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ASYMPTOTIC ANALYSIS OF FOURTH ORDER QUASILINEAR
DIFFERENTIAL EQUATIONS IN THE FRAMEWORK OF

REGULAR VARIATION

Jelena Milošević and Jelena V. Manojlović

Abstract. Under the assumptions that p(t), q(t) are regularly varying functions
satisfying condition ∫ ∞

a

dt

p(t)
1
α

= ∞,

existence and asymptotic form of regularly varying intermediate solutions are
studied for a fourth-order quasilinear differential equation(

p(t)|x′′(t)|α−1 x′′(t)
)′′ + q(t)|x(t)|β−1 x(t) = 0, α > β > 0.

It is shown that the asymptotic behavior of all such solutions is governed by a
unique explicit law.

1. INTRODUCTION

This paper is concerned with positive solutions of fourth-order quasilinear differ-
ential equations of the form

(E)
(
p(t)|x′′(t)|α−1 x′′(t)

)′′ + q(t)|x(t)|β−1 x(t) = 0, t ≥ a > 0,

where α and β are positive constants such that α > β and p(t), q(t) are positive
continuous functions defined on [a,∞) and p(t) satisfies∫ ∞

a

dt

p(t)
1
α

= ∞.(1.1)
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The equation (E) is called sub-half-linear if β < α and super-half-linear if β > α. By
a solution of (E) we mean a function x(t) : [T,∞) → R, T ≥ a, such that x(t) and
p(t)|x′′(t)|α−1x′′(t) is twice continuously differentiable on [T,∞) and satisfies the
equation (E) at every point of [T,∞). A solution x(t) of (E) is said to be nonoscillatory
if x(t) �= 0 for all large t and oscillatory otherwise. In other words, a solution x(t)
of (E) is nonoscollatory if x(t) is eventually positive or eventually negative. If x(t)
is a solution of (E), then so does −x(t). Therefore, there is no loss of generality in
assuming that a nonoscillatory solution of (E) is eventually positive.

Throughout this paper extensive use is made of the symbol ∼ to denote the asymp-
totic equivalence of two positive functions, i.e.,

f(t) ∼ g(t), t→ ∞ ⇐⇒ lim
t→∞

g(t)
f(t)

= 1.

We also use the symbol ≺ to denote the dominance relation between two positive
functions in the sense that

f(t) ≺ g(t), t→ ∞ ⇐⇒ lim
t→∞

g(t)
f(t)

= ∞.

The oscillatory and asymptotic behavior of solutions of the equation (E) has been
recently considered by Wu [18] and Naito and Wu [5] under the conditions∫ ∞

a

t

p(t)
1
α

dt = ∞,(1.2)

or, more strongly,

∫ ∞

a

t

p(t)
1
α

dt = ∞ ∧
∫ ∞

a

(
t

p(t)

) 1
α

dt = ∞.(1.3)

We note that (1.1) implies both of (1.2) and (1.3).
The aim of this paper is to obtain a more detailed information on the asymptotic

behavior of positive solutions of equation (E) under the condition (1.1).
The main body of the paper is divided into six sections. In Section 2 we classify

the totality of positive solutions of (E) into several types according to their asymptotic
behavior at infinity. There a crucial role is played by the four functions

ψ1(t) = 1, ψ2(t) = t, ψ3(t) =
∫ t

a

∫ s

a

1

p(r)
1
α

drds, ψ4(t) =
∫ t

a

∫ s

a

(
r

p(r)

) 1
α

drds,

which are the particular solutions of the unperturbed differential equation

(p(t)|x′′(t)|α−1x′′(t))′′ = 0.
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It is to be noted that the functions define above satisfy the dominance relation

ψ1(t) ≺ ψ2(t) ≺ ψ3(t) ≺ ψ4(t), t→ ∞.

Necessary and sufficient integral conditions for the existence of positive solutions x(t)
of (E) which are asymptotic to positive constant multiplies by the function ψi(t), i =
{1, 2, 3, 4}, called primitive solutions of (E), have been given in [5, 18]. Our goal
is to show that equation (E), except primitive solutions, possesses two more types of
positive solutions such that

(I) ψ1(t) ≺ x(t) ≺ ψ2(t) or (II) ψ3(t) ≺ x(t) ≺ ψ4(t) as t→ ∞.

Such solutions will be called intermediate solutions of (E). In Section 4 we established
sufficient conditions for the existence of such solutions of (E) with continuous coeffi-
cients p(t) and q(t). In Section 5 we consider equation (E) with generalized regularly
varying p(t) and q(t), while the definition of generalized regularly varying functions
and some of their basic properties are summarized in Section 3. After showing that
each of two classes of intermediate generalized regularly varying solutions of type (I)
and (II) can be divided into three disjoint subclasses according to their asymptotic be-
havior at infinity, we establish necessary and sufficient conditions for the existence of
solutions belonging to each of these three solution subclasses of types (I) and (II). Our
discussions include determining the asymptotic behavior of solutions contained in each
of the six subclasses explicitly and precisely. In the final Section 6 it is shown that our
main results, when specialized to the case where p(t) and q(t) are regularly varying
functions in the sense of Karamata, provide thorough information about the existence
and asymptotic behavior of regularly varying solutions in the sense of Karamata for
equation (E). This information combined with that of the primitive solutions of (E) (cf.
Theorems 2.1-2.4) enables us to depict a clear picture of the structure of all regularly
varying solutions for equations of the form (E) with regularly varying coefficients.

2. CLASSIFICATION OF POSITIVE SOLUTIONS

We begin by classification the set of all possible positive solutions of (E) according
to their asymptotic behavior as t → ∞. Let x(t) be a positive solution of (E). It is
known (see [18]) that x(t) satisfies either

(2.1) x′(t) > 0, x′′(t) > 0, (p(t)|x′′(t)|α−1x′′(t))′ > 0 for all large t,

or

(2.2) x′(t) > 0, x′′(t) < 0, (p(t)|x′′(t)|α−1x′′(t))′ > 0 for all large t.

Since (E) implies that (p(t)|x′′(t)|α−1x′′(t))′ is decreasing and positive, there exists a
finite limit limt→∞(p(t)|x′′(t)|α−1x′′(t))′ = ω3 ≥ 0.
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Solutions satisfying (2.1). First let x(t) satisfy (2.1) on [t0,∞). Since x′(t) is
positive and increasing, we see that x′(t) ≥ x′(t0), t ≥ t0, which by integration gives
x(t) → ∞, t→ ∞.

Suppose that ω3 > 0. Then, since (p(t) x′′(t)α)′ ∼ ω3, t → ∞, integrating this
relation on [t0, t], we obtain

x′′(t) ∼ ω
1
α
3

(
t

p(t)

) 1
α

, t→ ∞,

from which, integrating twice on [t0, t] we find that

x(t) ∼ ω
1
α
3

∫ t

t0

∫ s

t0

(
r

p(r)

) 1
α

drds, t→ ∞,

i.e., x(t) ∼ ω
1
α
3 ψ4(t) as t→ ∞.

Suppose that ω3 = 0. Then, since p(t)x′′(t)α is positive and increasing, we have
limt→∞ p(t)x′′(t)α = ω2 ∈ (0,∞]. If ω2 is finite, then integrating the relation
x′′(t) ∼ (ω2/p(t))

1
α , t→ ∞ twice on [t0, t], we obtain

x(t) ∼ ω
1
α
2

∫ t

t0

∫ s

t0

1

p(r)
1
α

drds, t→ ∞,

i.e., x(t) ∼ ω
1
α
2 ψ3(t), t → ∞. On the other hand, if ω2 = ∞, we first integrate (E)

on [t,∞) and then on [t0, t] to obtain

(2.3) x′′(t) =
1

p(t)
1
α

(
c2 +

∫ t

t0

∫ ∞

s
q(r)x(r)β drds

) 1
α

, t ≥ t0,

where c2 = p(t0)x′′(t0)α > 0. Integrating the above twice on [t0, t] then yields

(2.4)

x(t) = c0 + c1(t− t0)

+
∫ t

t0

∫ s

t0

1

p(r)
1
α

(
c2 +

∫ r

t0

∫ ∞

u
q(v)x(v)β dvdu

) 1
α

drds, t ≥ t0,

where c1 = x′(t0) > 0 and c0 = x(t0) > 0. Since
∫ t
t0

∫∞
s q(r)x(r)βdrds = O(t)

as t → ∞, the condition (1.3) implies from (2.3) that limt→∞ x′(t) = ∞. Us-
ing L’ Hospital’s rule, we easily see from (2.4) that limt→∞ x(t)/ψ3(t) = ∞ and
limt→∞ x(t)/ψ4(t) = 0, or equivalently ψ3(t) ≺ x(t) ≺ ψ4(t) as t→ ∞.
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It follows from above observation that there are three types of possible asymptotic
behavior for positive solutions x(t) of (E) satisfying (2.1)

x(t) ∼ k1ψ3(t), or ψ3(t) ≺ x(t) ≺ ψ4(t), or x(t) ∼ k2ψ4(t), as t→ ∞,

where k1 and k2 are some positive constants.

Solutions satisfying (2.2). Let x(t) satisfy (2.2) on [t0,∞). It is necessary that
ω3 = 0, so that we have

(2.5) −
(
p(t)(−x′′(t))α

)′
=
∫ ∞

t
q(s)x(s)βds, t ≥ t0.

Moreover, since p(t)(−x′′(t))α and x′(t) are positive and decreasing , there exist finite
limits limt→∞ p(t)(−x′′(t))α = ω2 ≥ 0 and limt→∞ x′(t) = ω1 ≥ 0. In fact, it must
be ω2 = 0, because otherwise, integration of the relation x′′(t) ∼ (−ω2/p(t))

1
α , t→

∞ leads to x′(t) ∼ −ω
1
α
2

∫ t
t0
ds/p(s)

1
α , t → ∞ . Thus, we conclude with the help

of (1.1) that limt→∞ x′(t) = −∞ , an impossibility. Using this fact and integrating
(2.5) twice on [t,∞), we obtain

(2.6) x′(t) = ω1 +
∫ ∞

t

(
1
p(s)

∫ ∞

s
(r − s)q(r)x(r)β dr

) 1
α

ds, t ≥ t0,

which, integrated on [t0, t], gives

(2.7)

x(t) = c0 + ω1(t− t0)

+
∫ t

t0

∫ ∞

s

(
1
p(r)

∫ ∞

r

(u− r)q(u)x(u)β du

) 1
α

drds, t ≥ t0,

where c0 = x(t0) > 0. It follows that if ω1 > 0, then x(t) ∼ ω1 ψ2(t), t → ∞ and
that if ω1 = 0, there are two possibilities: either x(t) tends to a finite limit or x(t)
grows to infinity as t→ ∞. In the latter case it is clear that ψ1(t) ≺ x(t) ≺ ψ2(t) as
t→ ∞.

Thus it follows that the asymptotic behavior of positive solutions x(t) of (E) satis-
fying (2.2) falls into one of the following three cases:

x(t) ∼ k1ψ1(t), or ψ1(t) ≺ x(t) ≺ ψ2(t), or x(t) ∼ k2ψ2(t), as t→ ∞,

where k1 and k2 are some positive constants.
As regards the primitive solutions of equation (E), the existence of four types of

such solutions has been completely characterized for both sublinear and superlinear case
of (E) with continuous coefficients p(t) and q(t) as the following theorems proven in
[5] and [18] show.
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Theorem 2.1. Let p(t), q(t) ∈ C[a,∞). Equation (E) has a positive solution x(t)
satisfying x(t) ∼ k1ψ1(t), t→ ∞ if and only if

(2.8)
∫ ∞

a

t

(
1
p(t)

∫ ∞

t

(s− t) q(s) ds
) 1

α

dt <∞.

Theorem 2.2. Let p(t), q(t) ∈ C[a,∞). Equation (E) has a positive solution x(t)
satisfying x(t) ∼ k2ψ2(t), t→ ∞ if and only if

(2.9)
∫ ∞

a

(
1
p(t)

∫ ∞

t
(s− t) sβ q(s) ds

) 1
α

dt <∞.

Theorem 2.3. Let p(t), q(t) ∈ C[a,∞). Equation (E) has a positive solution x(t)
satisfying x(t) ∼ k3ψ3(t), t→ ∞ if and only if

(2.10)
∫ ∞

a
t q(t)ψ3(t)β dt <∞.

Theorem 2.4. Let p(t), q(t) ∈ C[a,∞). Equation (E) has a positive solution x(t)
satisfying x(t) ∼ k4ψ4(t), t→ ∞ if and only if

(2.11)
∫ ∞

a
q(t)ψ4(t)β dt <∞.

Thus we are led to the study of intermediate solutions of equation (E). Our task is to
solve two problems: (i) establish necessary and sufficient conditions for (E) to possess
intermediate solutions of types (I) and (II); (ii) determine their asymptotic behavior (or
order of growth) at infinity precisely. Since the second problem is very difficult for
equation (E) with general continuous coefficients p(t) and q(t), we will make an attempt
to solve the problem in the framework of regular variation (in the sense of Karamata),
that is, we limit ourselves to the case where p(t) and q(t) are regularly varying functions
and focus our attention on regularly varying solutions of (E). The recent development of
asymptotic analysis of differential equations by means of regularly varying functions,
which was initiated by the monograph of Marić [6], has shown that there exists a
variety of nonlinear differential equations for which the problem mentioned above can
be solved completely. The reader is referred to the papers [4, 7, 8, 11, 13, 14] for
second order equation and to [9, 10, 12] for fourth order equations which are the
special cases of (E) with α = 1 or p(t) ≡ 1. The present work can be considered as
a continuation of the previous papers [9, 10, 11], but has features different from them
in the sense that the generalized regularly varying functions (or generalized Karamata
functions) introduced in [3] are crucially utilized in order to make clear the dependence
of intermediate solutions on the coefficient p(t). See also [15, 16] for related results
regarding fourth order equations.
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3. BASIC PROPERTIES OF REGULARLY VARYING FUNCTIONS

We recall that the set of regularly varying functions of index ρ ∈ R is introduced
by the following definition.

Definition 3.1. A measurable function f : (a,∞) → (0,∞) for some a > 0 is
said to be regularly varying at infinity of index ρ ∈ R if

lim
t→∞

f(λt)
f(t)

= λρ for all λ > 0.

The totality of all regularly varying functions of index ρ is denoted by RV(ρ) . In
the special case when ρ = 0, we use the notation SV instead of RV(0) and refer to
members of SV as slowly varying functions. Any function f(t) ∈ RV(ρ) is written
as f(t) = tρ g(t) with g(t) ∈ SV , and so the class SV of slowly varying functions is
of fundamental importance in the theory of regular variation. If

lim
t→∞

f(t)
tρ

= lim
t→∞ g(t) = const > 0,

then f(t) is said to be a trivial regularly varying function of index ρ and it is denoted
by f(t) ∈ tr − RV(ρ) . Otherwise, f(t) is said to be a nontrivial regularly varying
function of index ρ and it is denoted by f(t) ∈ ntr− RV(ρ) .

The reader is referred to N.H. Bingham et al. [1] and E. Seneta [17] for the
most complete exposition of theory of regular variation and its application to various
branches of mathematical analysis.

Since the class of classical Karamata functions is not sufficient to properly describe
the asymptotic behavior of positive solutions of the self-adjoint differential equation

(p(t)x′(t))′ + q(t)x(t) = 0 ,

Jaros̆ and Kusano introduced in [3] the class of generalized Karamata functions with
the following definition.

Let R(t) be a positive function which is continuously differentiable on (a,∞) and
satisfies R′(t) > 0, t > a and limt→∞R(t) = ∞.

Definition 3.2. A measurable function f : (a,∞) → (0,∞) for some a > 0 is
said to be regularly varying of index ρ ∈ R with respect to R(t) if f ◦R−1 is defined
for all large t and is regularly varying function of index ρ in the sense of Karamata,
where R−1 denotes the inverse function of R.

The symbol RVR(ρ) is used to denote the totality of regularly varying functions of
index ρ ∈ R with respect to R(t). The symbol SVR is often used for RVR(0). It is
easy to see that if f(t) ∈ RVR(ρ), then f(t) = R(t)ρ g(t), g(t) ∈ SVR. If

lim
t→∞

f(t)
R(t)ρ

= lim
t→∞ g(t) = const > 0,
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then f(t) is said to be a trivial regularly varying function of index ρ with respect
to R(t) and it is denoted by f(t) ∈ tr − RVR(ρ) . Otherwise, f(t) is said to be a
nontrivial regularly varying function of index ρ with respect to R(t) and it is denoted
by f(t) ∈ ntr − RVR(ρ) . Also, from Definition 3.2 it follows that f ∈ RVR(ρ) if
and only if it is written in the form f(t) = g(R(t)), g(t) ∈ RV(ρ). It is clear that
RV(ρ) = RVt(ρ). We emphasize that there exists a function which is regularly varying
in generalized sense, but is not regularly varying in the sense of Karamata, so that,
roughly speaking, the class of generalized Karamata functions is larger than that of
classical Karamata functions.

To help the reader we present here some elementary properties of generalized regu-
larly varying functions.

Proposition 3.1. (i) If g1(t) ∈ RVR(σ1), then (g1(t))α ∈ RVR(ασ1) for any
α ∈ R.

(ii) If gi(t) ∈ RVR(σi), i = 1, 2, then g1(t) + g2(t) ∈ RVR(σ), σ = max(σ1, σ2).

(iii) If gi(t) ∈ RVR(σi), i = 1, 2, then g1(t)g2(t) ∈ RVR(σ1 + σ2).

(iv) If gi(t) ∈ RVR(σi), i = 1, 2 and g2(t) → ∞ as t → ∞, then g1(g2(t)) ∈
RVR(σ1σ2).

(v) If l(t) ∈ SVR, then for any ε > 0,

lim
t→∞R(t)εl(t) = ∞, lim

t→∞R(t)−εl(t) = 0.

Next, we present a fundamental result (see [3]), called Generalized Karamata integration
theorem, which will be used throughout the paper and play a central role in establishing
our main results.

Proposition 3.2. (Generalized Karamata integration theorem). Let f(t) ∈ SVR.
Then,

(i) If α > −1,
∫ t

a
R′(s)R(s)αf(s) ds ∼ R(t)α+1 f(t)

α+ 1
, t→ ∞;

(ii) If α < −1,
∫ ∞

t
R′(s) R(s)α f(s) ds ∼ −R(t)α+1 f(t)

α+ 1
, t→ ∞;
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(iii) If α = −1,∫ t

a
R′(s)R(s)−1 f(s) ds ∈ SVR and

∫ ∞

t
R′(s)R(s)−1 f(s) ds ∈ SVR.

4. EXISTENCE OF POSITIVE INTERMEDIATE SOLUTIONS

In this section we prove the existence of solutions of type (I) and (II) of equation (E)
under assumption that coefficients p(t) and q(t) are positive continuous functions.

Theorem 4.1. Let p(t), q(t) ∈ C[a,∞). If (2.9) holds and if

(4.1)
∫ ∞

a
t

(
1
p(t)

∫ ∞

t
(s− t) q(s) ds

) 1
α

dt = ∞,

then equation (E) has a positive solution x(t) such that 1 ≺ x(t) ≺ t, t→ ∞.

Proof. Choose t0 ≥ max{1, a} such that

(4.2) 2
β
α

∫ ∞

t0

(
1
p(t)

∫ ∞

t

(s− t) sβq(s) ds
) 1

α

dt ≤ 1.

Define the set

(4.3) X1 = {x ∈ C[t0,∞) : 1 ≤ x(t) ≤ 2t, t ≥ t0},
and the operator G : X1 → C[t0,∞)

(4.4) Gx(t) := 1 +
∫ t

t0

∫ ∞

s

(
1
p(r)

∫ ∞

r
(u− r) q(u) x(u)β du

) 1
α

drds, t ≥ t0.

It is clear thatX1 is a closed convex subset of the locally convex spaceC[t0,∞) equipped
with the topology of uniform convergence on compact subintervals of [t0,∞). Using
(4.2)- (4.4), we see that x ∈ X1 implies

1 ≤ Gx(t) ≤ 1 + 2
β
α

∫ t

t0

∫ ∞

t0

(
1
p(r)

∫ ∞

r
(u− r) q(u) uβ du

) 1
α

dr ds

≤ 1 + t ≤ 2t, t ≥ t0.

This means that G maps X1 into itself. Furthermore, it can be shown that G is a
continuous map such that G(X1) is relatively compact in C[t0,∞). Therefore, by the
Schauder-Tychonoff fixed point theorem there exists a function x1 ∈ X1 satisfying the
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integral equation x1(t) = Gx1(t) for t ≥ t0. It follows that x1(t) is a solution of (E) on
[t0,∞). It is easy to see that x1(t) has the following asymptotic properties:

lim
t→∞x1(t) ≥ lim

t→∞

∫ t

t0

∫ ∞

s

(
1
p(r)

∫ ∞

r
(u− r) q(u) du

)1
α

dr ds = ∞

and

0 ≤ lim
t→∞

x1(t)
t

= lim
t→∞

∫ ∞

t

(
1
p(s)

∫ ∞

s

(r− s) q(r) x1(r)β dr

) 1
α

ds

≤ 2
β
α lim

t→∞

∫ ∞

t

(
1
p(s)

∫ ∞

s

(r − s)q(r) rβ dr

) 1
α

ds = 0,

which means that x1(t) satisfies 1 ≺ x1(t) ≺ t, t → ∞, that is, x1(t) is an intermediate
solution of type (I) of (E).

Theorem 4.2. Let p(t), q(t) ∈ C[a,∞). If (2.11) holds and if

(4.5)
∫ ∞

a
t q(t)ψ3(t)β dt = ∞,

then equation (E) has a positive solution x(t) such that ψ3(t) ≺ x(t) ≺ ψ4(t), t→ ∞.

Proof. Choose t0 ≥ max{1, a} such that

(4.6) 2
β
α

∫ ∞

t0

q(t)ψ4(t)β dt ≤ 1.

Define the set

(4.7) X2 = {x ∈ C[t0,∞) : ψ3(t) ≤ x(t) ≤ 2
1
αψ4(t), t ≥ t0},

and the integral operator H : X2 → C[t0,∞)

(4.8) Hx(t) :=
∫ t

t0

(t− s)
[

1
p(s)

(
1 +

∫ s

t0

∫ ∞

r
q(u) x(u)β du dr

)] 1
α

ds, t ≥ t0.

It is clear thatX2 is a closed convex subset of the locally convex spaceC[t0,∞) equipped
with the topology of uniform convergence on compact subintervals of [t0,∞). Using
(4.6)-(4.8), we see that x ∈ X2 implies

ψ3(t) ≤ Hx(t) ≤
∫ t

t0

(t− s)
[

1
p(s)

(
1 + 2

β
α

∫ s

t0

∫ ∞

t0

q(u)ψ4(u)β du dr

)] 1
α

ds

≤
∫ t

t0

(t− s)
(

1 + s

p(s)

) 1
α

ds ≤ 2
1
αψ4(t), t ≥ t0.
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This means that H maps X2 into itself. Furthermore, it can be shown that H is a
continuous map such that H(X2) is relatively compact in C[t0,∞). Therefore, by the
Schauder-Tychonoff fixed point theorem there exists a function x2 ∈ X2 satisfying the
integral equation x2(t) = Hx2(t) for t ≥ t0. It follows that x2(t) is a solution of (E) on
[t0,∞). It is easy to see that x2(t) has the following asymptotic properties:

lim
t→∞

x2(t)
ψ3(t)

= lim
t→∞

(
1 +

∫ t

t0

∫ ∞

s
q(r) x2(r)β dr ds

) 1
α

≥ lim
t→∞

(∫ t

t0

∫ ∞

s
q(r)ψ3(r)β dr ds

) 1
α

= ∞

and

0 ≤ lim
t→∞

x2(t)
ψ4(t)

=

(
lim
t→∞

1 +
∫ t
t0

∫∞
s q(r) x2(r)β dr ds

t

) 1
α

=
(

lim
t→∞

∫ ∞

t
q(s) x2(s)β ds

) 1
α

≤
(

2
β
α lim

t→∞

∫ ∞

t
q(s)ψ4(s)β ds

) 1
α

= 0,

which means that x2(t) satisfies ψ3(t) ≺ x2(t) ≺ ψ4(t), t → ∞, that is, x2(t) is an
intermediate solution of type (II) of (E).

5. ASYMPTOTIC BEHAVIOR OF INTERMEDIATE REGULARLY VARYING SOLUTIONS

In what follows it is always assumed that functions p(t) and q(t) are generalized
regularly varying of index η and σ with respect to R(t), which is defined with

(5.1) R(t) =
∫ t

a

(
s

p(s)

) 1
α

ds,

and expressed with

(5.2) p(t) = R(t)η lp(t), lp(t) ∈ SVR and q(t) = R(t)σ lq(t), lq(t) ∈ SVR,

and the intermediate solutions x(t) ∈ RVR(ρ) of (E) are represented as

(5.3) x(t) = R(t)ρ lx(t), lx(t) ∈ SVR.

From (5.1) and (5.2) we have that

(5.4) t
1
α = R′(t)R(t)

η
α lp(t)

1
α .
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Integrating (5.4) from a to t and using the generalized Karamata integration theorem
(Proposition 3.2) we have

t
1
α

+1

1
α + 1

∼ R(t)
η
α

+1

η
α + 1

lp(t)
1
α , t→ ∞,

implying

(5.5) t ∼
(
α+ η

α+ 1

)− α
α+1

R(t)
α+η
α+1 lp(t)

1
α+1 , t→ ∞.

From above relations we get

(5.6) R′(t) ∼
(
α + η

α+ 1

)− 1
α+1

R(t)
1−η
α+1 lp(t)

− 1
α+1 , t→ ∞.

We can rewrite (5.6) in the form

(5.7) 1 ∼
(
α+ η

α+ 1

) 1
α+1

R′(t)R(t)
η−1
α+1 lp(t)

1
α+1 , t→ ∞.

First, express the conditions (1.1) in the terms of regular variation. Using (5.2), (5.5)
and (5.7) we have

∫ t

a

ds

p(s)
1
α

∼
(
α+ η

α+ 1

) 1
α+1

∫ t

a
R′(s)R(s)−

α+η
α(α+1) lp(s)

− 1
α(α+1) ds, t→ ∞.

For conditions (1.1) to hold it is necessary that α2 − η ≥ 0. In what follows we limit
ourselves to the case where

(5.8) α2 − η > 0

excluding the other possibilities because of computational difficulty. We introduce the
notation:

(5.9) m1(α, η) =
α+ η

α+ 1
, m2(α, η) =

2α2 + αη − η

α(α+ 1)
, m3(α, η) =

2α+ η + 1
α+ 1

.

It is clear that 0 < m1(α, η)< m2(α, η) < m3(α, η) = m1(α, η) + 1. In proofs of our
main results constantsmi(α, η), i = 1, 2, 3 will be abbreviated to mi.

Now, we state a lemma which will be frequently used in our later discussions. The
proof of this lemma follows directly using (5.7) and the generalized Karamata integration
theorem.
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Lemma 5.1. Let f(t) = R(t)μLf (t), Lf (t) ∈ SVR. Then,

(i) If μ+m1(α, η)> 0,

∫ t

a

f(s) ds ∼ m1(α, η)
1

α+1

μ+m1(α, η)
R(t)μ+m1(α,η) Lf(t) lp(t)

1
α+1 , t→ ∞;

(ii) If μ+m1(α, η)< 0,

∫ ∞

t
f(s) ds ∼ m1(α, η)

1
α+1

−(μ+m1(α, η))
R(t)μ+m1(α,η)Lf (t) lp(t)

1
α+1 , t→ ∞;

(iii) If μ+m1(α, η) = 0, then∫ t

a
f(s) ds ∼ m1(α, η)

1
α+1

∫ t

a
R′(s)R(s)−1 Lf (s)lp(s)

1
α+1 ds ∈ SVR

and∫ ∞

t
f(s) ds ∼ m1(α, η)

1
α+1

∫ ∞

t
R′(s)R(s)−1Lf (s)lp(s)

1
α+1 ds ∈ SVR.

In order to make an in depth analysis of intermediate solutions of type (I) and (II) of (E)
we need a fair knowledge of the structure of the functions ψ1(t), ψ2(t), ψ3(t) and ψ4(t)
regarded as generalized regularly varying functions. It is clear that ψ1(t) ∈ SVR. From
(5.5) it follows that ψ2(t) ∈ RVR (m1(α, η)). Using (5.2) and applying Lemma 5.1
twice, we get

(5.10)
ψ3(t) ∼

∫ t

a

∫ s

a
R(r)−

η
α lp(r)−

1
α drds

∼ m1(α, η)
2

α+1

m2(α, η)(m2(α, η)−m1(α, η))
R(t)m2(α,η) lp(t)

α−1
α(α+1) , t→ ∞,

which shows that ψ3(t) ∈ RVR (m2(α, η)). Further, another application of Lemma 5.1
yields

(5.11) ψ4(t) ∼
∫ t

a
R(s) ds ∼ m1(α, η)

1
α+1

m3(α, η)
R(t)m3(α,η) lp(t)

1
α+1 , t→ ∞,

implying ψ4(t) ∈ RVR (m3(α, η)).

5.1. Regularly varying intermediate solutions of type (I)

The first subsection is devoted to the study of the existence and asymptotic behavior
of generalized regularly varying solutions of type (I) of equation (E) with p(t) and q(t)
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satisfying (5.2). Since ψ1(t) ≺ x(t) ≺ ψ2(t), t → ∞, the regularity index ρ of x(t)
must satisfy

0 ≤ ρ ≤ m1(α, η).

If ρ = 0, then since x(t) = lx(t) → ∞, t→ ∞, x(t) is a member of ntr − SVR, while
if ρ = m1(α, η), then since x(t)/R(t)m1(α,η) = lx(t) → 0, t → ∞, x(t) is a member
of ntr− RVR(m1(α, η)). If 0 < ρ < m1(α, η), then x(t) is a member of RVR(ρ) and
satisfies x(t) → ∞ and x(t)/R(t)m1(α,η) → 0 as t→ ∞. Thus the set of all generalized
regularly varying solutions of type (I) is naturally divided into the three disjoint classes

(5.12) ntr − SVR or RVR(ρ) with ρ ∈ (0 , m1(α, η))orntr − RVR (m1(α, η)) .

Our aim is to establish necessary and sufficient conditions for each of the above classes
to have a member and furthermore to show that the asymptotic behavior of all members
of each class is governed by a unique explicit formula describing the growth order at
infinity accurately.

5.1.1. Main results

Theorem 5.1. Let p(t) ∈ RVR(η), q(t) ∈ RVR(σ). Equation (E) has intermediate
solutions x(t) ∈ ntr− SVR satisfying (I) if and only if

(5.13) σ = −2α − η and
∫ ∞

a
t

(
1
p(t)

∫ ∞

t
(s − t) q(s) ds

) 1
α

dt = ∞.

The asymptotic behavior of any such solution x(t) is governed by the unique formula
x(t) ∼ X1(t), t→ ∞, where

(5.14) X1(t) =

(
α− β

α

∫ t

a
s

(
1
p(s)

∫ ∞

s
(r − s) q(r) dr

) 1
α

ds

) α
α−β

.

Theorem 5.2. Let p(t) ∈ RVR(η), q(t) ∈ RVR(σ). Equation (E) has intermediate
solutions x(t) ∈ RVR(ρ) with ρ ∈ (0 , m1(α, η)) if and only if

(5.15) −2α − η < σ < −α − (β + 1)m1(α, η),

in which case ρ is given by

(5.16) ρ =
σ + 2α+ η

α − β

and the asymptotic behavior of any such solution x(t) is governed by the unique
formula x(t) ∼ X2(t), t→ ∞, where

(5.17)

X2(t) =((
m1(α, η)

α

)2 p(t)q(t)R(t)2α

ρα (m1(α, η)−ρ)α (m2(α, η)−ρ)(m3(α, η)−ρ)

) 1
α−β

.
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Theorem 5.3. Let p(t) ∈ RVR(η), q(t) ∈ RVR(σ). Equation (E) has intermediate
solutions x(t) ∈ ntr− RVR (m1(α, η)) satisfying (I) if and only if

(5.18) σ = −α−(β+1)m1(α, η)and
∫ ∞

a

(
1
p(t)

∫ ∞

t

(s− t) sβ q(s) ds
) 1

α

dt <∞.

The asymptotic behavior of any such solution x(t) is governed by the unique formula
x(t) ∼ X3(t), t→ ∞, where

(5.19) X3(t) = t

(
α− β

α

∫ ∞

t

(
1
p(s)

∫ ∞

s
(r − s)rβ q(r) dr

) 1
α

ds

) α
α−β

.

5.1.2. Preparatory results

Let x(t) be a solution of (E) on [t0,∞) such that 1 ≺ x(t) ≺ t as t→ ∞. Since

(5.20)
lim
t→∞(p(t)|x′′(t)|α−1x′′(t))′ = lim

t→∞ p(t)|x′′(t)|α−1x′′(t) = lim
t→∞x′(t) = 0,

lim
t→∞x(t) = ∞,

integrating of equation (E) first three times on [t,∞) and then once on [t0, t] gives

(5.21) x(t) = x(t0) +
∫ t

t0

∫ ∞

s

(
1
p(r)

∫ ∞

r

(u− r)q(u)x(u)β du

) 1
α

drds, t ≥ t0,

and implies the integral asymptotic relation

(5.22) x(t) ∼
∫ t

b

∫ ∞

s

(
1
p(r)

∫ ∞

r
(u− r)q(u)x(u)β du

) 1
α

dr ds, t→ ∞,

for any b ≥ a. Conversely, if x(t) is a positive continuous function satisfying (5.21) and
limt→∞ x(t) = ∞, then it is a solution of (E) such that 1 ≺ x(t) ≺ t, t→ ∞. Our main
tools in establishing precise asymptotic forms of intermediate positive solutions will be
Schauder-Tychonoff fixed point theorem combined with theory of regular variation. To
that end, the closed convex subsets X of C[t0,∞) which should be chosen in such a
way that appropriate integral operator F is a continuous self-map on X and send it
into a relatively compact subset of C[t0,∞), will be now found by means of regularly
varying functions satisfying the integral asymptotic relation (5.22). Therefore, first we
show that regularly varying functions Xi(t), i = 1, 2, 3 defined, respectively by (5.14),
(5.17),(5.19), satisfy integral asymptotic relation (5.22).

Lemma 5.2. Suppose that (5.13) holds. Function X1(t) ∈ ntr− SVR given by
(5.14) satisfies the asymptotic relation (5.22) for any b ≥ a.



1430 Jelena Milošević and Jelena V. Manojlović

Proof. Let (5.13) holds. First note that σ = −2α − η satisfies σ +m1 = −αm3

and σ + 2m1 = −αm2. We integrate q(t) = R(t)σlq(t) twice on [t,∞). Applying
Lemma 5.1 twice and using (5.2) we obtain

∫ ∞

t
(s− t)q(s) ds ∼ m

2
α+1

1

α2m2m3
R(t)σ+2m1 lp(t)

2
α+1 lq(t), t→ ∞,

from which it readily follows, using (5.5), that

t

(
1
p(t)

∫ ∞

t
(s− t)q(s) ds

) 1
α

∼
(

m2−α
1

α2m2m3

) 1
α

R′(t)R(t)−1lp(t)
1
α lq(t)

1
α , t→ ∞,

where (5.7) has been used in the last step. Integration of the last relation on [a, t] then
yields

(5.23)

∫ t

a

s

(
1
p(s)

∫ ∞

s

(r − s) q(r) dr
) 1

α

ds

∼
(

m2−α
1

α2m2m3

) 1
α
∫ t

a
R′(s)R(s)−1 lp(s)

1
α lq(s)

1
α ds, t→ ∞,

so that

X1(t) ∼
⎛
⎝ (α− β)m

2−α
α

1

α1+ 2
α (m2m3)

1
α

∫ t

a
R′(s)R(s)−1 lp(s)

1
α lq(s)

1
α ds

⎞
⎠

α
α−β

, t→ ∞.

This shows thatX1(t) ∈ SVR. Next, we integrate q(t)X1(t)β twice on [t,∞). Applying
Lemma 5.1 as above, we see that

(∫ ∞

t

(s− t) q(s)X1(s)β ds

) 1
α ∼

⎛
⎝ m

2
α+1

1

α2 m2m3

⎞
⎠

1
α

R(t)
σ+2m1

α lp(t)
2

α(α+1) lq(t)
1
αX1(t)

β
α ,

as t → ∞. Integrating the above relation multiplied by p(t)−
1
α first on [t,∞) and then

on [b, t], for any b ≥ a, we conclude via Lemma 5.1 that

∫ t

b

∫ ∞

s

(
1
p(r)

∫ ∞

r
(u−r)q(u)X1(u)βdu

) 1
α

drds∼
(
α−β
α

) β
α−β
(

m2−α
1

α2m2m3

) 1
α−β

×
∫ t

b
R′(s)R(s)−1lp(s)

1
α lq(s)

1
α

(∫ s

a
R′(r)R(r)−1lp(r)

1
α lq(r)

1
αdr

) β
α−β

ds

=

⎛
⎝ (α− β)m

2−α
α

1

α1+ 2
α (m2m3)

1
α

∫ t

a

R′(s)R(s)−1lp(s)
1
α lq(s)

1
αds

⎞
⎠

α
α−β

= X1(t), t → ∞.



Asymptotic Analysis of Fourth Order Quasilinear Differential Equations 1431

This proves that X1(t) satisfies the asymptotic relation (5.22) for any b ≥ a.

Lemma 5.3. Suppose that (5.15) holds and let ρ be defined by (5.16). Function
X2(t) ∈ RV(ρ) given by (5.17) satisfies the asymptotic relation (5.22) for any b ≥ a.

Proof. Note that the function X2(t) given by (5.17) can be expressed in the form

(5.24) X2(t) ∼ λ
− 1

α−β

(m1

α

) 2
α−β

R(t)ρ (lp(t) lq(t))
1

α−β , t→ ∞,

where
λ = ρα (m1 − ρ)α (m2 − ρ) (m3 − ρ) .

Using (5.24) and (5.16) and applying Lemma 5.1 twice, we find that∫ ∞

t

∫ ∞

s
q(r)X2(r)β drds

∼ λ−
β

α−β
(

m1
α

) 2β
α−β m

2
α+1

1

α2(m2 − ρ)(m3 − ρ)
R(t)α(ρ−m2) (lp(t)lq(t))

β
α−β lq(t)lp(t)

2
α+1 ,

as t → ∞. We now multiply the last relation by 1/p(t), raise to the exponent 1/α and
integrate it first on [t,∞) and then on [b, t] for any b ≥ a. As a result of application of
Lemma 5.1 twice, we obtain for t→ ∞

∫ t

b

∫ ∞

s

(
1
p(r)

∫ ∞

r
(u− r) q(u)X2(u)β du

) 1
α

drds

∼ λ
− β

α(α−β)
(

m1
α

) 2β
α(α−β) m

2
α(α+1)

1 m
2

α+1

1

ρ(m1 − ρ)(α2(m2 − ρ)(m3 − ρ))
1
α

×R(t)ρ (lp(t)lq(t))
β

α(α−β) lq(t)
1
α lp(t)

2
α(α+1) lp(t)−

1
α lp(t)

2
α+1 = X2(t).

This completes the proof of Lemma 5.3.

Lemma 5.4. Suppose that (5.18) holds. Function X3(t) ∈ ntr− RVR (m1(α, η))
given by (5.19) satisfies the asymptotic relation (5.22) for any b ≥ a.

Proof. Let (5.18) holds. Using (5.2) and (5.5) and applying Lemma 5.1 we see that∫ ∞

t
sβq(s)ds ∼ m

−αβ
α+1

1

∫ ∞

t
R(s)σ+βm1lp(s)

β
α+1 lq(s)ds

∼ m
1−αβ
α+1

1

−(σ + (β + 1)m1)
R(t)σ+(β+1)m1lp(t)

β+1
α+1 lq(t) =

m
1−αβ
α+1

1

α
R(t)−αlp(t)

β+1
α+1 lq(t),
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as t→ ∞, from which it follows that

(
1
p(t)

∫ ∞

t

∫ ∞

s
rβq(r)drds

) 1
α

∼ m
2−αβ

α(α+1)

1

(α2(m2 −m1))
1
α

R(t)m1−m2− η
α lp(t)

−α+β+1
α(α+1) lq(t)

1
α

∼ m
2−αβ+α
α(α+1)

1

(α2(m2 −m1))
1
α

R′(t)R(t)−1 lp(t)
β+1

α(α+1) lq(t)
1
α ,

as t→ ∞, where we use (5.7) in the last step. Integrating the above on [t,∞) we obtain

(5.25)

∫ ∞

t

(
1
p(s)

∫ ∞

s

∫ ∞

r
uβq(u)dudr

) 1
α

ds

∼ m
2−αβ+α
α(α+1)

1

(α2(m2 −m1))
1
α

∫ ∞

t
R′(s)R(s)−1lp(s)

β+1
α(α+1) lq(s)

1
αds, t→ ∞.

This, combined with (5.5) and (5.19), gives the following expression for X3(t):

X3(t) ∼
(
α − β

α

) α
α−β

(
m2−α

1

α2(m2 −m1)

) 1
α−β

R(t)m1 lp(t)
1

α+1

×
(∫ ∞

t
R′(s)R(s)−1 lp(s)

β+1
α(α+1) lq(s)

1
α ds

) α
α−β

∈ RVR (m1) , t→ ∞.

Next, we integrate q(t)X3(t)β twice on [t,∞), multiply by 1/p(t) and raise the result to
the exponent 1/α. Since q(t)X3(t)β ∈ RVR(σ+m1β) = RVR(−α−m1) (cf. (5.18)),
repeated application of Lemma 5.1, with the help of (5.7), yields

(
1
p(t)

∫ ∞

t

∫ ∞

s
q(r)X3(r)βdrds

) 1
α

∼
(
α− β

α

) β
α−β

⎛
⎝ m

2−αβ+α
α+1

1

α2(m2 −m1)

⎞
⎠

1
α−β

×R′(t)R(t)−1lp(t)
β+1

α(α+1) lq(t)
1
α

(∫ ∞

t
R′(s)R(s)−1lp(s)

β+1
α(α+1) lq(s)

1
αds

) β
α−β

,

as t → ∞. Integrating the above relation first on [t,∞) and then on [b, t] for any fixed
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b ≥ a, we conclude via Lemma 5.1 that

∫ t

b

∫ ∞

s

(
1
p(r)

∫ ∞

r
(u− r)q(u)X3(u)βdu

) 1
α

drds

∼
(
α − β

α

) α
α−β

(
m2−α

1

α2(m2 −m1)

) 1
α−β

×R(t)m1 lp(t)
1

α+1

(∫ ∞

t
R′(s)R(s)−1lp(s)

β+1
α(α+1) lq(s)

1
αds

) α
α−β

= X3(t),

as t→ ∞. This completes the proof of Lemma 5.4.

After the construction of intermediate solutions with the help of the Schauder-
Tychonoff fixed point theorem, to finish the proof of the "if" part of our main results we
prove the regularity of those solutions using the generalized L’Hospital rule (see [2]):

Lemma 5.5. Let f, g ∈ C1[T,∞). Let

(5.26) lim
t→∞ g(t) = ∞ and g′(t) > 0 for all large t.

Then
lim inf
t→∞

f ′(t)
g′(t)

≤ lim inf
t→∞

f(t)
g(t)

≤ lim sup
t→∞

f(t)
g(t)

≤ lim sup
t→∞

f ′(t)
g′(t)

.

If we replace (5.26) with condition

lim
t→∞ f(t) = lim

t→∞ g(t) = 0 and g′(t) < 0 fro all large t,

then the same conclusion holds.

5.1.3. Proofs of main results

PROOF OF THE "ONLY IF" PART OF THEOREMS 5.1, 5.2 AND 5.3: Suppose
that (E) has a type-(I) intermediate solution x(t) ∈ RVR(ρ) on [t0,∞) with ρ ∈ [0, m1].
For such solution we have (5.20). From

(5.27)
− (p(t)(−x′′(t))α

)′
=
∫ ∞

t
q(s)x(s)β ds ∼

∫ ∞

t
R(s)σ+βρlq(s)lx(s)β ds, t→ ∞,

the convergence of the last integral in (5.27) means that σ + βρ + m1 ≤ 0. But the
possibility σ+βρ+m1 = 0 is precluded, because if this were the case the last integral
in (5.27) would be an SVR- function, which is not integrable on [t0,∞) by (i) of Lemma
5.1. This would contradict the fact that the left-hand side of (5.27) is integrable on
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[t0,∞). It follows that σ + βρ +m1 < 0. Then, integration of (5.27) on [t,∞) with
application of Lemma 5.1 gives

(5.28)

p(t)(−x′′(t))α

∼ m
1

α+1

1

− (σ + βρ+m1)

∫ ∞

t
R(s)σ+βρ+m1 lp(s)

1
α+1 lq(s) lx(s)β ds, t→ ∞.

Noting that the integral in (5.28) is convergent, we conclude that σ + βρ + 2m1 ≤ 0.
But the equality is not allowed here. In fact, if the equality holds, then the right- hand
side of (5.28) is SVR-function denoted by h(t) so that

−x′′(t) ∼
(
h(t)
p(t)

) 1
α

= R(t)−
η
α lp(t)−

1
αh(t)

1
α , t→ ∞.

But then, the integrability of x′′(t) on [t0,∞) implies thatm1− η
α = α2−η

α(α+1) ≤ 0, which
contradicts the assumption (5.8). Thus it holds σ+βρ+2m1 < 0. Applying Lemma 5.1
in (5.28) first and then multiplying by 1/p(t) and raising the result on 1/α, using (5.7)
we obtain

(5.29)

−x′′(t) ∼
m

2
α(α+1)

1

((σ + βρ+m1)(σ+βρ+2m1))
1
α

R(t)
σ+βρ+2m1−η

α lp(t)
1−α

α(α+1) lq(t)
1
α lx(t)

β
α ,

as t → ∞. The integrability of x′′(t) on [t0,∞) implies that σ+βρ+2m1−η
α + m1 ≤ 0.

We distinguish the two cases:

(a)
σ + βρ+ 2m1 − η

α
+m1 = 0 (b)

σ + βρ+ 2m1 − η

α
+m1 < 0.

Assume that (a) holds. Since σ+βρ+m1 = −α and σ+βρ+2m1 = α(m1−m2),
integration of (5.29) first on [t,∞), then on [t0, t], with application of Lemma 5.1, shows
that

(5.30)

x(t) ∼
(

m2−α
1

α2(m2 −m1)

) 1
α

R(t)m1lp(t)
1

α+1

×
∫ ∞

t

R′(s)R(s)−1lp(s)
1

α(α+1) lq(s)
1
α lx(s)

β
αds

∼ t

⎛
⎝ m

α+2
α+1

2

α2(m2 −m1)

⎞
⎠

1
α

×
∫ ∞

t
R′(s)R(s)−1lp(s)

1
α(α+1) lq(s)

1
α lx(s)

β
αds ∈ RVR(m1),
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as t→ ∞.
Assume next that (b) holds. Integrating (5.29) on [t,∞), then on [t0, t], we find via

Lemma 5.1 that

(5.31)
x(t)∼

⎛
⎝ m

α+2
α+1

1

(σ+βρ+m1) (σ + βρ+ 2m1)

⎞
⎠

1
α

α

−(σ+βρ+(α+2)m1−η)

×
∫ t

t0

R(s)
σ+βρ+2m1−η

α
+m1 lp(s)

1
α(α+1) lq(s)

1
α lx(s)

β
αds, t→ ∞.

Because of the divergence of the last integral (note that x(t) → ∞, t → ∞), it follows
that

σ + βρ+ 2m1 − η

α
+ 2m1 =

σ + βρ+ 2α+ η

α
≥ 0.

We distinguish the two cases:

(b.1)
σ + βρ+ 2α+ η

α
= 0 and (b.2)

σ + βρ+ 2α+ η

α
> 0.

Assume that (b.1) holds. Then, (5.31) shows that x(t) ∈ SVR, that is, ρ = 0, and
hence σ = −2α− η. Since

σ+ βρ+m1 = −αm3, σ+ βρ+ 2m1 = −αm2, σ+ βρ+ (α+ 2)m1 − η = −αm1,

(5.31) reduce to

(5.32)

x(t) ∼
(

m2−α
1

α2m2m3

) 1
α
∫ t

t0

R′(s)R(s)−1 lp(s)
1
α lq(s)

1
α lx(s)

β
α ds ∈ SVR, t→ ∞.

Assume that (b.2) holds. Applying Lemma 5.1 to the integral in (5.31), we get

(5.33)
x(t)∼

(
m2

1

(σ+βρ+m1) (σ+βρ+2m1)

) 1
α α

−(σ+βρ+(α+2)m1−η)

× α

σ + βρ+ 2α+ η
R(t)

σ+βρ+2α+η
α lp(t)

1
α lq(t)

1
α lx(t)

β
α , t→ ∞,

which implies that x(t) ∈ RVR(σ+βρ+2α+η
α ).

Let us now suppose that x(t) is a type-(I) solution of (E) belonging to ntr− SVR.
From the above observations this is possible only when the case (b.1) holds, in which
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case ρ = 0, σ = −2α− η and x(t) = lx(t) must satisfy the asymptotic behavior (5.32)
as t→ ∞. Put

μ(t) = H

∫ t

t0

R′(s)R(s)−1 lp(s)
1
α lq(s)

1
α lx(s)

β
α ds, H =

(
m2−α

1

α2m2m3

) 1
α

.

Noting that

μ′(t) = H R′(t)R(t)−1 lp(t)
1
α lq(t)

1
α lx(t)

β
α ∼ H R′(t)R(t)−1 lp(t)

1
α lq(t)

1
α μ(t)

β
α ,

as t→ ∞, we obtain the differential asymptotic relation

(5.34) μ(t)−
β
α μ′(t) ∼ HR′(t)R(t)−1lp(t)

1
α lq(t)

1
α , t→ ∞.

Since the left-hand side of (5.34) is not integrable on [t0,∞) (note that x(t) → ∞ as
t→ ∞ and so μ(t) → ∞ as t→ ∞), so is the right-hand side, which in view of (5.23),
means that ∫ ∞

a
t

(
1
p(t)

∫ ∞

t
(s− t) q(s) ds

) 1
α

dt = ∞.

We now integrate (5.34) from t0 to t to obtain

x(t) ∼ μ(t) ∼
(
α− β

α
H

∫ t

t0

R′(s)R(s)−1 lp(s)
1
α lq(s)

1
α ds

) α
α−β

, t→ ∞,

which, in view of (5.23), is equivalent to

x(t) ∼
(
α − β

α

∫ t

a
s

(
1
p(s)

∫ ∞

s
(r− s) q(r) dr

)1
α

ds

) α
α−β

, t→ ∞.

Thus it has been shown that x(t) ∼ X1(t), t → ∞, where X1(t) is given by (5.14).
This proves the "only if" part of Theorem 5.1.

Next, suppose that x(t) is a solution of (E) belonging to RVR(ρ), ρ ∈ (0, m1). This
is possible only when (b.2) holds, in which case x(t) must satisfy the asymptotic relation
(5.33). Therefore,

ρ =
σ + βρ+ 2α+ η

α
⇒ ρ =

σ + 2α+ η

α− β
,

which justifies (5.16) and combined with ρ ∈ (0, m1) determines that the range of σ is

−2α− η < σ < −α− (β + 1)m1.
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Since
σ + βρ+m1 = α(ρ−m3), σ + βρ+ 2m1 = α(ρ−m2),

σ + βρ+ (α+ 2)m1 − η = α(ρ−m1), σ + βρ+ 2α+ η = αρ,

we conclude from (5.33) thatx(t) enjoys the asymptotic behaviorx(t) ∼ X2(t), t→ ∞,
where X2(t) is given by (5.17). This proves the "only if" part of the Theorem 5.2.

Finally, suppose that x(t) is a type-(I) intermediate solution of (E) belonging to
ntr− RVR(m1). Then, the case (a) is the only possibility for x(t), which means that
σ = −α− (β+ 1)m1 and (5.30) is satisfied by x(t). Using x(t) = R(t)m1 lx(t), (5.30)
can be expressed as

(5.35) lx(t) ∼ K lp(t)
1

α+1

∫ ∞

t
R′(s)R(s)−1 lp(s)

1
α(α+1) lq(s)

1
α lx(s)

β
α ds, t→ ∞,

where K =
(
m2−α

1 /α2(m2 −m1)
) 1

α . Define ν(t) by

ν(t) =
∫ ∞

t
R′(s)R(s)−1 lp(s)

1
α(α+1) lq(s)

1
α lx(s)

β
α ds.

Then, noting that lx(t) ∼ K lp(t)
1

α+1 ν(t), t → ∞, one can transform (5.35) into the
following differential asymptotic relation for ν(t):

(5.36) −ν(t)− β
α ν′(t) ∼ K

β
α R′(t)R(t)−1 lp(t)

β+1
α(α+1) lq(t)

1
α , t→ ∞.

From (5.30), since limt→∞ x(t)/t = 0, we have limt→∞ ν(t) = 0, implying that the
left-hand side of (5.36) is integrable over [t0,∞), so is the right-hand side. This, in view
of (5.25), implies the convergence of the integral

∫ ∞

a

(
1
p(t)

∫ ∞

t

(s− t) sβ q(s) ds
) 1

α

dt.

Integrating (5.36) on [t,∞) and combining the result with (5.35), we find that

x(t) ∼ K
α

α−β R(t)m1 lp(t)
1

α+1

(
α− β

α

∫ ∞

t
R′(s)R(s)−1lp(s)

β+1
α(α+1) lq(s)

1
α ds

) α
α−β

,

as t → ∞, which due to (5.25) gives x(t) ∼ X3(t), t → ∞, where X3(t) is given by
(5.19). This proves the "only if" part of the proof of Theorem 5.3.

PROOF OF THE "IF" PART OF THEOREMS 5.1, 5.2 AND 5.3: Suppose that
(5.13) or (5.15) or (5.18) holds. From Lemmas 5.2, 5.3 and 5.4 it is known that
Xi(t) , i = 1, 2, 3, defined by (5.14), (5.17) and (5.19) satisfy the asymptotic relation
(5.22) for any b ≥ a. We perform the simultaneous proof for Xi(t), i = 1, 2, 3 so the
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subscripts i = 1, 2, 3 will be deleted in the rest of the proof. By (5.22) there exists
T0 > a such that

(5.37)
∫ t

T0

∫ ∞

s

(
1
p(r)

∫ ∞

r
(u− r) q(u)X(u)β du

) 1
α

drds ≤ 2X(t), t ≥ T0.

Let such a T0 be fixed. We may assume thatX(t) is increasing on [T0,∞). Since (5.22)
holds with b = T0, there exists T1 > T0 such that

(5.38)
∫ t

T0

∫ ∞

s

(
1
p(r)

∫ ∞

r
(u− r) q(u)X(u)β du

) 1
α

drds ≥ X(t)
2

, t ≥ T1.

Choose positive constants m and M so that

(5.39) m1−β
α ≤ 1

2
, M1− β

α ≥ 4, 2mX(T1) ≤M X(T0).

Define the integral operator

(5.40) Gx(t) = x0 +
∫ t

T0

∫ ∞

s

(
1
p(r)

∫ ∞

r
(u− r) q(u) x(u)β du

) 1
α

drds, t ≥ T0,

where x0 is a constant such that

(5.41) mX(T1) ≤ x0 ≤ M

2
X(T0),

and let it act on set

(5.42) X = {x ∈ C[T0,∞) : mX(t) ≤ x(t) ≤M X(t), t ≥ T0}.
It is clear thatX is a closed, convex subset of the locally convex spaceC[T0,∞) equipped
with the topology of uniform convergence on compact subintervals of [T0,∞).

It can be shown that G is a continuous self-map on X and that the set G(X ) is
relatively compact in C[T0,∞).

(i) G(X ) ⊂ X . Let x(t) ∈ X . Using (5.37), (5.39), (5.41) and (5.42) we get

Gx(t) ≤ M

2
X(T0) +M

β
α

∫ t

T0

∫ ∞

s

(
1
p(r)

∫ ∞

r
(u− r) q(u)X(u)β du

) 1
α

drds

≤ M

2
X(t) + 2M

β
α X(t) ≤ M

2
X(t) +

M

2
X(t) = M X(t), t ≥ T0.

On the other hand, using (5.38), (5.39), (5.41) and (5.42) we have

Gx(t) ≥ x0 ≥ mX(T1) ≥ mX(t), T0 ≤ t ≤ T1,
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and

Gx(t) ≥ m
β
α

∫ t

T0

∫ ∞

s

(
1
p(r)

∫ ∞

r
(u− r)q(u)X(u)βdu

) 1
α

drds

≥ m
β
α
X(t)

2
≥ mX(t), t ≥ T1.

This shows that Gx(t) ∈ X , that is, G maps X into itself.

(ii) G(X ) is relatively compact. The inclusion G(X ) ⊂ X ensures that G(X ) is
locally uniformly bounded on [T0,∞). From the inequality

0 ≤ (Gx)′ (t) ≤M
β
α

∫ ∞

t

(
1
p(s)

∫ ∞

s
(r − s)q(r)X(r)β dr

) 1
α

ds, t ≥ T0,

holding for all x ∈ X it follows that G(X ) is locally equicontinuous on [T 0,∞). Then,
the relative compactness of G(X ) follows from the Arzela-Ascoli lemma.

(iii) G is continuous on X . Let {xn(t)} be a sequence in X converging to x(t)
uniformly on any compact subinterval of [T0,∞). From (5.40) we have

|Gxn(t) − Gx(t)| ≤
∫ t

T0

∫ ∞

s

1

p(r)
1
α

Gn(r) drds, t ≥ T0,

where

Gn(t) =

∣∣∣∣∣
(∫ ∞

t
(s− t) q(s) xn(s)β ds

) 1
α

−
(∫ ∞

t
(s− t) q(s) x(s)β ds

) 1
α

∣∣∣∣∣ .
Using the inequality |xλ − yλ| ≤ |x − y|λ, x, y ∈ R+ holding for λ ∈ (0, 1), we see
that if α ≥ 1, then

Gn(t) ≤
(∫ ∞

t
(s− t)q(s)|xn(s)β − x(s)β| ds

) 1
α

.

On the other hand, using the mean value theorem, if α < 1 we get

Gn(t) ≤ 1
α

(
Mβ

∫ ∞

t

(s− t)q(s)X(s)β ds

)α−1
α
∫ ∞

t

(s− t)q(s)|xn(s)β − x(s)β| ds.

Thus, using that q(t)|xn(t)β − x(t)β| → 0 as n → ∞ at each point t ∈ [T0,∞) and
q(t)|xn(t)β − x(t)β| ≤ Mβq(t)X(t)β for t ≥ T0, while q(t)X(t)β is integrable on
[T0,∞), the uniform convergence Gn(t) → 0 on [T0,∞) follows by the application
of the Lebesgue dominated convergence theorem. We conclude that Gxn(t) → Gx(t)
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uniformlyon any compact subinterval of [T0,∞) asn→ ∞, which proves the continuity
of G.

Thus, all the hypotheses of the Schauder-Tychonoff fixed point theorem are fulfilled
and so there exists a fixed point x(t) ∈ X of G, which satisfies integral equation

(5.43) x(t) = x0 +
∫ t

T0

∫ ∞

s

(
1
p(r)

∫ ∞

r

(u− r) q(u) x(u)β du

) 1
α

drds, t ≥ T0.

Differentiating the above four times shows that x(t) is a solution of (E) on [T 0,∞),
which due to (5.42) is an intermediate solution of type (I). Therefore, the proof of our
main results will be completed with the verification that the intermediate solutions of
(E) constructed above are actually regularly varying functions with respect to R(t). We
define the function

J(t) =
∫ t

T0

∫ ∞

s

(
1
p(r)

∫ ∞

r
(u− r) q(u)X(u)β du

) 1
α

drds, t ≥ T0,

and put

l = lim inf
t→∞

x(t)
J(t)

, L = lim sup
t→∞

x(t)
J(t)

.

By Lemmas 5.2, 5.3 and 5.4 we have X(t) ∼ J(t), t→ ∞. Since, x(t) ∈ X , it is clear
that 0 < l ≤ L <∞. We first consider L. Applying Lemma 5.5 four times, we obtain

L ≤ lim sup
t→∞

x′(t)
J ′(t)

≤ lim sup
t→∞

x′′(t)
J ′′(t)

= lim sup
t→∞

(∫∞
t (s− t)q(s)x(s)β ds

) 1
α(∫∞

t (s− t)q(s)X(s)β ds
) 1

α

=

(
lim sup

t→∞

∫∞
t (s− t)q(s)x(s)β ds∫∞
t (s− t)q(s)X(s)β ds

) 1
α

≤
(

lim sup
t→∞

∫∞
t q(s)x(s)β ds∫∞
t q(s)X(s)β ds

) 1
α

≤
(

lim sup
t→∞

q(t)x(t)β

q(t)X(t)β

) 1
α

=
(

lim sup
t→∞

x(t)
X(t)

) β
α

=
(

lim sup
t→∞

x(t)
J(t)

) β
α

= L
β
α ,

where we have used X(t) ∼ J(t), t → ∞, in the last step. Since β/α < 1, the

inequalityL ≤ L
β
α implies that L ≤ 1. Similarly, repeated application of Lemma 5.5 to

l leads to l ≥ 1, from which it follows that L = l = 1, that is,

lim
t→∞

x(t)
J(t)

= 1 =⇒ x(t) ∼ J(t) ∼ X(t), t→ ∞.

Therefore it is concluded that if p(t) ∈ RVR(η) and q(t) ∈ RVR(σ), then the type-(I)
solution x(t) under consideration is a member of RVR(ρ), where

ρ = 0 or ρ =
σ + 2α+ η

α− β
∈ (0, m1) or ρ = m1,
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according to whether the pair (η, σ) satisfies (5.13),(5.15) or (5.18), respectively. Need-
less to say, any such solution x(t) in RVR(ρ) enjoys one and the same asymptotic
behavior (5.14), (5.17) or (5.19) according as ρ = 0, ρ ∈ (0, m1) or ρ = m1. This
completes the "if" parts of Theorems 5.1, 5.2 and 5.3.

5.2. Regularly varying intermediate solutions of type (II)

Let us turn our attention to the study of intermediate solutions of type (II) of equa-
tion (E), that is, those solutions x(t) such that ψ3(t) ≺ x(t) ≺ ψ4(t) as t → ∞.
As in the preceding section use is made of the expressions (5.2) and (5.3) for the
coefficients p(t), q(t) and the solutions x(t). Since ψ3(t) ∈ RVR(m2(α, η)) and
ψ4(t) ∈ RVR(m3(α, η)) (cf. (5.10) and (5.11)), the regularity index ρ of x(t) must
satisfy m2(α, η) ≤ ρ ≤ m3(α, η). If ρ = m2(α, η), then since x(t)/R(t)m2(α,η) =
lx(t) → ∞, t→ ∞, x(t) is a member of ntr− RVR(m2(α, η)), while if ρ = m3(α, η),
then x(t)/R(t)m3(α,η) → 0, t→ ∞, and so x(t) is a member of ntr− RVR(m3(α, η)).
If m2(α, η) < ρ < m3(α, η), then x(t) belongs to RVR(ρ) and clearly satisfies
x(t)/R(t)m2(α,η) → ∞ and x(t)/R(t)m3(α,η) → 0 as t → ∞. Therefore, it is nat-
ural to divide the the totality of type-(II) intermediate solutions of (E) into the following
three classes

(5.44)
ntr− RVR(m2(α, η)) or RVR(ρ), ρ ∈ (m2(α, η), m3(α, η))

or ntr− RVR(m3(α, η)).

Our purpose is to show that, for each of the above classes, necessary and sufficient
conditions for the membership are establish and that the asymptotic behavior at infinity
of all members of each class is determined precisely by a unique explicit formula.

5.2.1. Main results

Theorem 5.4. Let p(t) ∈ RVR(η), q(t) ∈ RVR(σ). Equation (E) has intermediate
solutions x(t) ∈ ntr− RVR (m2(α, η)) satisfying (II) if and only if

(5.45) σ = −2m1(α, η)− βm2(α, η) and
∫ ∞

a
t q(t)ψ3(t)β dt = ∞.

The asymptotic behavior of any such solution x(t) is governed by the unique formula
x(t) ∼ Y1(t), t→ ∞, where

(5.46) Y1(t) = ψ3(t)
(
α− β

α

∫ t

a
s q(s)ψ3(s)β ds

) 1
α−β

.

Theorem 5.5. Let p(t) ∈ RVR(η), q(t) ∈ RVR(σ). Equation (E) has intermediate
solutions x(t) ∈ RVR(ρ) with ρ ∈ (m2(α, η) , m3(α, η)) if and only if

(5.47) −2m1(α, η)− βm2(α, η)< σ < −m1(α, η)− β m3(α, η),
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in which case ρ is given by (5.16) and the asymptotic behavior of any such solution
x(t) is governed by the unique formula x(t) ∼ Y2(t), t→ ∞, where
(5.48)

Y2(t) =

((
m1(α, η)

α

)2 p(t) q(t) R(t)2α

ρα (ρ−m1(α, η))
α (ρ−m2(α, η)) (m3(α, η)− ρ)

) 1
α−β

.

Theorem 5.6. Let p(t) ∈ RVR(η), q(t) ∈ RVR(σ). Equation (E) has intermediate
solutions x(t) ∈ ntr− RVR (m3(α, η)) satisfying (II) if and only if

(5.49) σ = −m1(α, η)− β m3(α, η) and
∫ ∞

a
q(t)ψ4(t)β dt <∞.

The asymptotic behavior of any such solution x(t) is governed by the unique formula
x(t) ∼ Y3(t), t→ ∞, where

(5.50) Y3(t) = ψ4(t)
(
α − β

α

∫ ∞

t
q(s) ψ4(s)β ds

) 1
α−β

.

5.2.2. Preparatory results

Let x(t) be a type-(II) intermediate solutionof (E) defined on [t0,∞). It is known that
lim
t→∞(p(t) x′′(t)α)′ = 0 and lim

t→∞ p(t)x′′(t)α = lim
t→∞x′(t) = lim

t→∞x(t) = ∞. Integrating

(E) first from t to ∞ and then three times on [t0, t], we obtain

(5.51)

x(t) = c0 + c1(t− t0)

+
∫ t

t0

(t− s)
(

1
p(s)

(
c2 +

∫ s

t0

∫ ∞

r

q(u)x(u)βdudr

)) 1
α

ds,

for t ≥ t0, where c0 = x(t0), c1 = x′(t0) and c2 = (p(t) x′′(t)α)′|t=t0 . From (5.51) we
easily see that x(t) satisfies the integral asymptotic relation

(5.52) x(t) ∼
∫ t

t0

(t− s)
(

1
p(s)

∫ s

t0

∫ ∞

r

q(u)x(u)β du dr

) 1
α

ds, t→ ∞.

We first prove that regularly varying functions Yi(t), i = 1, 2, 3 satisfy the integral
asymptotic relation (5.52).

Lemma 5.6. Suppose that (5.45) holds. The function Y1(t) given by (5.46) satisfies
the asymptotic relation

(5.53) y(t) ∼
∫ t

b
(t− s)

(
1
p(s)

∫ s

b

∫ ∞

r
q(u) y(u)β du dr

) 1
α

ds, t→ ∞,

for any b ≥ a.
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Proof. Let (5.45) holds. Using (5.2), (5.5) and (5.10), since σ+βm2+m1 = −m1,
we obtain

tq(t)ψ3(t)β ∼ m
2β−α
α+1

1

(m2(m2 −m1))β
R(t)−m1 lp(t)

β(α−1)+α
α(α+1) lq(t), t→ ∞,

so that applying (iii) of Lemma 5.1 we have

(5.54)

∫ t

a
s q(s)ψ3(s)β ds

∼ m
2β−α+1

α+1

1

(m2(m2 −m1))β

∫ t

a
R′(s)R(s)−1 lp(s)

β(α−1)+2α
α(α+1) lq(s) ds,

as t→ ∞. This, combined with (5.10), gives the following expression for Y1(t):

Y1(t) ∼
(

(α− β)m1

α(m2(m2 −m1))α

) 1
α−β

R(t)m2 lp(t)
α−1

α(α+1)

×
(∫ t

a
R′(s)R(s)−1 lp(s)

β(α−1)+2α
α(α+1) lq(s) ds

) 1
α−β

∈ RVR(m2), t→ ∞.

Next, we integrate q(t) Y1(t)β first on [t,∞), then on [b, t], for any b ≥ a. Since
q(t)Y1(t)β ∈ RVR(βm2 + σ) = RVR(−2m1) (cf. (5.45)), application of Lemma 5.1
and (5.7) yields

∫ t

b

∫ ∞

s

q(r) Y1(r)β dr ds ∼
(

α− β

α(m2(m2 −m1))α

) β
α−β

m
α(2β−α+1)
(α−β)(α+1)

1

×
∫ t

b
R′(s)R(s)−1lp(s)

β(α−1)+2α
α(α+1) lq(s)

(∫ s

a
R′(r)R(r)−1lp(r)

β(α−1)+2α
α(α+1) lq(r)dr

) β
α−β

ds

∼
(

α−β
α(m2(m2−m1))β

) α
α−β

m
α(2β−α+1)
(α−β)(α+1)

1

(∫ t

a
R′(s)R(s)−1lp(s)

β(α−1)+2α
α(α+1) lq(s)ds

) α
α−β

,

as t → ∞. Multiply the above by 1/p(t), raise the result to the exponent 1/α and then
integrate twice on [b, t], for any b ≥ a, we conclude via Lemma 5.1 that

∫ t

b
(t− s)

(
1
p(s)

∫ s

b

∫ ∞

r
q(u) Y1(u)β dudr

) 1
α

ds ∼
(

(α− β)m1

α(m2(m2 −m1))α

) 1
α−β

×R(t)m2 lp(t)
α−1

α(α+1)

(∫ t

a
R′(s)R(s)−1 lp(s)

β(α−1)+2α
α(α+1) lq(s) ds

) 1
α−β

= Y1(t),

as t→ ∞. This proves that Y1(t) satisfies the asymptotic relation (5.53).
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Lemma 5.7. Suppose that (5.47) holds and let ρ be defined by (5.16). The function
Y2(t) given by (5.48) satisfies the asymptotic relation (5.53) for any b ≥ a.

Proof. Putting λ = ρα(ρ−m1)α(ρ−m2)(m3 − ρ), we express Y2(t) in the form

Y2(t) ∼ C R(t)ρ lp(t)
1

α−β lq(t)
1

α−β , C =
(

1
λ

(m1

α

)2
) 1

α−β

.

We integrate q(t)Y2(t)β first on [t,∞) and then on [b, t], for any b ≥ a. Using (5.16)
and Lemma 5.1 twice, we see that

(5.55)

∫ t

b

∫ ∞

s
q(r) Y2(r)β drds

∼ Cβm
2

α+1

1

α2(m3 − ρ)(ρ−m2)
R(t)α(ρ−m2) lp(t)

αβ+2α−β
(α−β)(α+1) lq(t)

α
α−β ,

as t→ ∞. Since (5.55) implies

(
1
p(t)

∫ t

b

∫ ∞

s
q(r)Y2(r)β drds

) 1
α

∼ C
β
α m

2
α(α+1)

1

(α2(m3 − ρ)(ρ−m2))
1
α

R(t)ρ−2m1 lp(t)
2β−α+1

(α−β)(α+1) lq(t)
1

α−β , t→ ∞,

integrating the last relation twice on [b, t], we conclude that

∫ t

b

(t− s)
(

1
p(s)

∫ s

b

∫ ∞

r

q(u) Y2(u)β du dr

) 1
α

ds

∼ C
β
αm

2
α
1

(α2(m3 − ρ)(ρ−m2))
1
α (ρ−m1)ρ

R(t)ρlp(t)
1

α−β lq(t)
1

α−β = Y2(t), t→ ∞.

This proves that Y2(t) satisfies the asymptotic relation (5.53).

Lemma 5.8. Suppose that (5.49) holds. The function Y3(t) given by (5.50) satisfies
the asymptotic relation (5.53) for any b ≥ a.

Proof. Suppose that (5.49) holds. Using (5.7) and (5.11) we easily see that

(5.56)
∫ ∞

t
q(s)ψ4(s)β ds ∼ m

β+1
α+1

1

mβ
3

∫ ∞

t
R′(s)R(s)−1lp(s)

β+1
α+1 lq(s) ds, t→ ∞.
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Combining the above with (5.50), we obtain the following asymptotic representation for
Y3(t) in terms of R(t), lp(t) and lq(t):

Y3(t)∼
(

(α−β)m1

αmα
3

) 1
α−β

R(t)m3lp(t)
1

α+1

(∫ ∞

t
R′(s)R(s)−1lp(s)

β+1
α+1 lq(s)ds

) 1
α−β

,

as t→ ∞. Integrating the above relation, using (5.7), we compute

∫ ∞

t
q(s) Y3(s)β ds ∼

⎛
⎝(α− β)m

α(β+1)
β(α+1)

1

αmα
3

⎞
⎠

β
α−β

×
∫ ∞

t
R′(s)R(s)−1lp(s)

β+1
α+1 lq(s)

(∫ ∞

s
R′(r)R(r)−1lp(r)

β+1
α+1 lq(r)dr

) β
α−β

ds

=

⎛
⎝(α− β)m

β+1
α+1

1

αmβ
3

⎞
⎠

α
α−β (∫ ∞

t
R′(s)R(s)−1lp(s)

β+1
α+1 lq(s)ds

) α
α−β

, t → ∞.

Next we integrate the above relation on [b, t], b ≥ a, multiply it by 1/p(t) and raise the
result to the power 1/α. Then we find that

(5.57)

(
1
p(t)

∫ t

b

∫ ∞

s
q(r)Y3(r)βdrds

) 1
α

∼
⎛
⎝(α−β)m

β+1
α+1

1

αmβ
3

⎞
⎠

1
α−β

m
− 1

α+1

1

×R(t)
m1−η

α lp(t)
− 1

α+1

(∫ ∞

t

R′(s)R(s)−1lp(s)
β+1
α+1 lq(s)ds

) 1
α−β

∼
⎛
⎝(α−β)m

β+1
α+1

1

αmβ
3

⎞
⎠

1
α−β

R′(t)
(∫ ∞

t
R′(s)R(s)−1lp(s)

β+1
α+1 lq(s) ds

) 1
α−β

,

as t → ∞. Integrating (5.57) twice on [b, t] leads to the desired conclusion that Y3(t)
satisfies the integral asymptotic relation (5.53).

5.2.3. Proof of main results

PROOF OF THE "ONLY IF" PART OF THEOREMS 5.4, 5.5 AND 5.6: Suppose
that equation (E) has a type-(II) intermediate solution x(t) ∈ RVR(ρ), ρ ∈ [m2, m3],
defined on [t0,∞). We begin by integrating (E) on [t,∞). Using (5.2), (5.3) and (5.7),
we have

(5.58) (p(t) x′′(t)α)′ =
∫ ∞

t
q(s)x(s)βds ∼

∫ ∞

t
R(s)σ+βρlq(s)lx(s)β ds, t→ ∞.
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To proceed further we distinguish the two cases:

(a) σ + βρ+m1 = 0 and (b) σ + βρ+m1 < 0.

Let case (a) hold. Integration of (5.58) on [t0, t] yields

x′′(t)∼m
1−α

α(α+1)

1 R(t)
m1−η

α lp(t)
− 1

α+1

(∫ ∞

t
R′(s)R(s)−1lp(s)

1
α+1 lq(s) lx(s)β ds

) 1
α

,

as t→ ∞. Integrating (5.59) twice over [t0, t], we obtain via Lemma 5.1 and (5.11) that

(5.59)
x(t)∼m

1
α
1

m3
R(t)m3 lp(t)

1
α+1

(∫ ∞

t
R′(s)R(s)−1lp(s)

1
α+1 lq(s)lx(s)βds

) 1
α

∼ψ4(t)m
1

α(α+1)

1

(∫ ∞

t
R′(s)R(s)−1lp(s)

1
α+1 lq(s) lx(s)βds

) 1
α

, t→ ∞.

Let case (b) hold. Then, integration of (5.58) on [t0, t] gives

(5.60) p(t)x′′(t)α ∼ m
1

α+1

1

− (σ + βρ+m1)

∫ t

t0

R(s)σ+βρ+m1 lp(s)
1

α+1 lq(s)lx(s)βds,

as t→ ∞. The divergence of the last integral as t→ ∞ implies σ+βρ+ 2m1 ≥ 0. To
preform further integration of (5.60) we consider the following two cases separately:

(b.1) σ + βρ+ 2m1 = 0; (b.2) σ + βρ+ 2m1 > 0.

Suppose that (b.1) holds. Since σ + βρ +m1 = −m1 and − η
α +m1 = m2 −m1,

integrating (5.60) twice on [t0, t], we have

(5.61)

x(t) ∼ m
1
α
1

m2(m2 −m1)
R(t)m2 lp(t)

α−1
α(α+1)

(∫ t

t0

R′(s)R(s)−1lp(s)
2

α+1 lq(s)lx(s)βds

) 1
α

∼ ψ3(t)m
1−α

α(α+1)

1

(∫ t

t0

R′(s)R(s)−1lp(s)
2

α+1 lq(s) lx(s)β ds

) 1
α

,

as t → ∞, which means that x(t) ∈ RVR(m2) and that its regularly varying part lx(t)
satisfies the relation

(5.62)
lx(t) ∼ m

1
α
1

m2(m2 −m1)
lp(t)

α−1
α(α+1)

×
(∫ t

t0

R′(s)R(s)−1lp(s)
2

α+1 lq(s)lx(s)βds

) 1
α

, t→ ∞.
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Suppose that (b.2) holds. Applying first Lemma 5.1 in (5.60), then multiplying by
1/p(t), raising the result on 1/α and integrating twice from t0 to t, we obtain

(5.63)

x(t) ∼
(

m2
1

−(σ + βρ+m1) (σ+ βρ+ 2m1)

) 1
α

× R(t)
σ+βρ+2m1−η

α
+2m1 lp(t)

1
α lq(t)

1
α lx(t)

β
α(

σ+βρ+2m1−η
α +m1

)(
σβρ+2m1−η

α + 2m1

) ,

as t→ ∞. This implies that x(t) ∈ RV
(

σ+βρ+2m1−η
α + 2m1

)
. It is easy to see that

m2 <
σ + βρ+ 2m1 − η

α
+ 2m1 =

σ + βρ+ 2α+ η

α
< m3.

Now, let x(t) be a type-(II) intermediate solution of (E) belonging to RVR(m2).
Then, from the above observations it is clear that only the case (b.1) is admissible, so that
σ = −2m1 − βm2 and x(t) must satisfy (5.61). Put

μ(t) =
∫ t

t0

R′(s)R(s)−1lp(s)
2

α+1 lq(s) lx(s)β ds.

Then, we can convert (5.62) to the differential asymptotic relation for μ(t)

(5.64) μ(t)−
β
α μ′(t) ∼ CβR′(t)R(t)−1 lp(t)

β(α−1)+2α
α(α+1) lq(t), t→ ∞,

where C = m
1
α
1 /m2(m2 −m1). From (5.61), since limt→∞ x(t)/ψ3(t) = ∞, we have

limt→∞ μ(t) = ∞, implying that the left-hand side of (5.64) is not integrable on [t0,∞),
so is the right-hand side, that is,∫ ∞

t0

R′(t)R(t)−1 lp(t)
β(α−1)+2α

α(α+1) lq(t)dt = ∞,

which, as shown in the proof of Lemma 5.6 (cf. (5.54)), is equivalent to∫ ∞

a

t q(t)ψ3(t)β dt = ∞.

We now integrate (5.64) on [t0, t] and in view of (5.54), we obtain

μ(t) ∼ m
α−1
α+1

1

(
α − β

α

∫ t

t0

s q(s)ψ3(s)β ds

) α
α−β

, t→ ∞,
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and this, combined with (5.61), shows that

x(t) ∼ ψ3(t)m
1−α

α(α+1)

1 m
α−1

α(α+1)

1

(
α− β

α

∫ t

a
s q(s)ψ3(s)β ds

) 1
α−β

= Y1(t),

as t→ ∞. This completes the "only if" part of the Theorem 5.4.

Next, let x(t) be an intermediate solution of (E) belonging to RVR(ρ) for some
ρ ∈ (m2, m3). Clearly, x(t) falls into the case (b.2) and hence satisfies the asymptotic
relation (5.63). This means that

ρ =
σ + βρ+ 2m1 − η

α
+ 2m1 =

σ + βρ+ 2α+ η

α
=⇒ ρ =

σ + 2α+ η

α − β
,

verifying that the regularity index ρ is given by (5.16). From the requirementm2 < ρ <
m3 it follows that −2m1 − βm2 < σ < −m1 − βm3, showing that the range of σ is
given by (5.47). Since

σ + βρ+ 2m1 − η

α
+m1 = ρ−m1,

σ + βρ+ 2m1 − η

α
+ 2m1 = ρ,

−(σ + βρ+m1) = α(m3 − ρ), σ + βρ+ 2m1 = α(ρ−m2),

the relation (5.63) can be rewritten as

x(t) ∼
(

m2
1 p(t) q(t)R(t)2α

α2ρα(ρ−m1)α(ρ−m2)(m3 − ρ)

) 1
α

x(t)
β
α ,

from which it readily follows that x(t) enjoys the asymptotic behavior (5.48). This
proves the "only if" part of the Theorem 5.5.

Finally, let x(t) is a type-(II) intermediate solution of (E) belonging to RVR(m3).
Since only the case (a) is possible for x(t), it satisfies (5.59), which implies ρ = m3 and
σ = −m1 − βm3. Letting

ν(t) =
(∫ ∞

t
R′(s)R(s)−1 lp(s)

1
α+1 lq(s) lx(s)β ds

) 1
α

,

and using the relation lx(t) ∼ (m
1
α
1 /m3)lp(t)

1
α+1 ν(t), we convert (5.59) into the differ-

ential asymptotic relation

(5.65) −αν(t)α−β−1 ν′(t) ∼ m
β
α
1

mβ
3

R′(t)R(t)−1 lp(t)
β+1
α+1 lq(t), t→ ∞.
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Since the left-hand side of (5.65) is integrable on [t0,∞) (note that limt→∞ x(t)/ψ4(t) =
0 and so limt→∞ ν(t) = 0), so is the right-hand side, that is,∫ ∞

t0

R′(t)R(t)−1lp(t)
β+1
α+1 lq(t)dt <∞

which is equivalent to
∫∞
a q(t)ψ(t)β dt < ∞. (See the proof of Lemma 5.8, (5.56).)

Integrating (5.65) over [t,∞), using (5.56), then yields

ν(t) ∼ m
− 1

α(α+1)

1

(
α − β

α

∫ ∞

t
q(s)ψ4(s)β ds

) 1
α−β

, t→ ∞,

and this combined with (5.59) determines the precise asymptotic behavior of x(t) as
follows:

x(t) ∼ ψ4(t)m
1

α(α+1)

1 m
− 1

α(α+1)

1

(
α − β

α

∫ ∞

t
q(s)ψ4(s)β ds

) 1
α−β

= Y3(t), t→ ∞.

Thus the "only if" part of the Theorem 5.6 has been proved.

PROOF OF THE "IF" PART OF THEOREMS 5.4, 5.5 AND 5.6: Suppose that
(5.45) or (5.47) or (5.49) holds. From Lemmas 5.6, 5.7 and 5.8 it is known that
Yi(t) , i = 1, 2, 3, defined by (5.46), (5.48) and (5.50) satisfy the asymptotic relation
(5.53). We perform the simultaneous proof for Yi(t), i = 1, 2, 3 so the subscripts
i = 1, 2, 3 will be deleted in the rest of the proof. By (5.52) there exists T0 > a such
that ∫ t

T0

(t− s)
(

1
p(s)

∫ s

T0

∫ ∞

r
q(u) Y (u)β du dr

) 1
α

ds ≤ 2Y (t), t ≥ T0.

Let such a T0 be fixed. We may assume that Y (t) is increasing on [T0,∞). Since (5.52)
holds with b = T0, there exists T1 > T0 such that

∫ t

T0

(t− s)
(

1
p(s)

∫ s

T0

∫ ∞

r
q(u) Y (u)β du dr

) 1
α

ds ≥ Y (t)
2

, t ≥ T1.

Choose positive constants k and K such that

k1− β
α ≤ 1

2
, K1−β

α ≥ 4, 2k Y (T1) ≤ K Y (T0).

Considering the integral operator

Hy(t) = y0 +
∫ t

T0

(t− s)
(

1
p(s)

∫ s

T0

∫ ∞

r
q(u) y(u)β du dr

) 1
α

ds, t ≥ T0,
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where y0 is a constant such that k Y (T1) ≤ y0 ≤ K

2
Y (T0), we may verify that H is

continuous self-map on the set

Y = {y ∈ C[T0,∞) : k Y (t) ≤ y(t) ≤ K Y (t), t ≥ T0},
and that H sends Y into relatively compact subset of C[T0,∞). Thus, H has a fixed
point y(t) ∈ Y , which generates a solution of equation (E) of type (II) satisfying above
inequalities and thus yields that

0 < lim inf
t→∞

y(t)
Y (t)

≤ lim sup
t→∞

y(t)
Y (t)

<∞.

Denoting

L(t) =
∫ t

a
(t− s)

(
1
p(s)

∫ s

a

∫ ∞

r
q(u) Y (u)β du dr

) 1
α

ds

and using Y (t) ∼ L(t), t→ ∞ we get

0 < lim inf
t→∞

y(t)
L(t)

≤ lim sup
t→∞

y(t)
L(t)

<∞.

Then, proceeding exactly as in the proof of the "if" part of Theorems 5.1-5.3, with
application of Lemma 5.5, we conclude that y(t) ∼ L(t) ∼ Y (t), t → ∞. Therefore,
y(t) is a generalized regularly varying solutionof (E) with requested regularity index and
the asymptotic behavior (5.46), (5.48), (5.50) depending on if q(t) ∈ RVR(σ) satisfies,
respectively, (5.45) or (5.47) or (5.49). Thus, the "if part" of Theorems 5.4, 5.5 and 5.6
has been proved.

6. COROLLARIES

The final section is concerned with equation (E) whose coefficients p(t) and q(t) are
regularly varying functions (in the sense of Karamata). It is natural to expect that such
equation may possess intermediate solutions which are regularly varying. Our purpose
here is to show that this new problem can be embedded in the framework of generalized
regularly varying functions, so that the results of the preceding section provide full
information about the existence and the precise asymptotic behavior of regularly varying
solutions of (E).

We assume that p(t) and q(t) are regularly varying functions of indices η and σ,
respectively, i.e.,

(6.1) p(t) = tηlp(t), q(t) = tσlq(t), lp(t), lq(t) ∈ SV,

and seek regularly varying solutions x(t) of (E) expressed in the from

(6.2) x(t) = tρlx(t), lx(t) ∈ SV.
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We begin by noticing that the condition (1.1) on p(t) are satisfied if η ≤ α. In what
follows we assume that η < α, excluding the case η = α because of computational
difficulty and the fact that integral

∫∞
a dt/p(t) =

∫∞
a t−

η
α lp(t)−

1
αdt might be either

convergent or divergent. Then, it is easy to see that

R(t) ∈ RV
(
α+ 1 − η

α

)
=⇒ R−1(t) ∈ RV

(
α

α+ 1 − η

)
.

Therefore, any regularly varying function f(t) ∈ RV(λ) is considered as a generalized
regularly varying function of index αλ/(α+1−η) with respect toR(t), and conversely
any generalized regularly varying function f(t) ∈ RVR(λ∗) is regarded as an regularly
varying function of index λ = λ∗(α+ 1 − η)/α. It follows that

p(t) ∈ RVR

(
α η

α+ 1− η

)
, q(t) ∈ RVR

(
ασ

α+ 1 − η

)
, x(t) ∈ RVR

(
α ρ

α + 1 − η

)
.

Put
η∗ =

αη

α + 1 − η
, σ∗ =

ασ

α + 1 − η
, ρ∗ =

αρ

α + 1 − η
.

Note that (5.8) implies α2 − η∗ > 0 and that the tree positive constants given by (5.9)
are reduced to

m1(α, η∗) =
α

α+ 1 − η
, m2(α, η∗) =

2α− η

α+ 1 − η
, m3(α, η∗) =

2α− η + 1
α + 1 − η

.

It turns out therefore that any type-(I) intermediate regularly varying solution of (E) is a
member of one of the three classes

ntr− SV, RV(ρ), ρ ∈ (0, 1), ntr − RV(1),

while any type-(II) intermediate regularly varying solution belongs to one of the three
classes

ntr − RV
(

2α− η

α

)
, RV(ρ), ρ ∈

(
2α− η

α
,

2α− η + 1
α

)
,

ntr − RV
(

2α− η + 1
α

)
.

Based on the above observations we are able to apply results for generalized regularly
varying solutions created in Section 4 to the present situation, thereby establishing
necessary and sufficient conditions for the existence of intermediate regularly varying
solutions of (E) and determining the asymptotic behavior of all such solutions explicitly
and accurately. First, we state the results on type-(I) intermediate solutions that can be
derived as corollaries of Theorems 5.1, 5.2 and 5.3.
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Theorem 6.1. Assume that q(t) ∈ RV(σ), p(t) ∈ RV(η) and η < α . Equation
(E) possess intermediate slowly varying solutions if and only if

(6.3) σ = η − 2α− 2 and
∫ ∞

a
t

(
1
p(t)

∫ ∞

t
(s− t) q(s) ds

) 1
α

dt = ∞.

Any such solutionx(t) enjoys one and the same asymptotic behavior x(t) ∼ X1(t), t→
∞, where X1(t) is given by (5.14).

Theorem 6.2. Assume that q(t) ∈ RV(σ), p(t) ∈ RV(η) and η < α . Equation
(E) possess intermediate regularly varying solutions belonging to RV(ρ) with ρ ∈ (0, 1)
if and only if

(6.4) η − 2α − 2 < σ < η − α − β − 2,

in which case ρ is given by

(6.5) ρ =
σ + 2α− η + 2

α − β

and any such solution x(t) enjoys one and the same asymptotic behavior

(6.6) x(t) ∼
(

t2α+2 p(t)−1 q(t)
ρα (1 − ρ)α (2α− η − α ρ) (2α− η + 1 − αρ)

) 1
α−β

, t→ ∞.

Theorem 6.3. Assume that q(t) ∈ RV(σ), p(t) ∈ RV(η) and η < α . Equation
(E) possess intermediate regularly varying solutions belonging to RV(1) if and only if

(6.7) σ = η − α− β − 2 and
∫ ∞

a

(
1
p(t)

∫ ∞

t
(s− t) sβ q(s) ds

) 1
α

dt <∞.

Any such solution x(t) enjoys one and the same asymptotic behavior x(t) ∼ X3(t), t→
∞, where X3(t) is given by (5.19).

Similarly, we are able to gain a through knowledge of type-(II) intermediate regularly
varying solutions of (E) from Theorems 5.4, 5.5 and 5.6.

Theorem 6.4. Assume that q(t) ∈ RV(σ), p(t) ∈ RV(η) and η < α . Equation
(E) possess intermediate regularly varying solutions of index 2α−η

α if and only if

(6.8) σ =
β

α
η − 2β − 2 and

∫ ∞

a
t q(t)ψ3(t)β dt = ∞.

The asymptotic behavior of any such solution x(t) is governed by the unique formula
x(t) ∼ Y1(t), t→ ∞, where Y1(t) is given by (5.46).
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Theorem 6.5. Assume that q(t) ∈ RV(σ), p(t) ∈ RV(η) and η < α . Equation
(E) possess intermediate regularly varying solutions belonging to RV(ρ) with ρ ∈(

2α−η
α , 2α−η+1

α

)
if and only if

(6.9)
β

α
η − 2β − 2 < σ <

β

α
η − β

α
− 2β − 1,

in which case ρ is given by (6.5) and the asymptotic behavior of any such solution
x(t) is governed by the unique formula

(6.10) x(t) ∼
(

t2α+2 p(t)−1 q(t)
ρα (ρ− 1)α (α ρ− 2α+ η) (2α− η + 1− α ρ)

) 1
α−β

, t→ ∞.

Theorem 6.6. Assume that q(t) ∈ RV(σ), p(t) ∈ RV(η) and η < α . Equation
(E) possess intermediate regularly varying solutions of index 2α−η+1

α if and only if

(6.11) σ =
β

α
η − β

α
− 2β − 1 and

∫ ∞

a
q(t)ψ4(t)β dt <∞.

The asymptotic behavior of any such solution x(t) is governed by the unique formula
x(t) ∼ Y3(t), t→ ∞, where Y3(t) is given by (5.50).

Above corollaries combined with Theorems 2.1-2.4 enable us to describe in full
details the structure of RV-solutions of equation (E) with RV-coefficients. Denote with
R the set of all regularly varying solutions of (E) and define the subsets

R(ρ) = R∩RV(ρ), tr−R(ρ) = R∩ tr− RV(ρ), ntr−R(ρ) = R∩ ntr − RV(ρ).

Corollary 6.1. Let q(t) ∈ RV(σ), p(t) ∈ RV(η) and η < α.

(i) If σ < η−2α−2, or σ = η−2α−2 and
∫∞
a t

(
1

p(t)

∫∞
t (s− t) q(s) ds

) 1
α
dt <∞,

then

R = tr −R(0) ∪ tr −R(1) ∪ tr −R
(

2α− η

α

)
∪ tr−R

(
2α+ 1 − η

α

)
.

(ii) If σ = η − 2α− 2 and
∫∞
a t

(
1

p(t)

∫∞
t (s− t) q(s) ds

) 1
α
dt = ∞, then

R = ntr −R(0) ∪ tr −R(1) ∪ tr −R
(

2α− η

α

)
∪ tr−R

(
2α+ 1 − η

α

)
.

(iii) If σ ∈ (η − 2α− 2, η− α − β − 2), then

R = R
(
σ + 2α − η + 2

α − β

)
∪ tr−R(1)∪ tr−R

(
2α− η

α

)
∪ tr−R

(
2α + 1 − η

α

)
.
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(iv) If σ = η − α − β − 2 and
∫∞
a

(
1

p(t)

∫∞
t (s− t) sβ q(s) ds

) 1
α
dt <∞, then

R = tr −R(1) ∪ ntr −R(1) ∪ tr −R
(

2α− η

α

)
∪ tr−R

(
2α+ 1 − η

α

)
.

(v) If σ = η − α − β − 2 and
∫∞
a

(
1

p(t)

∫∞
t (s− t) sβ q(s) ds

) 1
α
dt = ∞,

or σ∈
(
η−α−β−2, β

αη−2β−2
)
, or σ = β

αη − 2β − 2 and
∫∞
a t q(t)ψ3(t)β dt <

∞, then

R = tr −R
(

2α− η

α

)
∪ tr −R

(
2α+ 1− η

α

)
.

(vi) If σ = β
αη − 2β − 2 and

∫∞
a t q(t)ψ3(t)β dt = ∞, then

R = ntr −R
(

2α− η

α

)
∪ tr −R

(
2α+ 1− η

α

)
.

(vii) If σ ∈
(

β
αη − 2β − 2, β

α η − 2β − β
α − 1

)
, then

R = R
(
σ + 2α− η + 2

α− β

)
∪ tr−R

(
2α+ 1 − η

α

)
.

(viii) If σ = β
α η − 2β − β

α − 1 and
∫∞
a q(t)ψ4(t)β dt <∞, then

R = tr −R
(

2α+ 1 − η

α

)
∪ ntr−R

(
2α+ 1 − η

α

)
.

(ix) If σ = β
α η−2β− β

α −1 and
∫∞
a q(t)ψ4(t)β dt = ∞, or σ > β

α η−2β− β
α −1,

then
R = ∅.
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7. T. Kusano and J. Manojlović, Asymptotic behavior of positive solutions of sublinear
differential equations of Emden-Fowler type, Comput. Math. Appl., 62 (2011), 551-565.
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14. J. V. Manojlović and V. Marić, An asymptotic analysis of positive solutions of Thomas-
Fermi type differential equations - sublinear case, Memoirs on Differential Equations and
Mathematical Physics, 57 (2012), 75-94.
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Višegradska 33, 18000 Niš
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