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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR DEGENERATE
p(x)-LAPLACE EQUATIONS INVOLVING CONCAVE-CONVEX TYPE

NONLINEARITIES WITH TWO PARAMETERS

Ky Ho and Inbo Sim

Abstract. We show the existence of two nontrivial nonnegative solutions and in-
finitely many solutions for degenerate p(x)-Laplace equations involving concave-
convex type nonlinearities with two parameters. By investigating the order of
concave and convex terms and using a variational method, we determine the exis-
tence according to the range of each parameter. Some Caffarelli-Kohn-Nirenberg
type problems with variable exponents are also discussed.

1. INTRODUCTION

In this paper, we study the existence and multiplicity of solutions for the following
equation

(1.1)

{
− div

(
w(x)|∇u|p(x)−2∇u

)
= λa(x)|u|q(x)−2u + μb(x)|u|h(x)−2u in Ω,

u = 0 on ∂Ω,

where Ω⊂R
N is a bounded domain with a smooth boundary ∂Ω, p, q, h∈C(Ω, (1,∞))

=: C+(Ω), w, a, b are measurable functions on Ω that are positive a.e. in Ω, and λ, μ are
real parameters. We call operators div

(|∇u|p(x)−2∇u
)

and div
(
w(x)|∇u|p(x)−2∇u

)
p(x)-Laplacian and degenerate p(x)-Laplacian, respectively. If p(x) ≡ p (constant),
then we call div

(|∇u|p−2∇u
)

p-Laplacian.
Motivations for p(x)-Laplacian can be found in [7, 32], and we refer to [10] for

the history of this area. There have been many studies about p(x)-Laplacian (see,
e.g., [15, 16, 17, 22, 23, 24, 25, 28, 29]). Degenerate differential operators appear
in the study of physical phenomena related to equilibrium of anisotropic continuous
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media [8], and some research on such operators can be found in [11, 31]. However,
degenerate p(x)-Laplacian have been researched relatively less.

Ambrosetti-Brezis-Cerami [3] originally considered the problem{
−Δu = λ|u|q−2u + |u|h−2u in Ω,

u = 0 on ∂ Ω,
(1.2)

where 1 < q < 2 < h < 2∗ :=

{
2N

N−2 if N > 2,

+∞ if N = 1, 2
and proved that

(i) there exists λ∗ > 0 such that (1.2) has at least two positive solutions for 0 <
λ < λ∗, at least one positive solution for λ = λ∗, and no positive solution for
λ > λ∗;

(ii) there exists λ∗ > 0 such that (1.2) has infinitely many solutions in the both cases
Iλ(u) < 0 and Iλ(u) > 0 for 0 < λ < λ∗, where Iλ is an energy functional for
(1.2).

Since then, many authors [9, 18, 21] have extended it to p-Laplace problems with the
advantage of the first eigenvalue for − div

(|∇u|p−2∇u
)

= λ|u|p−2u in Ω and u = 0
on ∂Ω and a Brezis-Nirenberg [5] type result on local minimization in W 1,p

0 and C1
0 .

Recently, similar problems for p(x)-Laplacian have also been investigated. The
main difficulty in applying the same steps of p-Laplacian to p(x)-Laplacian is that
p(x)-Laplacian cannot preserve the properties of the first eigenvalue as that of the p-
Laplacian. This makes it impossible to use the typical sub- and supersolution method.

For k ∈ C(Ω), let us denote k− := minx∈Ω k(x) and k+ := maxx∈Ω k(x). Fan
[16] considered the following problem

(1.3)

{− div
(|∇u|p(x)−2∇u

)
= λa1(x)g1(x, u) + μa2(x)g2(x, u) in Ω,

u = 0 on ∂ Ω,

where ai ∈ Lri(x)(Ω), ai(x) > 0, for x ∈ Ω, gi : Ω×R → R satisfies the Carathéodory
condition, |gi(x, t)| ≤ c1 + c2|t|qi(x)−1 for x ∈ Ω and t ∈ R, where p, qi, ri ∈ C+(Ω)
with q+

1 < p− ≤ p+ < q−2 and qi(x) < ri(x)−1
ri(x) p∗(x) for all x ∈ Ω, i = 1, 2, where

p∗(x) :=

{
Np(x)

N−p(x)
if N > p(x),

+∞ if N ≤ p(x).
Under the suitable conditions on gi, Fan has proved

that

(i) for every μ > 0, there exists λ0(μ) > 0 such that, for 0 < λ ≤ λ0(μ), (1.3)
has at least two positive solutions u1 and v1 with I(u1) > 0 and I(v1) < 0,

respectively, where I is an energy functional for (1.3);
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(ii) for every μ > 0 and λ ∈ R, (1.3) has a sequence of solutions {±uk} such that
I(±uk) → ∞ as k → ∞, and for every λ > 0 and μ ∈ R, (1.3) has a sequence
of solutions {±vk} such that I(±vk) < 0 and I(±vk) → 0 as k → ∞ .

Thus, it seems that the condition q+
1 < p− ≤ p+ < q−2 is crucial. However, Mihailescu-

Radulescu [29] considered the problem as follows:

(1.4)

⎧⎨⎩− div
(|∇u|p(x)−2∇u

)
= λ|u|q(x)−2u in Ω,

u = 0 on ∂ Ω,

where p, q ∈ C+(Ω) with q− < p− < q+ and proved that (1.4) has a nontrivial solution
(without showing a positive solution) for small λ > 0 by using the Ekeland variational
principle.

Inspired by the above results, we study the degenerate p(x)−Laplace equations
(1.1) involving concave-convex nonlinearities with singular coefficients and containing
the cases {x ∈ Ω : q(x) < p(x)} 	= ∅, which generalizes the Mihailescu-Radulescu’s
condition q− < p− < q+. Thus, the main goal of the present paper is to improve and
extend the above mentioned results under looser conditions.

Furthermore, we also consider the following Caffarelli-Kohn-Nirenberg type prob-
lems

(1.5)

⎧⎨⎩− div
(|x|θ(x)|∇u|p(x)−2∇u

)
= λ

|x|ξ(x) |u|q(x)−2u+ μ
|x|δ(x) |u|h(x)−2u in Ω,

u = 0 on ∂ Ω,

where p, q, h ∈ C+(Ω) and θ, ξ, δ ∈ C(Ω) such that ξ(x) ≥ 0, δ(x) ≥ 0 for all x ∈ Ω.

Many authors studied (1.5) in relation to Caffarelli-Kohn-Nirenberg inequalities in the
case of constant exponents (see, e.g., [1, 4, 6, 12, 19]). In the case of variable exponents
and no degeneracy, the problem involving subcritical Sobolev-Hardy exponents when
θ ≡ 0 was first studied in [16]. In [30], the authors studied a Caffarelli-Kohn-Nirenberg
type problem with degeneracy and variable exponents but no singular terms, ξ = δ ≡ 0.

The rest of the paper is organized as follows. In Section 2, we give some pre-
liminaries about the weighted variable exponent Lebesgue-Sobolev spaces and some
properties of functionals on these spaces. In this section, we also obtain a compact
imbedding from the weighted variable exponent Sobolev spaces into weighted variable
exponent Lebesgue spaces. In Section 3, we show the existence of two nontrivial non-
negative solutions for (1.1) using the Ekeland variational principle and the Mountain
Pass theorem. In Section 4, we show the existence of infinitely many solutions for (1.1)
with positive and negative energies using Fountain Theorem and Dual Fountain Theo-
rem, respectively. Section 5 is devoted to Caffarelli-Kohn-Nirenberg type problems for
variable exponents case with degeneracy.
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2. ABSTRACT FRAMEWORK AND PRELIMINARY RESULTS

In this section, we only review the weighted variable exponent Lebesgue-Sobolev
spaces Lp(x)(w, Ω) and W 1,p(x)(w, Ω), which were studied in [22, 25]; for the variable
exponent Lebesgue-Sobolev spaces Lp(x)(Ω) and W 1,p(x)(Ω), we refer to [13, 14, 26]
and the references therein.

Let Ω be a smooth bounded domain in R
N . For an arbitrary weight w that is

measurable and positive a.e. in Ω and p ∈ C+(Ω), we define the weighted variable
exponent Lebesgue space as

Lp(x)(w, Ω) =
{

u : Ω → R is measurable,
∫

Ω
w(x)|u(x)|p(x)dx < ∞

}
.

Then Lp(x)(w, Ω) is a normed space with norm

|u|Lp(x)(w,Ω) = inf
{

λ > 0 :
∫

Ω

w(x)
∣∣∣u(x)

λ

∣∣∣p(x)
dx ≤ 1

}
.

When w(x) ≡ 1, we have Lp(x)(w, Ω) ≡ Lp(x)(Ω) and use the notation |u|Lp(x)(Ω)

instead of |u|Lp(x)(w,Ω). Denote by L
p(x)
+ (Ω) the set of all u ∈ Lp(x)(Ω) satisfying

u(x) > 0 for a.e. x ∈ Ω.
The following propositions will be used in the next sections.

Proposition 2.1. [13, 26] The space Lp(x)(Ω) is a separable and uniformly convex
Banach space, and its conjugate space is Lp′(x)(Ω), where 1/p(x)+1/p′(x) = 1. For
any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have∣∣∣∣∫

Ω
uv dx

∣∣∣∣ ≤ ( 1
p−

+
1

(p′)−

)
|u|Lp(x)(Ω)|v|Lp′(x)(Ω) ≤ 2|u|Lp(x)(Ω)|v|Lp′(x)(Ω).

Define the modular ρ : Lp(x)(w, Ω) → R as

ρ(u) =
∫

Ω
w(x)|u(x)|p(x)dx, ∀u ∈ Lp(x)(w, Ω).

Proposition 2.2. [25] For all u ∈ Lp(x)(w, Ω), we have
(i) |u|Lp(x)(w,Ω) < 1 (= 1, > 1) if and only if ρ(u) < 1 (= 1, > 1), respectively;

(ii) If |u|Lp(x)(w,Ω) > 1, then |u|p−
Lp(x)(w,Ω)

≤ ρ(u) ≤ |u|p+

Lp(x)(w,Ω)
;

(iii) If |u|Lp(x)(w,Ω) < 1, then |u|p+

Lp(x)(w,Ω)
≤ ρ(u) ≤ |u|p−

Lp(x)(w,Ω)
.

Consequently,

|u|p−
Lp(x)(w,Ω)

− 1 ≤ ρ(u) ≤ |u|p+

Lp(x)(w,Ω)
+ 1, ∀u ∈ Lp(x)(w, Ω).
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Proposition 2.3. [22] If u, un ∈ Lp(x)(w, Ω) (n = 1, 2, . . .), then the following
statements are equivalent:

(i) limn→∞ |un − u|Lp(x)(w,Ω) = 0;
(ii) limn→∞ ρ(un − u) = 0.

The weighted variable exponent Sobolev space W 1,p(x)(w, Ω) is defined by

W 1,p(x)(w, Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(w, Ω)},

with norm
‖u‖W 1,p(x)(w,Ω) = |u|Lp(x)(Ω) +

∣∣|∇u|∣∣
Lp(x)(w,Ω)

.

W
1,p(x)
0 (w, Ω) is defined as the closure of C∞

0 (Ω) in W 1,p(x)(w, Ω) with respect to
norm ‖u‖W 1,p(x)(w,Ω).

To assure basic properties of the weighted variable exponent Sobolev spaces, we
assume that the weight w satisfies the following:

(w0) w is measurable and positive a.e. in Ω, w ∈ L1
loc(Ω) and w−s(·) ∈ L1(Ω) for

some s ∈ C(Ω) satisfying s(x) ∈
(

N
p(x) ,∞

)
∩
[

1
p(x)−1 ,∞

)
for all x ∈ Ω.

Proposition 2.4. [23, 25] Assume that (w0) holds. Then W 1,p(x)(w, Ω) is a sep-
arable reflexive Banach space.

For s given in (w0) and x ∈ Ω, let us denote

ps(x) :=
p(x)s(x)
1 + s(x)

and p∗s(x) :=

{
p(x)s(x)N

(s(x)+1)N−p(x)s(x) if ps(x) < N,

+∞ if ps(x) ≥ N.

We then have the following compact imbedding result.

Proposition 2.5. [25] Assume that (w0) holds. If q ∈ C+(Ω) and q(x) < p∗s(x)
for all x ∈ Ω, then we obtain the continuous compact imbedding

W 1,p(x)(w, Ω) ↪→↪→ Lq(x)(Ω).

Using Proposition 2.5 and the similar argument as in [16, Theorem 2.1], we obtain
the following result, which is the key for our following proofs.

Proposition 2.6. Assume that (w0) holds and that d ∈ L
γ(x)
+ (Ω) for some γ ∈

C+(Ω). Then we have the following continuous compact imbedding

W 1,p(x)(w, Ω) ↪→↪→ Lr(x)(d, Ω),

for any r ∈ C(Ω) such that 1 ≤ r(x) < γ(x)−1
γ(x) p∗s(x) for all x ∈ Ω.
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The next corollary is true on a stronger condition for the weight w.

Corollary 2.7. Let d, γ be as in Proposition 2.6. Assume that w satisfies:

(w1) w is measurable and positive a.e. in Ω, w ∈ L1
loc(Ω) and w−s ∈ L1(Ω) for any

constant s > max{ N
p− , 1

p−−1
}.

Then we have the continuous compact imbedding

W 1,p(x)(w, Ω) ↪→↪→ Lr(x)(d, Ω),

for any r ∈ C(Ω) such that 1 ≤ r(x) <
γ(x)−1

γ(x) p∗(x) for all x ∈ Ω.

Proof. By the continuity of r, γ, p, and the compactness of Ω, the condition
1 ≤ r(x) <

γ(x)−1
γ(x) p∗(x), ∀x ∈ Ω implies that

(2.1) 1 ≤ r(x) <
γ(x)− 1

γ(x)
p∗s0

(x), ∀x ∈ Ω

for some constant s0 > max{ N
p− , 1

p−−1
}. Indeed, in the case p− ≥ N, we fix 0 <

α0 < γ−−1
γ−

N
2r+ and then take s0 > max{1, 1

p−−1} such that Ns0
s0+1 > N − α0. For any

x ∈ Ω, if ps0(x) ≥ N, then (2.1) is obvious. If ps0(x) < N, we have

γ(x)− 1
γ(x)

p∗s0
(x) ≥ γ− − 1

γ−
N s0

s0+1

N − Ns0
s0+1

≥ γ− − 1
γ−

N

2α0
> r+ ≥ r(x).

Thus, (2.1) holds. In the case p− < N , let 0 < α0 < min{γ−−1
γ−

p−
2r+ , N − p−}. Then

the set Ω1 = {x ∈ Ω : p(x) ≤ N − α0
2 } is nonempty compact. Thus,

0 < β := max
x∈Ω1

γ(x)r(x)
(γ(x)− 1)p∗(x)

< 1.

We will show that (2.1) holds for s0 such that s0 > max{ N
p− , 1

p−−1} and s0 >

max{ 2βN
(1−β)α0

, 2(N−α0)
α0

}. In fact, for any x ∈ Ω, it is clear if ps0(x) ≥ N . If
N − α0 < ps0(x) < N ,

γ(x)− 1
γ(x)

p∗s0
(x) =

γ(x)− 1
γ(x)

Np(x) s0
s0+1

N − ps0(x)
>

γ− − 1
γ−

p−

2α0
> r+ ≥ r(x).

For the last case ps0(x) ≤ N −α0, we find that p(x) ≤ s0+1
s0

(N −α0) < N − α0
2 and

thus, x ∈ Ω1. Therefore, this yields γ(x)r(x)
(γ(x)−1)p∗(x) ≤ β. The proof will be complete

if we can show that β <
p∗s0(x)

p∗(x) = s0(N−p(x))
s0(N−p(x))+N , equivalently, Nβ

(1−β)(N−p(x)) < s0.
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This is true since s0 > 2Nβ
(1−β)α0

> Nβ
(1−β)(N−p(x))

. Thus, we can always choose s0 >

max{ N
p− , 1

p−−1} such that (2.1) holds. Since w satisfies (w1), w also satisfies (w0)
for s(x) ≡ s0. Applying Proposition 2.6, we obtain the continuous compact imbedding
W 1,p(x)(w, Ω) ↪→↪→ Lr(x)(d, Ω).

Let X := W
1,p(x)
0 (w, Ω) and on X, we hereafter use an equivalent norm ‖u‖ =∣∣|∇u|∣∣

Lp(x)(w,Ω)
(see [25, Corollary 2.12]).

Definition 2.8. We say that u ∈ X is a (weak) solution of (1.1) if∫
Ω

w(x)|∇u|p(x)−2∇u · ∇ϕdx = λ

∫
Ω

a(x)|u|q(x)−2uϕdx + μ

∫
Ω

b(x)|u|h(x)−2uϕdx

for all ϕ ∈ X .

Next, we shall give the differentiability in several variational settings. Define
Ψ : X → R by Ψ(u) =

∫
Ω F (x, u)dx, where F (x, t) =

∫ t
0 f(x, ξ)dξ. Using a

standard argument as in [22, The proof of Lemma 3.1] with Proposition 2.6, we obtain
the following.

Proposition 2.9. Suppose that f : Ω × R → R is a Carathéodory function such
that

(2.2) |f(x, t)| ≤ d(x)
(
|m(x)|+ |t|r(x)−1

)
for a.e. x ∈ Ω, ∀t ∈ R,

where d, r are as in Proposition 2.6, and m ∈ Lr′(x)(d, Ω) with 1/r(x)+ 1/r′(x) = 1
for all x ∈ Ω. Then Ψ is sequentially weakly continuous and is of C1(X, R), and

〈Ψ′(u), υ〉 =
∫

Ω

f(x, u)υ dx, for any u, υ ∈ X.

Consequently, Ψ+ is also sequentially weakly continuous and is of C1(X, R), and

〈(Ψ+)′(u), υ〉 =
∫

Ω
f+(x, u)υ dx, for any u, υ ∈ X,

where Ψ+(u) =
∫
Ω F+(x, u)dx with

F+(x, t) =
∫ t

0
f+(x, ξ)dξ, f+(x, t) =

{
f(x, t) if x ∈ Ω, t ≥ 0,

0 if x ∈ Ω, t < 0.
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Proof. We only show the sequentially weak continuity of Ψ. Let un ⇀ u

(weakly) in X . By virtue of the compact imbedding X ↪→↪→ Lr(x)(d, Ω), we have
un → u in Lr(x)(d, Ω). Hence, up to a subsequence, we have

(2.3)

{
un(x) → u(x) for a.e. x ∈ Ω,

d(x)|un(x) − u(x)|r(x) ≤ g(x) for a.e. x ∈ Ω,

for some g ∈ L1(Ω). Therefore, it follows that F (x, un(x)) → F (x, u(x)) a.e in Ω.
Using Young’s inequality we deduce from (2.2) that

|F (x, t)| ≤ d(x)

(
|m(x)||t|+ |t|r(x)

r(x)

)
≤ d(x)

(
|m(x)|r′(x)

r′(x)
+

|t|r(x)

r(x)
+

|t|r(x)

r(x)

)
≤ d(x)|m(x)|r′(x) + 2d(x)|t|r(x)

for a.e. x ∈ Ω and all t ∈ R. By this and (2.3), we obtain

|F (x, un(x))| ≤ d(x)|m(x)|r′(x) + 2d(x)|un|r(x)

≤ d(x)|m(x)|r′(x) + 2r+
d(x)|u|r(x) + 2r+

d(x)|un − u|r(x)

≤ d(x)|m(x)|r′(x) + 2r+
d(x)|u|r(x) + 2r+

g(x).

Thus, the dominated convergence theorem implies that

lim
n→∞

∫
Ω

F (x, un)dx =
∫

Ω

F (x, u)dx, i.e., lim
n→∞ Ψ(un) = Ψ(u).

For Ψ+, note that f+ is also a Carathéodory function, and

|f+(x, t)| ≤ d(x)
(
|m(x)|+ |t|r(x)−1

)
for a.e. x ∈ Ω, ∀t ∈ R.

Thus, we also have the same conclusion for Ψ+ as Ψ.

Throughout this paper, we assume that p ∈ C+(Ω), the weight w satisfies (w0),
and the exponent functions q, h and the coefficient functions a, b satisfy the following.

(H) q, h ∈ C+(Ω), a ∈ L
α(x)
+ (Ω), b ∈ L

β(x)
+ (Ω) where α, β ∈ C+(Ω) such that

q(x) <
α(x)− 1

α(x)
p∗s(x) and h(x) <

β(x) − 1
β(x)

p∗s(x), ∀x ∈ Ω.

As we will see later, if (w0) is replaced by (w1), the condition (H) can be replaced
by the following weaker condition, which was introduced in [16]:

(H∗) q, h ∈ C+(Ω), a ∈ L
α(x)
+ (Ω), b ∈ L

β(x)
+ (Ω) where α, β ∈ C+(Ω) such that

q(x) <
α(x)− 1

α(x)
p∗(x) and h(x) <

β(x) − 1
β(x)

p∗(x), ∀x ∈ Ω.
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For u ∈ X , we set u+ = max{u, 0}. Define J, J1 : X → R corresponding to the
problem (1.1) by

J(u) =
∫

Ω

w(x)
p(x)

|∇u|p(x)dx− λ

∫
Ω

a(x)
q(x)

|u|q(x)dx − μ

∫
Ω

b(x)
h(x)

|u|h(x)dx,

J1(u) =
∫

Ω

w(x)
p(x)

|∇u|p(x)dx − λ

∫
Ω

a(x)
q(x)

(u+)q(x)dx − μ

∫
Ω

b(x)
h(x)

(u+)h(x)dx.

Then, by Lemma 3.1 in [22] and Proposition 2.9, we deduce that J, J1 are sequentially
weakly lower semicontinuous and are of C1(X, R). Obviously, a critical point of
J (resp. J1) is a solution (resp. a nonnegative solution) of (1.1). Moreover, by
Proposition 2.6 and the (S+)−property of the degenerate p(x)−Laplacian (see [22,
Lemma 3.2]), we obtain the following.

Proposition 2.10. J ′, J ′
1 : X → X∗ are (S+)−operators.

Proof. It is sufficient to prove for J ′
1 since the proof for J ′ is similar. Let {un}

be a sequence in X such that un ⇀ u as n → ∞, and lim sup
n→∞

〈J ′
1(un), un − u〉 ≤ 0.

By Proposition 2.6, this implies that un → u in both Lq(x)(a, Ω) and Lh(x)(b, Ω) as
n → ∞. By Proposition 2.9, we find that

(2.4)

〈J ′
1(un), un − u〉 =

∫
Ω

w(x)|∇un|p(x)−2∇un · ∇(un − u)dx

−λ

∫
Ω

a(x)(u+
n )q(x)−1(un − u)dx

−μ

∫
Ω

b(x)(u+
n )h(x)−1(un − u)dx.

Meanwhile, we estimate∣∣∣∣∫
Ω

a(x)(u+
n )q(x)−1(un − u)dx

∣∣∣∣ ≤ ∫
Ω

a
1

q′(x) |un|q(x)−1a
1

q(x) |un − u|dx

≤ 2
∣∣∣a 1

q′(x) |un|q(x)−1
∣∣∣
Lq′(x)(Ω)

∣∣∣a 1
q(x) |un − u|

∣∣∣
Lq(x)(Ω)

≤ 2
(

1 +
∫

Ω
a(x)|un|q(x)dx

) 1
(q′)− |un − u|Lq(x)(a,Ω)

≤ 2
(
2 + |un|q

+

Lq(x)(a,Ω)

) 1
(q′)− |un − u|Lq(x)(a,Ω).

Combining this and the fact that un → u in Lq(x)(a, Ω), we infer

lim
n→∞

∫
Ω

a(x)(u+
n )q(x)−1(un − u)dx = 0.
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Similarly, we obtain

lim
n→∞

∫
Ω

b(x)(u+
n )h(x)−1(un − u)dx = 0.

Hence, (2.4) implies that

lim sup
n→∞

∫
Ω

w(x)|∇un|p(x)−2∇un · ∇(un − u)dx = lim sup
n→∞

〈J ′
1(un), un − u〉 ≤ 0.

By the (S+)−property of the degenerate p(x)−Laplacian (see [22, Lemma 3.2]), we
find that un → u (strongly) in X as n → ∞.

3. EXISTENCE OF TWO NONTRIVIAL NONNEGATIVE SOLUTIONS

In this section, we show the existence of two nontrivial nonnegative solutions for
(1.1). More restrictions can make it positive (see Remark 3.4). The following are the
main results of this section. We emphasize that are not only many cases not considered
in [16] to be treated, but also the condition on p, q, h is relaxed.

Theorem 3.1. Assume that (w0) and (H) hold.
(i) If p+ < h− and {x ∈ Ω : q(x) < p(x)} 	= ∅, then for each given μ ∈ R, there

exists λ∗ = λ∗(μ) > 0 such that, for any λ ∈ (0, λ∗), (1.1) has a nontrivial
nonnegative solution u with J(u) < 0.

(ii) If q+ < p− ≤ p+ < h−, then for each given μ > 0, there exists λ∗∗ = λ∗∗(μ) >
0 such that, for any λ < λ∗∗, (1.1) has a nontrivial nonnegative solution u with
J(u) > 0.

(iii) If q+ = p− ≤ p+ < h−, then for each given μ > 0, there exists λ∗∗∗ =
λ∗∗∗(μ) > 0 such that, for any λ ∈ (−λ∗∗∗, λ∗∗∗), (1.1) has a nontrivial non-
negative solution u with J(u) > 0.

In the case of a fixed parameter in front of the concave term, we have the following.

Theorem 3.2. Assume that (w0) and (H) hold.
(i) If q+ < p−, then for each given λ>0, there exists μ∗ =μ∗(λ)>0 such that, for

any μ∈ [0, μ∗), (1.1) has a nontrivial nonnegative solution u with J(u)<0.
(ii) If q+ < p− and {x ∈ Ω : q(x) < h(x)} 	= ∅, then for each given λ > 0,

there exists μ∗∗ = μ∗∗(λ)>0 such that, for any μ < μ∗∗, (1.1) has a nontrivial
nonnegative solution u with J(u)<0.

(iii) If q+ < p− ≤ p+ < h−, then for each given λ ∈ R, there exists μ∗∗∗ =
μ∗∗∗(λ) > 0 such that, for any μ ∈ (0, μ∗∗∗), (1.1) has a nontrivial nonnegative
solution u with J(u) > 0.
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(iv) If max{p+, q+} < h−, then for any λ ≤ 0 and μ > 0, (1.1) has a nontrivial
nonnegative solution u with J(u) > 0.

These results immediatelyyield the existence of two nontrivial nonnegative solutions
for (1.1).

Corollary 3.3. Assume that (w0) and (H) hold.

(i) If q+ ≤ p− ≤ p+ < h− and {x ∈ Ω : q(x) < p(x)} 	= ∅, then for each given
μ > 0, there exists λ = λ(μ) > 0 such that, for any λ ∈ (0, λ), (1.1) has two
nontrivial nonnegative solutions u and u with J(u) < 0 < J(u).

(ii) If q+ < p− ≤ p+ < h−, then for each given λ > 0, there exists μ = μ(λ) > 0
such that, for any μ ∈ (0, μ), (1.1) has two nontrivial nonnegative solutions u

and u with J(u) < 0 < J(u).

It is worth noticing the positivity of the solutions for (1.1).

Remark 3.4. If we consider (1.1) with w ≡ 1, p ∈ C1(Ω), (H∗) holds, and
the parameters satisfy either λ ≥ 0, μ ≥ 0 or λ ≥ 0, μ < 0, b ∈ L∞(Ω), p(x) ≤
h(x), ∀x ∈ Ω, then by the strong maximum principle for p(x)−Laplacian (see [17,
Proposition 3.1]), all nontrivial nonnegative solutions are positive.

To apply the Ekeland variational principle and the Mountain Pass Theorem to show
the proofs of Theorems 3.1-3.2, we first establish some geometric structures of J1.

Lemma 3.5. Assume that (w0) and (H) hold.

(i) If p+ < h−, then for each given μ ∈ R, there exists λ0 = λ0(μ) > 0 such that,
for any λ < λ0, there exist r, ρ > 0 such that J1(u) ≥ ρ if ‖u‖ = r.

(ii) If q+ < p−, then for each given λ ∈ R, there exists μ0 = μ0(λ) > 0 such that,
for any μ < μ0, there exist r, ρ > 0 such that J1(u) ≥ ρ if ‖u‖ = r.

Proof. By Proposition 2.6, there are two constants Ca > 1, Cb > 1 such that

(3.1) |u|Lq(x)(a,Ω) ≤ Ca‖u‖, |u|Lh(x)(b,Ω) ≤ Cb‖u‖, ∀u ∈ X.

Proof of (i). For each given μ ∈ R, fix r1 such that 0 < r1 < min
{

1
Ca

, 1
Cb

}
and

|μ|Ch−
b

h− rh−
1 ≤ 1

2p+ rp+

1 . By Proposition 2.2 and (3.1), for ‖u‖ ≤ r1(< 1), we have
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(3.2)

J1(u) ≥ 1
p+

∫
Ω

w(x)|∇u|p(x)dx − max{λ, 0}
q−

∫
Ω

a(x)|u|q(x)dx

−|μ|
h−

∫
Ω

b(x)|u|h(x)dx

≥ 1
p+

‖u‖p+ − max{λ, 0}
q−

|u|q−
Lq(x)(a,Ω)

− |μ|
h− |u|h−

Lh(x)(b,Ω)

≥ 1
p+

‖u‖p+ − max{λ, 0}Cq−
a

q−
‖u‖q− − |μ|Ch−

b

h− ‖u‖h−

≥ 1
2p+

‖u‖p+ − max{λ, 0}Cq−
a

q−
‖u‖q− .

Thus, for u ∈ X with ‖u‖ = r1, we have

J1(u) ≥ 1
2p+

rp+

1 −max{λ, 0}Cq−
a

q−
rq−
1 =

Cq−
a

q−
rq−
1

(
q−

2p+Cq−
a

rp+−q−
1 − max{λ, 0}

)
.

Therefore, if we take λ0 = q−

2p+Cq−
a

rp+−q−
1 > 0, then for any λ < λ0, we have

r = r1 > 0, ρ = Cq−
a
q− r

q−
1 (λ0 − max{λ, 0}) > 0 satisfying J1(u) ≥ ρ if ‖u‖ = r.

Proof of (ii). Let λ ∈ R be given. Once again, using Proposition 2.2 and (3.1),
for all u ∈ X, we have

(3.3)

∫
Ω a(x)|u(x)|q(x)dx ≤ max

{
|u|q−

Lq(x)(a,Ω)
, |u|q+

Lq(x)(a,Ω)

}
≤ max

{
Cq−

a ‖u‖q− , Cq+

a ‖u‖q+
}

.

Similarly, we get

(3.4)
∫

Ω
b(x)|u(x)|h(x)dx ≤ max

{
Ch−

b ‖u‖h−
, Ch+

b ‖u‖h+
}

.

Setting r2 = max

{
1,

(
2p+Cq+

a |λ|
q−

) 1
p−−q+

}
and taking into account (3.3)-(3.4) and

(3.1), for ‖u‖ = r2, we have
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(3.5)

J1(u) ≥ 1
p+

∫
Ω

w(x)|∇u|p(x)dx − |λ|
q−

∫
Ω

a(x)|u|q(x)dx

−max{μ, 0}
h−

∫
Ω

b(x)|u|h(x)dx

≥ 1
p+

‖u‖p− − |λ|Cq+

a

q−
‖u‖q+ − max{μ, 0}Ch+

b

h− ‖u‖h+

≥ 1
2p+

‖u‖p− − max{μ, 0}Ch+

b

h− ‖u‖h+

=
Ch+

b rh+

2

h−

(
h−rp−−h+

2

2p+Ch+

b

− max{μ, 0}
)

.

Therefore, if we take μ0 = h−r
p−−h+

2

2p+Ch+
b

> 0, then for any μ < μ0, we have r = r2 >

0, ρ = Ch+

b rh+

2

h− (μ0 − max{μ, 0}) > 0 satisfying J1(u) ≥ ρ if ‖u‖ = r.

The next two lemmas are crucial since we can relax the condition on q, p, h.

Lemma 3.6. Assume that (w0) and (H) hold. If {x ∈ Ω : min{p(x), h(x)} >

q(x)} 	= ∅, then for any λ > 0 and μ ∈ R, there exists φ ∈ X, φ ≥ 0 such that
J1(tφ) < 0 for all small t > 0. In the case {x ∈ Ω : p(x) > q(x)} 	= ∅, the conclusion
remains valid for any λ > 0 and μ ≥ 0.

Proof. First, consider the case q(x0) < min{p(x0), h(x0)} for some x0 ∈ Ω .
Let λ > 0 and μ ∈ R be arbitrary. Let δ0 be such that 0 < 2δ0 < min{p(x0), h(x0)}−
q(x0). Since p, q, h ∈ C(Ω), there is an open ball B0 such that B0 ⊂ Ω and |q(x) −
q(x0)| < δ0, |p(x)− p(x0)| < δ0, |h(x)− h(x0)| < δ0 for all x ∈ B0. This yields

(3.6) q(x) < q(x0) + δ0, p(x) > p(x0) − δ0, h(x) > h(x0) − δ0 for all x ∈ B0.

Let φ ∈ C∞
0 (Ω) \ {0} be such that supp(φ) ⊂ B0 and 0 ≤ φ ≤ 1 on B0. Then for

t ∈ (0, 1), we have

J1(tφ) ≤ tp(x0)−δ0

p−

∫
B0

w(x)|∇φ|p(x)dx − λAtq(x0)+δ0

q+
+

|μ|th(x0)−δ0

h−

∫
B0

b(x)dx,

where A :=
∫
B0

a(x)φq(x)dx > 0. Thus, J1(tφ) < 0 for sufficiently small t > 0 since
q(x0) + δ0 < min{p(x0) − δ0, h(x0) − δ0}.

For the last case, let q(x0) < p(x0) for some x0 ∈ Ω and λ > 0, μ ≥ 0. Once
again, since q, p ∈ C(Ω), there exist δ0 > 0 and an open ball B0 such that B0 ⊂ Ω
and q(x) < q(x0) + δ0 < p(x0)− δ0 < p(x) for all x ∈ B0. Let φ be as above. Then
for t ∈ (0, 1), we have

J1(tφ) ≤ tp(x0)−δ0

p−

∫
B0

w(x)|∇φ|p(x)dx − λtq(x0)+δ0

q+

∫
B0

a(x)φq(x)dx.

We obtain the same conclusion by repeating the argument above.
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Lemma 3.7. Assume that (w0) and (H) hold. If {x ∈ Ω : max{p(x), q(x)} <

h(x)} 	= ∅, then for any λ ∈ R and μ > 0, there exists φ ∈ X \ {0} such that φ ≥ 0
and J1(tφ) → −∞ as t → +∞.

Proof. Suppose that max{p(x0), q(x0)} < h(x0) for some x0 ∈ Ω, and take δ0

such that 0 < 2δ0 < h(x0) − max{p(x0), q(x0)}. Since p, q, h ∈ C(Ω), there is an
open ball B0 such that B0 ⊂ Ω and

q(x) < q(x0) + δ0, p(x) < p(x0) + δ0, h(x) > h(x0) − δ0 for all x ∈ B0.

Let λ ∈ R and μ > 0 be arbitrary and φ ∈ C∞
0 (Ω) \ {0} be such that supp(φ) ⊂ B0

and 0 ≤ φ ≤ 1 on B0. Then for t > 1, we have

J1(tφ) ≤ tp(x0)+δ0

p−

∫
B0

w(x)|∇φ|p(x)dx +
|λ|tq(x0)+δ0

q−

∫
B0

a(x)dx− μBth(x0)−δ0

h+
,

where B :=
∫
B0

b(x)φh(x)dx > 0. Thus, we arrive at J1(tφ) → −∞ as t → +∞
since max{q(x0) + δ0, p(x0) + δ0} < h(x0) − δ0.

We next show the compactness that is crucial for seeking critical points.

Lemma 3.8. Assume that (w0) and (H) hold. Then J1 holds (PS) condition if
one of the following conditions is satisfied;

(i) q+ < p− ≤ p+ < h− and λ ∈ R, μ ≥ 0,

(ii) q+ = p− ≤ p+ < h− and λ, μ ∈ R with |λ| < λ0 :=
1

p+− 1
h−

( 1
q−− 1

h− )Cq+
a

, μ ≥ 0,

where Ca is as in (3.1),
(iii) p+ < h−, q+ ≤ h− and λ ≤ 0, μ ≥ 0.

Proof. Because of the reflexiveness of X and the (S+)−property of J ′
1, to

show that J1 holds (PS) condition, it is enough to show that every (PS) sequence is
bounded. Suppose that q+, p+ ≤ h− and λ ∈ R, μ ≥ 0. Let {un} be a (PS) sequence,
i.e.,

(3.7)

{
|J1(un)| < M, ∀n ∈ N,

J ′
1(un) → 0 in X∗ as n → ∞,

for some positive constant M . This implies that, for n large, we have

(3.8)

M + ‖un‖ ≥ J1(un) − 1
h− 〈J ′

1(un), un〉
≥
∫

Ω

w(x)
(

1
p(x)

− 1
h−

)
|∇un|p(x)dx

−λ

∫
Ω

(
1

q(x)
− 1

h−

)
a(x)|u+

n |q(x)dx.
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In case (iii), (3.8) and Proposition 2.2 yield

M + ‖un‖ ≥
(

1
p+

− 1
h−

)(
‖un‖p− − 1

)
.

This follows the boundedness of {un} since p− > 1. In cases (i) and (ii), by taking
into account Proposition 2.2 and (3.1), (3.8) implies that

M + ‖un‖ ≥
(

1
p+

− 1
h−

)(
‖un‖p− − 1

)
−
(

1
q−

− 1
h−

)
|λ|
(
1 + |un|q

+

Lq(x)(a,Ω)

)
≥
(

1
p+

− 1
h−

)(
‖un‖p− − 1

)
−
(

1
q−

− 1
h−

)
|λ|
(
1 + Cq+

a ‖un‖q+
)

.

Through this, we easily deduce the boundedness of {un} in both cases (i) and (ii).

Remark 3.9. Since the proofs of Lemmas 3.5-3.8 can be similarly checked for J,

all statements for J1 are still valid for J .

Now, we are ready to give the proofs of Theorems 3.1-3.2.

Proof of Theorem 3.1. For (i), let p+ < h− and {x ∈ Ω : q(x) < p(x)} 	= ∅
and μ ∈ R. Then we take λ∗ = λ0(μ) with λ0(μ) as in Lemma 3.5(i). Thus, for a
fixed λ ∈ (0, λ∗), there exist r, ρ > 0 such that J1(u) ≥ ρ if ‖u‖ = r. Let us denote
c := inf

u∈Br

J1(u), where Br := {u ∈ X : ‖u‖ < r} with a boundary ∂Br. Then by

(3.2) and Lemma 3.6, we deduce −∞ < c < 0.

Putting 0 < ε < inf
u∈∂Br

J1(u) − c, by the Ekeland variational principle, we find

uε ∈ Br such that

(3.9)

{
J1(uε) ≤ c + ε,

J1(uε) < J1(u) + ε‖u − uε‖, ∀u ∈ Br, u 	= uε.

This implies that uε ∈ Br since J1(uε) ≤ c + ε < inf
u∈∂Br

J1(u). From these facts, we

have that uε is a local minimum of the funtional J̃(u) = J1(u)+ε‖u−uε‖. Therefore,
for v ∈ B1 and sufficiently small t > 0, we have

0 ≤ J̃(uε + tv) − J̃(uε)
t

=
J1(uε + tv) − J1(uε)

t
+ ε‖v‖.

Therefore, letting t → 0+, we obtain

〈J ′
1(uε), v〉+ ε‖v‖ ≥ 0.
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Replacing v by −v in the argument above, we get

−〈J ′
1(uε), v〉+ ε‖v‖ ≥ 0.

Hence, we have
|〈J ′

1(uε), v〉| ≤ ε‖v‖, ∀v ∈ B1.

Thus, we infer

(3.10) ‖J ′
1(uε)‖X∗ ≤ ε.

From (3.9) and (3.10), we deduce a sequence {un} ⊂ Br such that

(3.11)

{
J1(un) → c as n → ∞,

J ′
1(un) → 0 in X∗ as n → ∞.

Thus, {un} is a bounded (PS) sequence in the reflexive Banach space X. Due to the
(S+)−property of J ′

1, {un} has a subsequence {unk
} such that unk

→ u in X as
nk → ∞. It follows from this and (3.11) that J1(u) = c and J ′

1(u) = 0. Hence, u is
a nontrivial nonnegative solution to (1.1) with J(u) = J1(u) < 0.

For (ii), let q+ < p− ≤ p+ < h− and μ be a positive real number and take
λ∗∗ = λ0(μ), where λ0(μ) is as in Lemma 3.5(i). Then, for a fixed λ < λ∗∗, there
exist r, ρ > 0 such that J1(u) ≥ ρ if ‖u‖ = r; by Lemma 3.7, there is e ∈ X such that
‖e‖ > r and J1(e) < 0. Moreover, by Lemma 3.8(i), J1 satisfies (PS) condition. The
Mountain Pass Theorem implies that J1 has a critical point u satisfying J1(u) ≥ ρ.
Hence, (1.1) has a nontrivial nonnegative solution u with J(u) > 0.

The proof of (iii) is similar to that of (ii). Here we take λ∗∗∗ = min{λ0, λ
0(μ)},

where λ0(μ) is as in Lemma 3.5(i) and λ0 is as in Lemma 3.8(ii). Then, for a fixed
λ ∈ (−λ∗∗∗, λ∗∗∗), we verify that J1 satisfies all conditions of the Mountain Pass
Theorem using Lemma 3.5(i), Lemma 3.7, and Lemma 3.8(ii).

Proof of Theorem 3.2. The proofs of (i) and (ii) are similar to that of Theorem 3.1 (i).
Let q+ < p− and λ be a positive real number. If μ∗ = μ∗∗ = μ0(λ), where μ0(λ) > 0
is as in Lemma 3.5(ii), then all arguments in the proof of Theorem 3.1(i) are still
workable for any μ ∈ [0, μ∗) in case (i) and for any μ < μ∗∗ in case (ii).

To show (iii) and (iv), we apply the Mountain Pass Theorem for J1. In case (iii), for
a given λ ∈ R, take μ∗∗∗ = μ0(λ) with μ0(λ) in Lemma 3.5(ii), and let μ ∈ (0, μ∗∗∗).
Then, by Lemma 3.5(ii), there exist r, ρ > 0 such that J1(u) ≥ ρ if ‖u‖ = r; by
Lemma 3.7, there is e ∈ X such that ‖e‖ > r and J1(e) < 0. Lemma 3.8 (i)
guarantees that J1 satisfies the (PS) condition. So J1 has a critical point u satisfying
J1(u) ≥ ρ. Hence, (1.1) has a nontrivial nonnegative solution u with J(u) > 0. In
case (iv), for any λ ≤ 0, μ > 0, Lemma 3.5(i), Lemma 3.7, and Lemma 3.8(iii) deduce
that J1 satisfies all conditions of the Mountain Pass Theorem.



Existence and Multiplicity of Solutions for Degenerate p(x)-Laplace Equations 1485

4. EXISTENCE OF INFINITELY MANY SOLUTIONS

The existence of infinitely many solutions for (1.1) was studied in [16] when w ≡ 1
and q+ < p− ≤ p+ < h−. In this section, we obtain the same or similar results as
in [16] when degeneracy and various situations regarding the order of p, q, h and the
range of the parameters are considered.

Recall that, if X is a separable reflexive Banach space, then it is well-known that
there exist {en}∞n=1 ⊂ X and {fn}∞n=1 ⊂ X∗ such that X = span{en}∞n=1, X∗ =
span{fn}∞n=1 and

〈fi, ej〉 =

{
1, if i = j,

0, if i 	= j,

where 〈·, ·〉 is the duality product of X∗ and X (see [35, Section 17]). Denote

Xn = span{en}, Yn = ⊕n
k=1Xk, Zn = ⊕∞

k=nXk.

For a separable reflexive Banach space X and Xn, Yn, Zn as above, let us recall
fundamental theorems to obtain a sequence of critical values.

Proposition 4.1. [33, Fountain Theorem] Assume that J ∈ C1(X, R) is even and
that, for each n = 1, 2, . . . , there exist ρn > γn > 0 such that

(H1) bn = inf{u∈Zn: ‖u‖=γn} J(u) → +∞ as n → ∞;

(H2) an = max{u∈Yn: ‖u‖=ρn} J(u) ≤ 0;

(H3) J satisfies (PS)c-condition for every c > 0.

Then J has a sequence of critical values tending to +∞.

Proposition 4.2. [33, Dual Fountain Theorem] Assume that J ∈ C1(X, R) is even.
If there exists n0(∈ N) > 0 such that, for each n ≥ n0, there exist ρn > γn > 0 such
that

(D1) inf{u∈Zn: ‖u‖=ρn} J(u) ≥ 0;

(D2) bn = max{u∈Yn: ‖u‖=γn} J(u) < 0;

(D3) dn = inf{u∈Zn: ‖u‖≤ρn} J(u) → 0 as n → ∞;

(D4) J satisfies (PS)∗c-condition for every c ∈ [dn0, 0), i.e., for any c ∈ [dn0 , 0), if
{unj} is a sequence in X such that nj → ∞, unj ∈ Ynj , J(unj) → c, (J|Ynj

)′(unj)
→ 0, then {unj} has a subsequence converging to a critical point of J .

Then J has a sequence of negative critical values tending to 0.
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Now, we state the main result of this section.

Theorem 4.3. Assume that (w0) and (H) hold.

(i) If q+ < p− ≤ p+ < h−, then for any λ ∈ R, μ > 0, (1.1) has a sequence of
solutions {±un} such that J(±un) → ∞ as n → ∞.

(ii) If q+ = p− ≤ p+ < h−, then for any λ ∈ R with |λ| < λ0 and μ > 0, the
conclusion above remains valid (here, λ0 is as in Lemma 3.8(ii).

(iii) If q+ < p− ≤ p+ < h−, then for any λ > 0, μ ∈ R, (1.1) has a sequence of
solutions {±vn} such that J(±vn) < 0, ∀n, and J(±vn) → 0 as n → ∞.

(iv) If q+ < min{p−, h−} and p+ < h+, then for any λ > 0, μ ≤ 0, the conclusion
in (iii) remains valid.

Proof. Note that J ∈ C1(X, R), and J is even. Write J(u) =
∫
Ω

w(x)
p(x) |∇u|p(x)dx−

Ψ(u), where Ψ : X → R is defined by Ψ(u) = λ
∫
Ω

a(x)
q(x) |u|q(x)dx+μ

∫
Ω

b(x)
h(x) |u|h(x)dx.

By Proposition 2.9, Ψ is of C1(X, R), and Ψ is sequentially weakly continuous.
To prove cases (i) and (ii), we only need to verify that J satisfies (H1)− (H3) in

Fountain Theorem. Let q+ ≤ p− ≤ p+ < h− and λ ∈ R, μ > 0. (H1) can be shown
using the same argument as in [16, Proof of Theorem 4.1 (5)]. For case (i), (H3) is
deduced from Lemma 3.8(i); for case (ii), (H3) is deduced from Lemma 3.8(ii) with
Remark 3.9. To show (H2), taking u ∈ X with ‖u‖ > 1 and using Proposition 2.2,
we have

J(u) ≤ 1
p−

‖u‖p+
+

|λ|
q−
(
|u|q+

Lq(x)(a,Ω)
+ 1
)
− μ

h+

(
|u|h−

Lh(x)(b,Ω)
− 1
)

.(4.1)

Since, on the finite dimensional space Yn, norms ‖ · ‖, | · |Lq(x)(a,Ω) and | · |Lh(x)(b,Ω)

are equivalent and q+ ≤ p+ < h−, (4.1) implies that J(u) ≤ 0 for all u ∈ Yn with
sufficiently large ‖u‖. This follows (H2).

To show cases (iii) and (iv), we verify that J satisfies (D1)−(D4) in Dual Fountain
Theorem. (D1) and (D3) can be shown as in [16, Proof of Theorem 4.1 (6)], in which
ρn = 1, ∀n ∈ N. For (D2), taking r such that 0 < r < min

{
1

Ca
, 1

Cb

}
, where Ca, Cb

are as in (3.1), we get that, for ‖u‖ = r,

J(u) ≤ 1
p−

‖u‖p− − λ

q+
|u|q+

Lq(x)(a,Ω)
+

|μ|
h− |u|h−

Lh(x)(b,Ω)
.

Since q+ < min{p−, h−} in both cases (iii) and (iv) and norms ‖ · ‖, | · |Lq(x)(a,Ω)

and | · |Lh(x)(b,Ω) are equivalent on the finite dimensional space Yn, we can choose
γn ∈ (0, ρn) such that J(u) ≤ 0 for all u ∈ Yn with ‖u‖ = γn. This implies (D2).
Finally, to verify (D4), we show that J satisfies (PS)∗c-condition for every c ∈ R. Let
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{unj} ⊂ X be such that unj ∈ Ynj , J(unj ) → c, (J|Ynj
)′(unj) → 0 as nj → ∞. So,

for large n, we have that, for p+ < h− and μ ≥ 0,

c + 1 + ‖unj‖ ≥ J(unj )−
1

h− 〈(J|Ynj
)′(unj ), unj〉

= J(unj )−
1

h− 〈J ′(unj ), unj〉
≥
(

1
p+

− 1
h−

)
(‖unj‖p−− 1)−

(
1
q−

− 1
h−

)
λ
(
1 + Cq+

a ‖unj‖q+
)

,

and for p+ < h+ and μ ≤ 0,

c+1+‖unj‖ ≥ J(unj )−
1

h+
〈(J|Ynj

)′(unj), unj〉
= J(unj )−

1
h+

〈J ′(unj), unj〉
≥
(

1
p+

− 1
h+

)
(‖unj‖p− − 1) −

(
1
q−

− 1
h+

)
λ
(
1 + Cq+

a ‖unj‖q+
)

.

This implies the boundedness of {unj} in both cases (iii) and (iv). Since the remaining
process to verify (D4) is the same as in [16, Proof of Theorem 4.1 (6)], we omit it.

Remark 4.4. Theorems 3.1-3.2 and Theorem 4.3 remain valid if (w0) and (H)
are replaced by (w1) and (H∗), respectively.

5. CAFFARELLI-KOHN-NIRENBERG TYPE PROBLEMS

In this section, we discuss some Caffarelli-Kohn-Nirenberg type problems. The
following is similar to the result in [16] for the case of no degeneracy, but the proof
should be different since δ(x) may be zero.

Theorem 5.1. Assume that p ∈ C+(Ω) and that (w0) holds. Assume also that
r, δ ∈ C(Ω) such that 0 ≤ δ(x) < N for all x ∈ Ω, and

(5.1) 1 ≤ r(x) <
N − δ(x)

N
p∗s(x), ∀x ∈ Ω.

Then we have the continuous compact imbedding

W 1,p(x)(w, Ω) ↪→↪→ Lr(x)(|x|−δ(x), Ω).

Moreover, if (w0) and p∗s(x) are replaced by (w1) and p∗(x), respectively, the imbed-
ding remains valid.

Proof. By the continuity of r, δ, p, s, and the compactness of Ω, there exists ε > 0
such that δ(x) < N −2ε and r(x) < N−2ε−δ(x)

N−ε p∗s(x) for all x ∈ Ω. Let γ(x) = N−ε
δ(x)+ε
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and d(x) = |x|−δ(x)−ε, then d, γ satisfy the hypotheses of Proposition 2.6. Thus, by
Proposition 2.6, we obtain

(5.2) W 1,p(x)(w, Ω) ↪→↪→ Lr(x)(|x|−δ(x)−ε, Ω).

The boundedness of Ω implies that Lr(x)(|x|−δ(x)−ε, Ω) ↪→ Lr(x)(|x|−δ(x), Ω). Hence,
this and (5.2) imply that

W 1,p(x)(w, Ω) ↪→↪→ Lr(x)(|x|−δ(x), Ω).

Suppose that (w1) holds and 1 ≤ r(x) <
N−δ(x)

N p∗(x), ∀x ∈ Ω. Then, by the con-
tinuity of r, δ, p, and the compactness of Ω, there exists a constant s0 > max{ N

p− , 1
p−−1

}
such that

1 ≤ r(x) <
N − δ(x)

N
p∗s0

(x), ∀x ∈ Ω.

This implies that (w0) and (5.1) hold for s(x) ≡ s0, and this completes the proof.

Remark 5.2. Theorem 2.1 and Corollary 2.1 in [16] are the special cases of Corol-
lary 2.7 and Theorem 5.1, respectively, when w(x) ≡ 1 on Ω.

Some interesting consequences follow from Theorem 5.1.

Corollary 5.3. Assume that p ∈ C+(Ω) and θ, r, δ ∈ C(Ω) such that 0 ≤ θ(x) <
N
s0

for some constant s0 ≥ max{ N
p− , 1

p−−1
} and 0 ≤ δ(x) < N for all x ∈ Ω and

(5.3) 1 ≤ r(x) <
N − δ(x)

N
p∗s0

(x), ∀x ∈ Ω.

Then, we have the continuous compact imbedding

W 1,p(x)(|x|θ(x), Ω) ↪→↪→ Lr(x)(|x|−δ(x), Ω).

Consequently, we obtain a Caffarelli-Kohn-Nirenberg type inequality;

|u|Lr(x)(|x|−δ(x),Ω) ≤ C|∇u|Lp(x)(|x|θ(x),Ω), ∀u ∈ W
1,p(x)
0 (|x|θ(x), Ω).

In particular, when r(x) ≡ r (constant) and p(x) ≡ p (constant), we have(∫
Ω
|x|−δ(x)|u|rdx

)1/r

≤ C

(∫
Ω
|x|θ(x)|∇u|pdx

)1/p

, ∀u ∈ W 1,p
0 (|x|θ(x), Ω).

Proof. By the hypothesis, we have θ+ < N
s0

. Let s1 be such that s0 < s1 with
θ+s1 < N . This and (5.3) imply that

1 ≤ r(x) <
N − δ(x)

N
p∗s1

(x), ∀x ∈ Ω.
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It is clear that w(x) = |x|θ(x) ∈ L1
loc(Ω). Take R > 1 such that Ω ⊂ B(0, R).

Then,
∫
1≤|x|≤R w(x)−s1dx < ∞. Note that w(x)−s1 ≤ |x|−θ+s1 for |x| ≤ 1 and∫

|x|≤1 |x|−θ+s1dx < ∞ since θ+s1 < N, we infer that
∫
|x|≤1 w(x)−s1dx < ∞. These

facts imply that w−s1 ∈ L1(B(0, R)); hence, w−s1 ∈ L1(Ω). So w(x) = |x|θ(x)

satisfies (w0) for s(x) ≡ s1; hence, we obtain the desired conclusion in view of
Theorem 5.1 .

The next is for case (w1).

Corollary 5.4. Assume that 0 ∈ ∂Ω, p ∈ C+(Ω), and θ, r, δ ∈ C(Ω) such that
0 ≤ θ(x), 0 ≤ δ(x) < N for all x ∈ Ω and

1 ≤ r(x) <
N − δ(x)

N
p∗(x), ∀x ∈ Ω.

Then we have the continuous compact imbedding

W 1,p(x)(|x|−θ(x), Ω) ↪→↪→ Lr(x)(|x|−δ(x), Ω).

Consequently, we obtain a Caffarelli-Kohn-Nirenberg type inequality;

|u|Lr(x)(|x|−δ(x),Ω) ≤ C|∇u|Lp(x)(|x|−θ(x),Ω), ∀u ∈ W
1,p(x)
0 (|x|−θ(x), Ω).

In particular, when r(x) ≡ r (constant) and p(x) ≡ p (constant), we have(∫
Ω
|x|−δ(x)|u|rdx

)1/r

≤ C

(∫
Ω
|x|−θ(x)|∇u|pdx

)1/p

, ∀u ∈ W 1,p
0 (|x|−θ(x), Ω).

Lastly, we summarize our results regarding Caffarelli-Kohn-Nirenberg type ques-
tions as below.

Remark 5.5. (i) It is worth comparing our results with the original Caffarelli-Kohn-
Nirenberg inequality [6];
For N ≥ 2, p ∈ (1, N ), there exists a positive constant Ca,b such that

(5.4)
(∫

Ω
|x|−br|u|rdx

)1/r

≤ Ca,b

(∫
Ω
|x|−ap|∇u|pdx

)1/p

, ∀u ∈ C1
0 (Ω),

where −∞ < a < N−p
p , a ≤ b ≤ a + 1, r = Np

N−p−ap+bp , and Ω is an arbitrary open
domain in RN .

In fact, Corollary 5.3 and Corollary 5.4 can be interpreted when all variable expo-
nents are constants and N ≥ 2, p ∈ (1, N ) as follows;
“There exists a positive constant C such that(∫

Ω
|x|−br|u|rdx

)1/r

≤ C

(∫
Ω
|x|−ap|∇u|pdx

)1/p

, ∀u ∈ W
1,p
0 (|x|−ap, Ω),
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where −α
p < a ≤ 0 ≤ b < 1 + N(p−1)−α

p , 1 ≤ r < Np
N−p+α+bp for some 0 < α ≤

min{p, N (p− 1)}.”
and
“Suppose that 0 ∈ ∂Ω. Then, there exists a positive constant C such that(∫

Ω
|x|−br|u|rdx

)1/r

≤ C

(∫
Ω
|x|−ap|∇u|pdx

)1/p

, ∀u ∈ W 1,p
0 (|x|−ap, Ω),

where 0 ≤ a, 0 ≤ b < 1 + N(p−1)
p , 1 ≤ r < Np

N−p+bp .”

Note that the condition for a, b in [6] is a ≤ 0 ≤ b ≤ a + 1, r = Np
N−p−ap+bp when

a ≤ 0 ≤ b and is 0 ≤ a ≤ N−p
p , a ≤ b ≤ a + 1, r = Np

N−p−ap+bp when 0 ≤ a, b.

(ii) In view of Corollary 5.3 and Corollary 5.4, we studied Caffarelli-Kohn-Nirenberg
type problem (1.5) under each condition:

(I) 0 ∈ Ω, p ∈ C+(Ω), and θ, ξ, δ, q, h ∈ C(Ω) such that 0 ≤ θ(x) < N
s0

, 0 ≤
ξ(x), δ(x) < N and

1 < q(x) <
N − ξ(x)

N
p∗s0

(x), 1 < h(x) <
N − δ(x)

N
p∗s0

(x), ∀x ∈ Ω,

for some constant s0 ≥ max{ N
p− , 1

p−−1
},

(II) 0 ∈ ∂Ω, p ∈ C+(Ω), and θ, ξ, δ, q, h ∈ C(Ω) such that θ(x) ≤ 0 ≤ ξ(x), δ(x) <
N and

1 < q(x) <
N − ξ(x)

N
p∗(x), 1 < h(x) <

N − δ(x)
N

p∗(x), ∀x ∈ Ω.

In other words, Theorems 3.1-3.2 and 4.3 for (1.5) in either condition (I) or (II) remain
valid when applying either Corollary 5.3 or Corollary 5.4, respectively.
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