (t)) dt

and note that these are convex C1 functionals.
Functional Φ is strictly convex and coercive and so the direct method of the calculus

of variations provides that the following auxiliary Dirichlet problem

(15)
− d

dt

(∣∣ d
dtx (t)

∣∣p(t)−2 d
dtx (t)

)
= λf (t, u (t))

x (0) = x (π) = 0

is uniquely solvable by some x ∈ W
1,p(t)
0 (0, π). Multiplying the equation in (15) by a

test function x and integrating by parts we get
∫ π

0

∣∣∣∣ d

dt
x (t)

∣∣∣∣
p(t)

dt = λ

∫ π

0
f (t, u (t))x (t) dt.
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Suppose that ‖x‖ ≥ 1 since otherwise we see that x ∈ D. By relation between a
modular and a norm we see that

∫ π

0

∣∣∣∣ d

dt
x (t)

∣∣∣∣
p(t)

dt ≥
∥∥∥∥ d

dt
x

∥∥∥∥
p+

Lp(t)

.

By Schwartz inequality, definition of d and (11), (10) we get∫ π

0
f (t, u (t)) x (t) dt ≤

(
1
p−

+
1
q−

)
‖f (·, u (·))‖Lq(t) ‖x‖Lp(t)

≤ C1

(
1
p−

+
1
q−

)
d

∥∥∥∥ d

dt
x

∥∥∥∥
Lp(t)

.

Thus ∥∥∥∥ d

dt
x

∥∥∥∥
p+−1

Lp(t)

≤ λC1

(
1
p−

+
1
q−

)
d

and so
∥∥ d

dtx
∥∥

Lp(t) ≤ p+−1

√
λC1

(
1

p− + 1
q−

)
d ≤ r by definition of λ∗. Thus v ∈ D

and therefore Theorem 2 applies.

REFERENCES

1. R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, 1992.

2. G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear
Anal., Theory Methods Appl., Ser. A, Theory Methods, 75 (2012), 2992-3007.

3. C. Bereanu, P. Jebelean and C. Serban, Periodic and Neumann problems for discrete
p(·)−Laplacian, J. Math. Anal. Appl., 399 (2013), 75-87.

4. C. Bereanu, P. Jebelean and J. Mawhin, Multiple solutions for Neumann and periodic
problems with singular φ-Laplacian, J. Funct. Anal., 261 (2011), 3226-3246.

5. Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image
processing, SIAM J. Appl. Math., 66 (2006), 1383-1406.

6. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland,
Amsterdam, 1976.

7. X. L. Fan and D. Zhao, On the Spaces Lp(x) (Ω) and W k,p(x) (Ω), J. Math. Analysis
Appl., 263 (2001), 424-446.

8. X. L. Fan and D. Zhang, Existence of solutions for p(x)−Laplacian Dirichlet problem,
Nonl. Analysis, 52 (2003), 1843-1852.

9. D. G. Figueredo, Lectures on the Ekeland Variational Principle with Applications and
Detours, Preliminary Lecture Notes, SISSA, 1988.



On a New Multiple Critical Point Theorem and Some Applications to Anisotropic Problems 1507

10. M. Galewski, A. Nowakowski, D. O’Regan and A. Orpel, The dual variational method
for n−th order ODEs with multipoint boundary conditions, Appl. Anal., (2014), 957-
971.

11. M. Galewski and E. Galewska, On a new critical point theorem and some applications
to discrete equations, Opusc. Math., 34(4) (2014), 725-732.

12. M. Galewski and D. O’Regan, Impulsive boundary value problems for p(t)−Laplacian’s
via critical point theory, Czechoslovak Math. J., 62 (2012), 951-967

13. P. Harjulehto, P. Hästö, U. V. Le and M. Nuortio, Overview of differential equations
with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574.

14. A. Iannizzotto and V. Radulescu, Positive homoclinic solutions for the discrete
p−Laplacian with a coercive potential, Differential and Integral Equations, 27 (2014),
35-44.
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