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ZEROS OF A QUASI-MODULAR FORM OF WEIGHT 2 FOR Γ+
0 (N )

SoYoung Choi and Bo-Hae Im

Abstract. Basraoui and Sebbar showed that the Eisenstein series E2 has in-
finitely many SL2(Z)-inequivalent zeros in the upper half-plane H, yet none in
the standard fundamental domain F. They also found infinitely many such re-
gions containing a zero of E2 and infinitely many regions which do not have
any zeros of E2. In this paper we study the zeros of the quasi-modular form
E2(z) + NE2(Nz) of weight 2 for Γ+

0 (N).

1. INTRODUCTION AND PRELIMINARIES

It is well known by the the Valence formula [12, Section 1.3, Proposition 2] that
every nonzero modular form has finitely many SL2(Z)-inequivalent zeros in the upper
half-plane H. Several authors investigated the zeros of special modular forms for
SL2(Z) (for example, see [3, 4, 5, 9]). It has been proved that for an even integral
weight k the Eisenstein series Ek for SL2(Z), the zeros of Ek in the fundamental
domain of the modular group SL2(Z) lie in the arc of the unit circle for 4 ≤ k ≤ 26 by
Wohlfahrt [11] and for every k > 2, by Rankin and Swinnerton-Dyer [8] later. Rankin
[7] generalized this result to a certain class of Poincaré series for SL2(Z).

For higher level cases, let Γ+
0 (N ) denote the group generated by the Hecke con-

gruence group Γ0(N ) and the Fricke involution wN :=
(

0 −1
N 0

)
. Shigezumi [6]

investigated the zeros of the Eisenstein series for Γ+
0 (2) and Γ+

0 (3). Recently Basraoui
and Sebbar [1] investigated some properties of zeros of the Eisenstein series E2 for
SL2(Z) which is a quasi-modular form. They showed that there are infinitely many
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inequivalent zeros of E2 in the half strip S := {τ ∈ H | −1/2 < Re(τ) ≤ 1/2} and
proved that the fundamental domain F for SL2(Z) and infinitely many of its conjugates
in S contain no zeros of E2, while there are infinitely many conjugates of F in S

which contain zeros of E2. This is a different phenomenon from the cases for modular
forms.

In this paper, by applying the arguments in [1] we study the zeros of the quasi-
modular form E2(z) + NE2(Nz) of weight 2 for Γ+

0 (N ), whose definition is given
in Definition 1.1. In particular, we show how to take care of the parts related with the
Fricke involution while the proofs in [1] deal with SL2(Z).

Throughout this paper, we let z = x + iy with x, y > 0 ∈ R and denote Γ0(N ) or
Γ+

0 (N ) by Γ.

Definition 1.1. [12, page 58] For a positive even integer k, an almost holomorphic
modular form of weight k and depth ≤ M for Γ is a holomorphic function F (z) on
H such that

F

(
az + b

cz + d

)
= (detγ)−k/2 (cz + d)kF (z) for all γ =

(
a b
c d

)
∈ Γ

and the growth condition that it has the form

F (z) =
M∑

m=0

fm(z)(−4πy)−m, (where f0(z), . . . , fM(z) are holomorphic on H)

for some nonnegative integer M (which is necessarily at most k/2).
The constant term, f0(z) of such a F is called a quasi-modular form of weight k

for Γ. We let M̃k(Γ) be the C-linear space of quasi-modular forms of weight k for Γ.
Then the space M̃∗(Γ) =

⊕
M̃k(Γ) is a graded ring. Note that as mentioned in [12,

page 58], a direct definition of a quasi-modular form of weight k and depth ≤ M on

Γ can be given as a holomorphic function f on H such that for γ =
(

a b
c d

)
∈ Γ, the

function (det γ)k/2(cz + d)−kf
(

az+b
cz+d

)
is a polynomial of degree ≤ M in c

cz+d .
Indeed, if we choose a holomorphic function φ on H such that the function φ∗(z) :=

φ(z)− 1/(4πy) satisfies the following,

(1) φ∗(γz) = (det γ)−1(cz + d)2φ∗(z) for all γ =
(

a b
c d

)
∈ Γ,

where z = x + iy, then clearly φ is a quasi-modular form of weight 2 for Γ. We can
show that every quasi-modular form of weight k for Γ is presented as a polynomial of
a quasi-modular form φ of weight 2 with coefficients of modular forms as follows:
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Proposition 1.2. [12, page 59] For a positive even integer k and an integer r such
that 0 ≤ r ≤ k/2, let Mk−2r(Γ) be the space of modular forms of weight k−2r for Γ
where Γ is Γ0(N ) or Γ+

0 (N ). A quasi-modular form of weight k for Γ is an element
in the ring

⊕k/2
r=0 Mk−2r(Γ) · φr, where φ is a holomorphic function on H satisfying

the condition (1).

We recall that the Eisenstein series E2(z) is written as

E2(z) = 1 − 24
∞∑

n=1

σ1(n)qn, where σ1(n) =
∑

1≤d|n
d.

Then this is a quasi-modular form of weight 2 for SL2(Z) and it satisfies that for

γ =
(

a b
c d

)
∈ SL2(Z),

(2) E2

(
az + b

cz + d

)
= (cz + d)2E2(z) − 6i

π
c(cz + d).

(This is by normalization of [12, Section 2.3, Eq. (17) and (19)].)
For convenience, we define the slash operator f �→ f |2γ by

(f |2γ)(z) = (det γ)(cz + d)−2f

(
az + b

cz + d

)
, for γ =

(
a b

c d

)
∈ GL+

2 (R),

and so we have the definition,

(f(g)|2γ)(z) = (det γ)(cz + d)−2f((g(γz))), for a function g : H → H.

We now prove that E2(z) + NE2(Nz) is a quasi-modular form of weight 2 for
Γ+

0 (N ) and calculate some special values of E2(z)+ NE2(Nz) which will be needed
later.

Proposition 1.3.

(1) E2(z) + NE2(Nz) is a quasi-modular form of weight 2 on Γ+
0 (N ).

(2) E2(z)− NE2(Nz) is a modular form of weight 2 on Γ0(N ).

Proof. We let

E∗
2(z) := E2(z) − 3

πy
.

Then E∗
2 is invariant under the slash operator |2 for all γ ∈ SL2(Z).
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(1) Let E(z) = E2(z) + NE2(Nz). Then

E(z) = E∗
2(z) +

3
πy

+ N

(
E∗

2(Nz) +
3

πNy

)
= E∗

2(z) + NE∗
2(Nz) +

6
πy

.

(3)

Hence

(4) E(z)− 6
πy

= E∗
2(z) + NE∗

2(Nz).

Let g(z) = Nz. Considering E∗
2(Nz) = E∗

2(g(z)), we have that for any γ =(
a b

Nc d

)
∈ Γ0(N ),

(E∗
2(g)|2 γ)(z) = E∗

2(Nγz)(cNz + d)−2

= E∗
2

(
a(Nz) + bN

c(Nz) + d

)
(cNz + d)−2

= (E∗
2 |2γ ′)(Nz) = E∗

2(Nz) = E∗
2(g(z)),

(5)

where γ ′ =
(

a bN

c d

)
∈ SL2(Z). (Note that the last equality follows from the fact

that E∗
2 is invariant under the slash operator |2.)

Hence this implies that for all γ ∈ Γ0(N ),

((E∗
2 + NE∗

2(g))|2γ)(z) = E∗
2(z) + NE∗

2(Nz).

Now for wN =
(

0 −1
N 0

)
, we have that

((E∗
2 + NE∗

2(g))|2wN)(z) = (
√

Nz)−2

(
E∗

2

(−1
Nz

)
+ NE∗

2

(−1
z

))

= N−1z−2E∗
2

(−1
Nz

)
+ z−2E∗

2

(−1
z

)

= N (Nz)−2E∗
2

(−1
Nz

)
+ z−2E∗

2

(−1
z

)
= E∗

2(z) + NE∗
2(Nz).

(6)



Zeros of a Quasi-modular Form of Weight 2 for Γ+
0 (N) 1373

Note that the last inequality follows from the modularity under
(

0 −1
1 0

)
. Hence we

have shown that for g(z) = Nz, ((E∗
2 +NE∗

2(g))|2γ)(z) = (E∗
2(z)+NE∗

2(Nz)), for
all γ ∈ Γ+

0 (N ). This fact together with two conditions (1) and (4) implies that E(z)
is a quasi-modular form of weight 2 on Γ+

0 (N ).

(2) Let g(z) = Nz. For all γ ∈ Γ0(N ), we have

((E2 − NE2(g))|2γ)(z) = ((E∗
2 − NE∗

2(g)|2γ)(z)

= E∗
2(z) − NE∗

2(Nz)

= E2(z)− NE2(Nz).

(7)

Also, we note from (2) that for each
(

a b

c d

)
∈ SL2(Z),

E2

(
az + b

cz + d

)
(cz + d)−2 = E2(z)− 6i

π

c

(cz + d)
.

Let γ =
(

a b

c d

)
∈ SL2(Z) and let s := γ∞ = a

c . Then
(

N 0
0 1

)
γ = γ ′U for

some γ ′ =
(

a′ b′

c′ d′

)
∈ SL2(Z) and U =

(
x y

0 ws

)
∈ M2(Z). So N = xws, c = c′x

and d = c′y + d′ws. Hence N/ws = c/c′. Therefore, we have

E2(Nγz) = E2(γ ′Uz)

= (c′Uz + d′)2E2(Uz)− 6c′i
π

(c′Uz + d′)

=
(cz + d)2E2(Uz)

w2
s

− 6c′i(cz + d)
πws

.

Hence,

E2(Nγz)(cz + d)−2 =
E2(Uz)

w2
s

− 6c′i
πws

1
(cz + d)

=
E2(Uz)

w2
s

− 6ci

Nπ

1
(cz + d)

.

(8)

So
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((E2 − NE2(g))|2γ)(z) = (E2(γz)− NE2(Nγz))(cz + d)−2

= E2(z)− 6ci

π

1
(cz + d)

− N

w2
s

E2(Uz) +
6ci

π

1
(cz + d)

= E2(z)− N

w2
s

E2(Uz)

(9)

and this implies that E2(z) − NE2(Nz) is holomorphic at the cusp s. Consequently
E2(z) − NE2(Nz) is a modular form of weight 2 on Γ0(N ).

Throughout this paper, as in the proof of Proposition 1.3 we let

E(z) := E2(z) + NE2(Nz)

for z ∈ H. Then for γ =
(

a b

c d

)
∈ Γ0(N ), we can easily show by (2) that

E
(az + b

cz + d

)
= (cz + d)2E(z)− 12i

π
c(cz + d).(10)

Note that ρ2 := ei(3π/4)/
√

2 is an elliptic point of nonzero modular functions of
weight k for Γ+

0 (2) by [6, Proposition 3.1] and ρ3 := ei(5π/6)/
√

3 is an elliptic point
for Γ+

0 (3) by [6, Proposition 4.3].

Lemma 1.4.

(a) E(ρ2) =
12
π

for N = 2.

(b) E(ρ3) =
12

√
3

π
for N = 3.

Proof. Note that for τ ∈ H,

(11)

E
(
− 1

Nτ

)
= E

((
0 −1
1 0

)
(Nτ)

)
= E2

((
0 −1
1 0

)
(Nτ)

)
+ NE2

(
N

(
0 −1
1 0

)
(Nτ)

)
= (Nτ)2E2(Nτ) +

6
πi

(Nτ) + NE2

(
−1

τ

)
by (2)

= τ2NE(τ) +
12N

πi
τ.

(a) By (11), for τ = ρ2 = ei(3π/4)/
√

2 with N = 2,



Zeros of a Quasi-modular Form of Weight 2 for Γ+
0 (N) 1375

E(− 1
2ρ2

) = −iE(ρ2) +
12
πi

(−1 + i).(12)

Now since α2w2ρ2 = ρ2 for α2 =
(

1 0
−2 1

)
∈ Γ0(2) and w2 =

(
0 −1
2 0

)
, we

get from (10) and (12):

E(ρ2) = E((α2w2)ρ2) = E(α2(w2ρ2))

= (−2w2ρ2 + 1)2E(w2ρ2) +
−24
πi

(−2w2ρ2 + 1)

=
(

1
ρ2

+ 1
)2

E

(
− 1

2ρ2

)
− 24

πi

(
1
ρ2

+ 1
)

= iE(ρ2) +
12
πi

(1 + i)

by (12).
Hence we solve E(ρ2) = iE(ρ2) + 12

πi (1 + i) for E(ρ2) and we get

E(ρ2) =
12
π

.

(b) Similarly, with ρ3 = ei(5π/6)/
√

3 and N = 3, we have from (11) that

E
(
− 1

3ρ3

)
=
(1 −√

3i

2

)
E(ρ3) +

6
πi

(−3 +
√

3i).(13)

And since α3w3ρ3 = ρ3 for α3 =
(

1 0
−3 1

)
and w3 =

(
0 −1
3 0

)
, we have that

E(ρ3) = E((α3w3)ρ3) = E(α3(w3ρ3))

= (−3w3ρ3 + 1)2E(w3ρ3) +
−36
πi

(−3w3ρ3 + 1)

=
(

1
ρ3

+ 1
)2

E

(
− 1

3ρ3

)
− 36

πi

(
1
ρ3

+ 1
)

=

(
1 +

√
3i

2

)
E(ρ3) +

6
πi

(3 +
√

3i)

by (13).
So we solve E(ρ3) = ( 1+

√
3i

2 )E(ρ3) + 6
πi(3 +

√
3i) for E(ρ3) and get

E(ρ3) =
12

√
3

π
.
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2. ZEROS OF E FOR Γ+
0 (N )

In this section we study the zeros of E for Γ+
0 (N ), where E(z) = E2(z) +

NE2(Nz).

Proposition 2.1. For a positive integer N , the quasi-modular form E for Γ+
0 (N )

has a unique zero τ0 on the imaginary axis. And for N = 2, 3, E for Γ+
0 (N ) has a

zero τ1 on the axis Re(z) = 1
2 .

Proof. This uses the proof of [1, Proposition 3.1] for E2.
For τ = iy, since E2(τ) is real and increasing on (0,∞) by definition of E2, E(τ)

is also real and increasing on (0,∞).
Also since lim

y→0
E2(iy) = −∞ and lim

y→∞ E2(iy) = 1,

(14) lim
y→0

E(iy) = −∞ and lim
y→∞ E(iy) = 1 + N > 1.

Since E(iy) is continuous and increasing, this implies that E has a unique zero, say
τ0 on the purely imaginary axis.

Note that E2(τ) is real for τ = 1
2 + iy, y > 0, and lim

y→0
E2( 1

2 + iy) = −∞. If N

is even, then

lim
y→0

E
(1

2
+ iy

)
= lim

y→0

(
E2

(1
2

+ iy
)

+ NE2(Niy)
)

= −∞,

and if N is odd, then

lim
y→0

E
(1

2
+ iy

)
= lim

y→0

(
E2

(1
2

+ iy
)

+ NE2

(1
2

+ Niy
))

= −∞.

If N = 2, by Lemma 1.4 (1), E(ρ2) = E(ρ2 + 1) = 12
π > 0, hence we conclude

that there exists a zero τ1 of real part 1/2 and whose imaginary part is less than 1/2.
If N = 3, by Lemma 1.4 (2), E(ρ3) = E(ρ3 +1) = 12

√
3

π > 0, hence we conclude
that there exists a zero τ1 of real part 1/2 and whose imaginary part is less than
1/(2

√
3).

Proposition 2.2. For each integer N ≥ 2, two zeros of E are Γ+
0 (N )-equivalent

if and only if one is a translation of the other by an integer.

Proof. Suppose that z1 and z2 are any two zeros of E in H that are equivalent
modulo Γ+

0 (N ), i.e. z1 = αz2 for some α ∈ Γ+
0 (N ).

If α ∈ Γ0(N ), α must be a translation as in the proof of [1, Proposition 3.3].

If α = γwN , where γ =
(

a b

c d

)
∈ Γ0(N ) and wN =

(
0 −1
N 0

)
, then we have

from (10) and (11) that
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0 = E(z1) = E(γ(wN · z2)) = (cwNz2 + d)2E(wNz2) +
12c

πi
(cwNz2 + d)

and

E(wNz2) =
12N

πi
z2 + Nz2

2E(z2) =
12N

πi
z2.

Hence 0 = (cwNz2 + d)2 12N
πi z2 + 12C

πi (cwNz2 + d) implies that cwNz2 + d = 0
or (cwNz2 + d)Nz2 + c = 0. Note that wN · z2 ∈ H implies that cwN · z2 + d 	= 0,
since γ ∈ Γ0(N ). So 0 = (cwNz2 +d)Nz2 + c = (− c

Nz2
+d)Nz2 + c = dNz2. Then

d = 0 and −bc = 1, so c = ±1, and then γ /∈ Γ0(N ), which is a contradiction.
The invariance of E under translation proves the converse.

Corollary 2.3. For each integer N ≥ 2, no two distinct zeros of E for Γ+
0 (N ) in

the half-strip S = {τ ∈ H : −1
2 < Re(τ) ≤ 1

2} are equivalent modulo Γ+
0 (N ).

Theorem 2.4. For each integer N ≥ 2, the quasi-modular form E for Γ+
0 (N ) has

infinitely many Γ+
0 (N )-inequivalent zeros in the half-strip S.

Proof. By [10, Proposition 5.3] with f = NE2(Nz) − E2 and φ0 = 2E2 for
E = f + φ0, E has infinitely many zeros that are inequivalent relative to Γ0(N ), so
to Γ+

0 (N ). Hence since it is invariant under translation, the theorem holds.

Next, we are interested in Δ+
N for N = 2, 3 defined as in [2, Eq. (10)]:

Δ+
N = (η(z)η(Nz))δ, where δ =

{
8, if N = 2
12, if N = 3.

(15)

Corollary 2.5. Δ+
N has infinitely many critical points for N = 2, 3.

Proof. Note that for f ∈ Mk(Γ+
0 (N )),

∂kf = θf − kE

24
f ∈ Mk+2(Γ+

0 (N )).

By (15), Δ+
2 = (η(z)η(2z))8 and Δ+

2 = q + O(q2) ∈ S8(Γ+
0 (2)). Hence,

∂8Δ+
2 = θΔ+

2 − 8E

24
Δ+

2

= O(q) − 8E

24
O(q)

= O(q) ∈ S10(Γ+
0 (2)).

Since dim(S10(Γ+
0 (2))) =

[
10
8

]
− 1 = 0, we have that ∂8Δ+

2 = 0, so θΔ+
2 = 8E

24 Δ+
2

and E = 3
(

θΔ+
2

Δ+
2

)
. Therefore our assertion for N = 2 follows from Theorem 2.4.
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Again, by (15), Δ+
3 = (η(z)η(3z))12 and Δ+

3 = q2+O(q3) ∈ S12(Γ+
0 (3)). Hence,

∂12Δ+
3 = θΔ+

3 − 12E

24
Δ+

3

= O(q2) − 12E

24
O(q2)

= O(q2) ∈ S14(Γ+
0 (3)).

Since dim(S14(Γ+
0 (3))) =

[
14
6

]
− 1 = 1, there is no a nonzero modular form with

a Fourier expansion at ∞ starting qn for n > 1, which implies that ∂12Δ+
3 = 0. So

θΔ+
3 = 12E

24 Δ+
3 and E = 2

(
θΔ+

3

Δ+
3

)
. Therefore our assertion for N = 3 follows from

Theorem 2.4.

3. DISTRIBUTION OF THE ZEROS OF E FOR Γ+
0 (2)

Note that a fundamental domain for Γ+
0 (2) is given by

F+(2) := {|z| ≥ 1/
√

2,−1/2 ≤ Re(z) ≤ 0} ∪ {|z| > 1/
√

2, 0 ≤ Re(z) < 1/2}.
(Refer to [6, p. 694].)

We consider fundamental regions within the half-strip that contains zeros of E and
fundamental regions that do not contain any zeros of E .

Theorem 3.1. There exists a positive integer c0 such that for all odd integers c
with |c| ≥ c0, there exists a fundamental domain with a vertex at c−1

2c containing a zero
of E . Therefore, there exist infinitely many fundamental domains within the half-strip
that contains zeros of E .

Proof. By generalizing the idea of the proof of [1, Theorem 4.1], let τ0 be the

unique zero of E on the imaginary axis and let α =
(

t u

v w

)
∈ Γ0(2), where t 	= 0.

Then,

E(τ0) = 0 = E(α−1(ατ0)) = (−vατ0 + t)2E(ατ0) − 12i

π
(−v)(−vατ0 + t).

This is true if and only if

(16)
E(ατ0)

ατ0E(ατ0) + 12
πi

=
v

t
.

Note that τ0 ∈ w2F
+(2). In fact, from (11) we have that

E

(
− 1

2 · i√
2

)
=
(

i√
2

)2

2E

(
i√
2

)
+

24
πi

· i√
2
,
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which implies that

E

(
i√
2

)
=

6
√

2
π

> 0.

Since E is strictly increasing on (0,∞) along the imaginary axis, τ0 = iy is below
i√
2
, therefore 0 < y < 1√

2
. Note that

τ0∈w2F
+(2) ⇔ w2τ0 =

1
−2iy

=
i

2y
∈ F+(2) ⇔ Im(w2τ0)=

1
2y

>
1√
2
⇔ 0<y<

1√
2
.

Hence, when

f(z) =
E(z)

zE(z) + 12
πi

and α = S−2 :=
(

1 0
−2 1

)
, this implies that f maps a neighborhood D0 of S−2τ0,

which can be chosen to be in the interior of S−2w2F
+(2) onto a neighborhood U0 of

−2.
There exists a positive integer c0 such that for all integers c such that |c| ≥ c0,

−2 − 2
c ∈ U0. For each odd integer |c| ≥ c0, let zc ∈ D0 such that f(zc) = −2 − 2

c .

Therefore, if γc =
(

c c−1
2

2c + 2 c

)
∈ Γ0(2) ⊂ Γ+

0 (2), then since

E(γ−1
c (γczc))

γ−1
c (γczc)E(γ−1

c (γczc)) + 12
πi

=
E(zc)

zcE(zc) + 12
πi

,

recalling (16), γczc is a zero of E belonging to γcS−2w2F
+(2). For all odd integers c

such that |c| ≥ c0,

γcS−2w2 =
(

c − 1 −1
2c −2

)
∈ Γ+

0 (2),

and γcS−2w2(∞) = c−1
2c . Hence γcS−2w2 F+(2) is the fundamental domain which

has a vertex at the cusp c−1
2c .

Proposition 3.2. The Eisenstein series E for Γ+
0 (2) has no zeros in the fundamental

domain F+(2) for Γ+
0 (2).

Proof. Let τ0 = iy0 be the unique zero of E on the imaginary axis. Then, by
(11), we have that

E

(
− 1

2 · iy0

)
= (iy0)22 · E(iy0) +

24
πi

· iy0 =
24
π

y0 < 3.
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The last inequality follows from the following : Since lim
y→∞E(iy) = 3 by (14), and E

is strictly increasing on (0,∞) along the imaginary axis, we have that E

(
− 1

2 · iy0

)
=

24
π y0 < 3.

This inequality implies that y0 < π
8 . If τ = x + iy ∈ F+(2) is a zero of E , then

y = Im(τ) > 1
2 > π

8 > y0. Hence we have

1
24

|3− E(τ)| ≤ 1
24

(|1− E2(τ)|+ 2|1− E2(2τ)|)

=

∣∣∣∣∣
∞∑

n=1

σ1(n)e2πinτ

∣∣∣∣∣ + 2

∣∣∣∣∣
∞∑

n=1

σ1(n)e4πinτ

∣∣∣∣∣
≤

∞∑
n=1

σ1(n)e−2πny + 2

( ∞∑
n=1

σ1(n)e−4πny

)

<

∞∑
n=1

σ1(n)e−2πny0 + 2

( ∞∑
n=1

σ1(n)e−4πny0

)

=
1
24

(3 − E(τ0)) =
1
8
.

Hence |3 − E(τ)| < 3, hence τ cannot be a zero of E if τ ∈ F+(2).

Now we will find more fundamental domains which do not contain any zeros of
E .

Lemma 3.3. For an odd positive integer c, let S+
c =

(
c − 1 1 − 2c
2c −4c − 2

)
∈

Γ0(2)w2. Then the fundamental domain S+
c F+(2) is the region with the edge joining

c−1
2c and S+

c (ρ2) which is an arc of the circle C1(c) centered at c1(c) = 5c2−3c−1
2c(5c+2) with

radius r1(c) = 1
2c(5c+2) , and the edge joining c−1

2c and S+
c (ρ2 + 1) which is an arc of

the circle C2(c) centered at c2(c) = 3c2−c−1
2c(3c+2)

with radius r2(c) = 1
2c(3c+2)

.

Proof. Note that S+
c (∞) = 1

2 − 1
2c ,

S+
c (ρ2) =

13c2 − 3c − 3
2(13c2 + 10c + 2)

+
i

2(13c2 + 10c + 2)
,

and

S+
c (ρ2 + 1) =

5c2 + c − 1
2(5c2 + 6c + 2)

+
i

2(5c2 + 6c + 2)
.
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Hence, from the equation of the circle centered at c1(c) ∈ R with radius r1(c) :=
|c1(c)− c−1

2c | passing through S+
c (ρ2), we find that

c1(c) =
5c2 − 3c − 1
2c(5c + 2)

and r1(c) =
1

2c(5c + 2)
,

and similarly from the equation of the circle centered at c2(c) ∈ R with radius r2(c) :=
|c2(c)− c−1

2c | passing through S+
c (ρ2 + 1), we get that

c2(c) =
3c2 − c − 1
2c(3c + 2)

and r2(c) =
1

2c(3c + 2)
.

If we describe the fundamental domain S+
c F+(2) more closely for better under-

standing, its vertices are
c− 1
2c

, S+
c (ρ2), and S+

c (ρ2 + 1).

Also since c is positive, we have that

c − 1
2c

< c1(c) < c2(c) < Re(S+
c (ρ2)) < Re(S+

c (ρ2 + 1))

and
Im(S+

c (ρ2)) < Im(S+
c (ρ2 + 1)) < r1(c) < r2(c).

Thus we have the following Figure 1.

�
c−1
2c

�
c1(c)

�
c2(c)

r1(c) r2(c)

S+
c (ρ2)

S+
c (ρ2 + 1)

Figure 1. The fundamental domain S+
c F+(2).

Theorem 3.4. For each integer m ≤ −4 and each odd integer c ≥ 3, let

S+
c (m) =

(
c − 1 m(c − 1) − 1
2c 2(cm− 1)

)
∈ Γ0(2)w2.
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Then E has no zeros in S+
c (m) F+(2).

In particular, there are infinitely many fundamental domains for Γ+
0 (2) which

contain no zeros of E .
Proof. Suppose there is a zero z0 of E in the fundamental domain S+

c (m) F+(2).
Then, S+

c (m) F+(2) has a vertex at c−1
2c , as does S+

c F+(2) given in Lemma 3.3. For
convenience, we let

b = m(c− 1)− 1 and d = 2(cm − 1), so the given S+
c (m) =

(
c − 1 b
2c d

)
.

Then, since we assume that m ≤ −4 and c ≥ 3, we have that (b, d) 	= (1−2c,−4c−2).
So S+

c F+(2) ∩ S+
c (m) F+(2) is an empty set. Hence, S+

c (m) F+(2) is either within
the circle C1(c) or outside the circle C2(c) on H given in Lemma 3.3 with referring
Figure 1.

Note that

S+
c (m)(ρ2) =

(2c2m2 − 2c2m − 2cm2 + c2 − 2cm + c + 2m + 1) + i

4(cm− 1)(c(m− 1)− 1) + 2c2
,

and

S+
c (m)(ρ2 + 1) =

(2c2m2 + 2c2m − 2cm2 + c2 − 6cm− 3c + 2m + 3) + i

4(cm− 1)(c(m + 1) − 1) + 2c2
,

hence, since m ≤ −4 and c ≥ 3, we can easily show by computation using MAPLE
16 that

Im(S+
c (ρ2))− Im(S+

c (m)(ρ2 + 1))

=
c(m + 3)(c(m− 2)− 2)

(13c2 + 10c + 2)(2(cm− 1)(c(m + 1) − 1) + c2)
> 0,

Im(S+
c (m)(ρ2)) − Im(S+

c (m)(ρ2 + 1))

=
2c(cm− 1)

(2(cm− 1)(c(m− 1)− 1) + c2)(2(cm− 1)(c(m + 1)− 1) + c2)
< 0,

Re(S+
c (ρ2))− Re(S+

c (m)(ρ2 + 1))

=
(m + 3)(c2(5m + 3) + 2c(m− 2)− 2)

(13c2 + 10c + 2)(2(cm− 1)(c(m + 1) − 1) + c2)
> 0,

Re(S+
c (m)(ρ2 + 1)) − Re(S+

c (m)(ρ2))

=
2(cm− 1)2 − c2

(2(cm− 1)(c(m− 1)− 1) + c2)(2(cm− 1)(c(m + 1)− 1) + c2)
> 0,

Re(S+
c (m)(ρ2))− c− 1

2c
=

−(c(2m − 1) − 2)
2c(2(cm− 1)(c(m− 1)− 1) + c2)

> 0,
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so

Im(S+
c (m)(ρ2)) < Im(S+

c (m)(ρ2 + 1)) < Im(S+
c (ρ2)) < Im(S+

c (ρ2 + 1)),

and

c − 1
2c

< Re(S+
c (m)(ρ2)) < Re(S+

c (m)(ρ2 + 1)) < Re(S+
c (ρ2)) < Re(S+

c (ρ2 + 1)),

which implies that S+
c (m) F+(2) is within the circle C1(c) on H with vertices c−1

2c ,

S+
c (m)(ρ2) and S+

c (m)(ρ2 + 1) as shown in Figure 2.

�
c−1
2c

���
��

c0(c)

D0(c)

S+
c F+(2)

S+
c (ρ2)

S+
c (ρ2 + 1)

S+
c (m)F+(2)

S+
c (m)(ρ2)

S+
c (m)(ρ2 + 1)

Figure 2. The fundamental domains S+
c F+(2) and S+

c (m) F+(2).

By showing, that a given zero z0 is outside C2(c) (hence outside C1(c) and
S+

c (m) F+(2)), we will get a contradiction.

Note that S+
c (m) =

(−b c−1
2

−d c

)(
0 −1
2 0

)
and −bc + d · c−1

2 = 1. So

2(S+
c (m))−1 =

(
0 1
−2 0

)(
c − c−1

2
d −b

)
.

Note that (S+
c (m))−1z0 = 2(S+

c (m))−1z0. Let z1 :=
(

c − c−1
2

d −b

)
z0.

Then,
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E((S+
c (m))−1z0) = E(2(S+

c (m))−1z0)

= z2
1 · 2 · E(z1) +

24
πi

z1 by (11)

= z2
1 · 2 ·

(
(dz0 − b)2E(z0) +

12
πi

d(dz0 − b)
)

+
24
πi

z1 by (10)

=
(cz0 − c−1

2

dz0 − b

)2
· 2 · 12

πi
d(dz0 − b) +

24
πi

(cz0 − c−1
2

dz0 − b

)
(by the fact that −bc + d · c − 1

2
= 1)

=
24
πi

c
(
cz0 − c − 1

2

)
.

So we have that
∞∑

n=1

σ1(n)e2πin((S+
c (m))−1z0) + 2

∞∑
n=1

σ1(n)e2πin2((S+
c (m))−1z0)

=
3
24

− 1
24

E(2(S+
c (m))−1z0)

=
1
8
− 1

24

(24
πi

c
(
cz0 − c − 1

2

))
= − c2

πi

(
z0 −

(c − 1
2c

+
πi

8c2

))
.

Since (S+
c (m))−1z0 ∈ F+(2), Im((S+

c (m))−1z0) ≥ 1
2 . Hence∣∣∣∣∣

∞∑
n=1

σ1(n)e2πin((S+
c (m))−1z0) + 2

∞∑
n=1

σ1(n)e2πin2((S+
c (m))−1z0)

∣∣∣∣∣
≤

∞∑
n=1

σ1(n)e−nπ + 2
∞∑

n=1

σ1(n)e−2nπ := M.

Therefore, we have that ∣∣∣z0 −
(c − 1

2c
+

πi

8c2

)∣∣∣ ≤ M
π

c2
.

Let D0(c) be the disk centered at c0(c) = c−1
2c + πi

8c2
with radius r0(c) = M π

c2
.

Refer to Figure 2. Then z0 belongs to D0(c). In order to show that D0(c) lies outside
the circle C2(c) , we show that |c0(c) − c2(c)| > r2(c) + r0(c).

Since the cusp 1
2 − 1

2c and c0(c) are on the same vertical axis,

|c2(c)− c0(c)|2 = r2(c)2 +
( π

8c2

)2
.
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So it is enough to show that

r0(c)2 + 2r0(c)r2(c) <
( π

8c2

)2
,

which is equivalent to

64
(

M2 + M
c

(3c + 2)π

)
< 1.

By modifying the proof of [1, Lemma 4.3], we set

q = e−π ≈ 0.04321391825.

Then

0 < M =
∑
n≥1

σ1(n)qn + 2
∑
n≥1

σ1(n)q2n

=
∑
n≥1

nqn

1 − qn
+ 2

∑
n≥1

nq2n

1− q2n
(as in the proof of [1, Lemma 4.3])

≤ 1
1 − q

∑
n≥1

nqn +
1

1 − q2

∑
n≥1

2nq2n

≤ q

(1− q)3
+ 2

q2

(1− q2)3

≈ 0.05309361050.

Since c
(3c+2) ≤ 1

3 for all c ≥ 3 > 1, we have that

64
(

M2 + M
c

(3c + 2)π

)
≤ 64

(
M2 + M

1
3π

)
≈ 0.5409496650 < 1.

Hence we have shown that D0(c) is outside the circle C2(c). This completes the
proof.

Remark 3.5. We note that Theorem 3.4 gives a more general and explicit descrip-
tion of regions comparing from the results in [1]. In particular, we show how to take
care of the parts related with the Fricke involution while the proofs in [1] deal with
SL2(Z).
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