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MAXIMUM PACKINGS AND MINIMUM COVERINGS
OF MULTIGRAPHS WITH PATHS AND STARS

Hung-Chih Lee* and Zhen-Chun Chen

Abstract. Let F , G, and H be multigraphs. An (F, G)-decomposition of H
is an edge decomposition of H into copies of F and G using at least one of
each. For subgraphs L and R of H , an (F, G)-packing of H with leave L is an
(F, G)-decomposition of H − E(L), and an (F, G)-covering of H with padding
R is an (F, G)-decomposition of H + E(R). A maximum (F, G)-packing of H
is an (F, G)-packing of H with a minimum leave. A minimum (F, G)-covering
of H is an (F, G)-covering of H with a minimum padding. Let k be a positive
integer. A k-path, denoted by Pk, is a path on k vertices. A k-star, denoted by Sk ,
is a star with k edges. In this paper, we obtain a maximum (Pk+1, Sk)-packing
of λKn, which has a leave of size < k, and a minimum (Pk+1, Sk)-covering
of λKn, which has a padding of size < k. A similar result for λKn,n is also
obtained. As corollaries, necessary and sufficient conditions for the existence of
(Pk+1, Sk)-decompositions of both λKn and λKn,n are given.

1. INTRODUCTION

For positive integers m and n, Kn denotes the complete graph with n vertices, and
Km,n denotes the complete bipartite graph with parts of sizes m and n. If m = n,
the complete bipartite graph is referred to as balanced. Let k be a positive integer. A
k-star, denoted by Sk, is the complete bipartite graph K1,k. A k-path, denoted by Pk ,
is a path on k vertices. A k-cycle, denoted by Ck , is a cycle of length k. For a graph
H and a positive integer λ, we use λH to denote the multigraph obtained from H by
replacing each edge e by λ edges each having the same endpoints as e.

Let F , G, and H be multigraphs. A decomposition of H is a set of edge-disjoint
subgraphs of H whose union is H . A G-decomposition of H is a decomposition of
H in which each subgraph is isomorphic to G. If H has a G-decomposition, we say
that H is G-decomposable. An (F, G)-decomposition of H is a decomposition of H
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with members isomorphic to F or G such that at least one of each occurs. If H has
an (F, G)-decomposition, we say that H is (F, G)-decomposable.

Recently, decomposition of a graph into a pair of graphs has attracted a fair share of
interest. Abueida and Daven [3] investigated the problem of (Kk, Sk)-decomposition
of the complete graph Kn. Abueida and Daven [4] investigated the problem of the
(C4, E2)-decomposition of several graph products where E2 denotes two vertex dis-
joint edges. Abueida and O’Neil [7] studied the existence problem for (Ck, Sk−1)-
decomposition of the complete multigraph λKn for k ∈ {3, 4, 5}. Priyadharsini and
Muthusamy [16, 17] investigated the existence of (G, H)-decompositions of λKn and
λKn,n where G, H ∈ {Cn, Pn, Sn−1}. A graph-pair (G, H) of order m is a pair of
non-isomorphic graphs G and H with V (G) = V (H) such that both G and H contain
no isolated vertices and G ∪ H is isomorphic to Km. Abueida and Daven [2] and
Abueida, Daven and Roblee [5] completely determined the values of n for which λKn

admits a (G, H)-decomposition where (G, H) is a graph-pair of order 4 or 5. Abueida,
Clark and Leach [1] and Abueida and Hampson [6] considered the existence of de-
compositions of Kn −F into the graph-pairs of order 4 and 5, respectively, where F is
a Hamiltonian cycle, a 1-factor, or an almost 1-factor. Lee [12], Lee and Lin [13], and
Lin [14] established necessary and sufficient conditions for the existence of (Ck, Sk)-
decompositions of the complete bipartite graph, the complete bipartite graph with a
1-factor removed, and the multicrown, respectively. Shyu studied the problem of de-
composing a graph into copies of a graph G and copies of a graph H where the number
of copies of G and the number of copies of H are essential. He gave necessary and
sufficient conditions for the decomposition of Kn into paths and stars (both with 3
edges) [18], paths and cycles (both with k edges where k = 3, 4) [19, 20], and cy-
cles and stars (both with 4 edges) [21]. He [22] also gave necessary and sufficient
conditions for the decomposition of Km,n into paths and stars both with 3 edges.

Let F , G, and H be multigraphs. For subgraphs L and R of H , an (F, G)-packing
of H with leave L is an (F, G)-decomposition of H − E(L), and an (F, G)-covering
of H with padding R is an (F, G)-decomposition of H + E(R). A maximum (F, G)-
packing of H is an (F, G)-packing of H with a minimum leave (i.e. a leave with the
minimum number of edges). A minimum (F, G)-covering of H is an (F, G)-covering
of H with a minimum padding. Clearly, an (F, G)-decomposition of H is an (F, G)-
packing of H with an empty graph as its leave, and is an (F, G)-covering of H with
an empty graph as its padding.

Abueida and Daven [3] obtained the maximum (Kk, Sk)-packing and the minimum
(Kk, Sk)-covering of the complete graph Kn. Abueida and Daven [2] and Abueida,
Daven and Roblee [5] gave the maximum (F, G)-packing and the minimum (F, G)-
covering of Kn and λKn, respectively, where (F, G) is a graph-pair of order 4 or 5. In
this paper, we obtain a maximum (Pk+1, Sk)-packing of λKn, which has a leave of size
< k, and a minimum (Pk+1, Sk)-covering of λKn, which has a padding of size < k.
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A similar result for λKn,n is also obtained. As corollaries, necessary and sufficient
conditions for the existence of (Pk+1, Sk)-decompositions of both λKn and λKn,n are
given. Since Pk+1 is isomorphic to Sk for k = 1, 2, we restrict the discussions to
k ≥ 3.

2. PACKING AND COVERING OF λKn

In this section the problems of the maximum (Pk+1, Sk)-packing and the minimum
(Pk+1, Sk)-covering of λKn are investigated. We first collect some needed terminology
and notation.

Let G be a multigraph. The degree of a vertex x of G, denoted by degG x, is
the number of edges incident with x. For k ≥ 2, the vertex of degree k in Sk is the
center of Sk and any vertex of degree 1 is an endvertex of Sk. In addition, v1v2 . . . vk

denotes the k-path through vertices v1, v2, . . . , vk in order, and the vertices v1 and
vk are referred to as its origin and terminus. If P = x1x2 . . . xt, Q = y1y2 . . . ys

and xt = y1, then P + Q denotes the walk x1x2 . . . xty2 . . . ys. Moreover, we use
Pk(v1, vk) to denote a k-path with origin v1 and terminus vk. For U, W ⊆ V (G) with
U ∩ W = φ, we use G[U ] and G[U, W ] to denote the subgraph of G induced by U ,
and the maximal bipartite subgraph of G with bipartition (U, W ), respectively. When
G1, G2, . . . , Gt are edge disjoint subgraphs of a graph, we use G1 ∪ G2 ∪ · · · ∪ Gt to

denote the graph with vertex set
t⋃

i=1
V (Gi) and edge set

t⋃
i=1

E(Gi).

Before going into more details, we present some results which are useful for our
discussions.

Proposition 2.1. (Bryant [9]). For positive integers λ, n, and t, and any sequence
m1, m2, . . . , mt of positive integers, the complete multigraph λKn can be decomposed
into paths of lengths m1, m2, . . . , mt if and only if each mi ≤ n − 1 and m1 + m2 +
· · ·+ mt = |E(λKn)|.

Proposition 2.2. (Bosák [8], Hell and Rosa [10]). For an even integer n and
V (Kn) = {x0, x1, . . . , xn−1}, the complete graph Kn can be decomposed into the fol-
lowing n/2 copies of n-paths : Pn(x0, xn/2), Pn(x1, x1+n/2), . . . , Pn(xn/2−1, xn−1).

The following lemma is trivial.

Lemma 2.3. For an odd integer n with n ≥ 3, the complete graph Kn can be
decomposed into n copies of (n + 1)/2-paths whose origins are all distinct.

Proof. Let V (Kn) = {x0, x1, . . . , xn−1}. We define (n+ 1)/2-paths as follows.
For 0 ≤ i ≤ n − 1,

P i =

⎧⎨
⎩

xixi−1xi+1xi−2 . . . xi−n−1
4

xi+n−1
4

if n ≡ 1 (mod 4),

xixi−1xi+1xi−2 . . . xi+n−3
4

xi−n+1
4

if n ≡ 3 (mod 4),
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where the subscripts of x’s are taken modulo n. It is easy to check that {P 0, P 1, . . . ,

Pn−1} is a P(n+1)/2-decomposition of Kn as required.

Lemma 2.4. Let k, m, p, and s be positive integers and let t be a nonnegative
integer with max{m, t} ≤ k−1. If pk+t = m(m−1)/2+(sk+1)sk/2+m(sk+1),
then p − (s + 1)m > 0.

Proof. Note that
pk − (s + 1)mk = m(m − 1)/2 + (sk + 1)sk/2 + m − t − mk

≥ m(m − 1)/2 + (k + 1)k/2 + m − t − mk

= (k − 1 − m)(k − m)/2 + k − t

> 0.

Thus p − (s + 1)m > 0.

Theorem 2.5. Let n and k be positive integers with k ≥ 3 and n ≥ k + 2. If
|E(Kn)| ≡ t (mod k) where 0 ≤ t ≤ k − 1, then Kn has a (Pk+1, Sk)-packing with
leave Pt+1.

Proof. Let n = qk+r where q ∈ N, 0 ≤ r ≤ k−1 and let |E(Kn)| = pk+t where
p ∈ N. We can see that p ≥ q + 1. Suppose that r = 1. Then Kn can be decomposed
into Kqk and K1,qk. Note that |E(Kqk)| = (p−q)k + t. Thus by Proposition 2.1, Kqk

can be decomposed into p− q copies of (k+1)-paths and one (t+1)-path. Obviously,
K1,qk is Sk-decomposable. Hence Kn has a (Pk+1, Sk)-packing with leave Pt+1 for
r = 1.

Now we consider the case r 	= 1. If r = 0, then n = qk where q ≥ 2 for
n ≥ k + 2; write n = (k − 1) + (q − 1)k + 1 where k − 1 ≥ 1, q − 1 ≥ 1. If
r ≥ 2, then n = qk + r = (r − 1) + qk + 1 where 1 ≤ r − 1 ≤ k − 1, q ≥ 1.
Thus for r 	= 1 we can set n = m + sk + 1 where m and s are positive integers with
m ≤ k−1. Let A = {x0, x1, . . . , xm−1}, B = {y0, y1, . . . , ysk} and V (Kn) = A∪B.
Note that Kn = Km+sk+1 = Km+sk+1[A] ∪ Km+sk+1[B] ∪ Km+sk+1[A, B], and
Km+sk+1[A] ∼= Km, Km+sk+1[B] ∼= Ksk+1, and Km+sk+1[A, B] ∼= Km,sk+1. Thus
pk + t = m(m − 1)/2 + (sk + 1)sk/2 + m(sk + 1). Hence by Lemma 2.4,

(1) p − (s + 1)m > 0.

Also

(2) |E(Ksk+1)| = (sk + 1)sk/2 = pk + t − m(m− 1)/2− m(sk + 1).

Case 1. m is odd.
By (2), |E(Ksk+1)| = (k − (m + 1)/2)m + k(p − (s + 1)m) + t. By (1) and

Proposition 2.1, Ksk+1 has a path decomposition D , which consists of m copies of
(k − (m − 1)/2)-paths, p − (s + 1)m copies of (k + 1)-paths and one (t + 1)-path.
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If m = 1, then n = sk + 2, A = {x0}, and as mentioned above, Ksk+1 has a
decomposition consisting of one Pk , p − s − 1 copies of Pk+1 and one Pt+1. Assume
that in the above decomposition, Pk = Pk(yw0 , yw1) (i.e. yw0 , yw1 are the endvertices
of this Pk). Let P = Pk(yw0, yw1) + x0yw0 . Then P is a (k + 1)-path. Moreover,
Ksk+2[A, B] − {x0yw0} ∼= K1,sk, which is Sk-decomposable. Hence Ksk+2 has a
(Pk+1, Sk)-packing with leave Pt+1.

If m ≥ 3, then Lemma 2.3 implies that there exists a P(m+1)/2-decompositionD ′

of Km where D ′ = {P(m+1)/2(xi, xji) | 0 ≤ i ≤ m − 1} and x1, x2, . . . , xm−1 are
distinct. Suppose that the m copies of (k − (m − 1)/2)-paths in D are Pk−(m−1)/2

(yw0, yw′
0
), Pk−(m−1)/2(yw1 , yw′

1
), . . . , Pk−(m−1)/2(ywm−1 , yw′

m−1
). For i ∈ {0, 1, . . . ,

m − 1}, let
P i = Pm+1

2
(xi, xji) + xiywi + Pk−m−1

2
(ywi , yw′

i
).

Then P i is a (k + 1)-path for each i. Moreover, let G = Km+sk+1[A, B] − {xiywi |
0 ≤ i ≤ m − 1}. Then G is a bipartite graph with degG xi = sk for 0 ≤ i ≤ m − 1.
Thus G is Sk-decomposable, and in turn, Km+sk+1 has a (Pk+1, Sk)-packing with
leave Pt+1.

Case 2. m is even.
By Proposition 2.2, there exists a Pm-decomposition {Pm(xi, xi+m/2) | 0 ≤ i ≤

m/2−1} of Km. By (2), |E(Ksk+1)| = (k−m−1)m/2+k(p−sm−m/2)+ t. By
(1), p − sm − m/2 > 0. Hence by Proposition 2.1, Ksk+1 has a path decomposition
D ′′, which consists of m/2 copies of (k − m)-paths, p − sm − m/2 copies of
(k + 1)-paths and one (t + 1)-path. Suppose that the m/2 copies of (k − m)-paths
in D ′′ are Pk−m(yw0 , yw′

0
), Pk−m(yw1, yw′

1
), . . . , Pk−m(ywm/2−1

, yw′
m/2−1

). For i ∈
{0, 1, . . . , m/2− 1}, let

Qi = Pm(xi, xi+m
2
) + xiywi + Pk−m(ywi , yw′

i
) + xi+m

2
yvi

where yvi /∈ V (Pk−m(ywi , yw′
i
)). Then Qi is a (k + 1)-path for each i. Moreover, let

H = Km+sk+1[A, B]− {xiywi , xi+m/2yvi | 0 ≤ i ≤ m/2− 1}. Then H is a bipartite
graph with degH xi = sk for 0 ≤ i ≤ m − 1. Thus H is Sk-decomposable, and in
turn Km+sk+1 has a (Pk+1, Sk)-packing with leave Pt+1.

It is trivial that the leave Pt+1 in Theorem 2.5 can be chosen arbitrarily.

Theorem 2.6. Let λ, n and k be positive integers with k ≥ 3 and n ≥ k + 2. If
|E(λKn)| ≡ t (mod k) where 0 ≤ t ≤ k−1, then (1) λKn has a (Pk+1, Sk)-packing
with leave Pt+1, (2) λKn has a (Pk+1, Sk)-covering with padding Pk−t+1.

Proof. (1) Let V (Kn) = {x0, x1, . . . , xn−1} and |E(Kn)| ≡ r (mod k) with
0 ≤ r ≤ k − 1. From the assumption |E(λKn)| ≡ t (mod k), we have λr ≡ t

(mod k). Clearly, λKn can be decomposed into λ copies of Kn, say G0, G1, . . . , Gλ−1.
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Theorem 2.5 implies that each Gi has a (Pk+1, Sk)-packing with leave (r + 1)-path,
say P i. By the note following Theorem 2.5, we can assume that for 0 ≤ i ≤ λ − 1,
P i = xirxir+1 . . .xir+r where the subscripts of x’s are taken modulo n. By cutting
method, we can see that P 0 + P 1 + · · ·+ Pλ−1 which is a walk with λr edges can be
decomposed into several copies of (k + 1)-paths and one (t + 1)-path. This completes
the proof of (1).

(2) follows from (1) directly.

In the proof of the following corollary, we use S(u; v1, v2, . . . , vk) to denote a star
with center u and endvertices v1, v2, . . . , vk.

Corollary 2.7. For positive integers λ, k, and n with k ≥ 3, the complete multi-
graph λKn is (Pk+1, Sk)-decomposable if and only if n ≥ k + 1, λn(n − 1)/2 ≡ 0
(mod k) and (λ, n) 	= (1, k + 1).

Proof. (Necessity) Since |V (Kn)| and |V (Pk+1)| are n and k +1, respectively,
n ≥ k + 1 is necessary. Since λKn has λn(n − 1)/2 edges and each subgraph in a
decomposition has k edges, k must divide λn(n−1)/2. Since Kk+1−E(Sk) contains
no (k + 1)-path, Kk+1 is not (Pk+1, Sk)-decomposable. Hence (λ, n) 	= (1, k + 1).

(Sufficiency) When n ≥ k+2 and k divides λn(n−1)/2, the existence of (Pk+1, Sk)-
decomposition of λKn follows from Theorem 2.6. So it remains to consider n = k+1.
Then λ ≥ 2 by the assumption. We distinguish two cases according to the parity of λ.

Case 1. λ is even.
Let V (2Kk+1) = {x0, x1, . . . , xk−1, x∞}. For i = 0, 1, . . . , k − 1, let

P i = xixi−1xi+1xi−2 . . .x�i+k/2�x∞

where the subscripts of x’s are taken modulo k. It is easy to see that {S(x∞; x0, x1, . . . ,

xk−1), P 0, P 1, . . . , P k−1} is a (Pk+1, Sk)-decomposition of 2Kk+1. Since λ is even,
λKk+1 can be decomposed into λ/2 copies of 2Kk+1. Hence λKk+1 is (Pk+1, Sk)-
decomposable.

Case 2. λ ≥ 3 is odd.
The condition λn(n − 1)/2 ≡ 0 (mod k) with n = k + 1 and odd λ implies that

k + 1 is even. Note that λKk+1 = (λ − 1)Kk+1 ∪ Kk+1. By Case 1, (λ − 1)Kk+1

is (Pk+1, Sk)-decomposable. By Proposition 2.2, Kk+1 is Pk+1-decomposable. Thus
λKk+1 is (Pk+1, Sk)-decomposable.

3. PACKING AND COVERING OF λKn,n

In this section the (Pk+1, Sk)-packing, (Pk+1, Sk)-covering and (Pk+1, Sk)-decom-
position of λKn,n are investigated. Before moving on, we need more terminology and
notation, and some useful results.
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Let G be a multigraph. We use (v1, v2, . . . , vk) to denote the k-cycle of G, which
is through vertices v1, v2, . . . , vk in order, and μ(uv) to denote the number of edges of
G joining the vertices u and v. Given an Sk-decomposition of G, a central function c

from V (G) to the set of nonnegative integers is defined as follows: for each v ∈ V (G),
c(v) is the number of k-stars in the decomposition whose center is v.

Proposition 3.1. (Hoffman [11]). Let H be a multigraph and c be a function
from V (H) to the set of nonnegative integers. Then c is a central function for some
Sk-decomposition of H if and only if

(i) k
∑

v∈V (H) c(v) = |E(H)|,
(ii) for all x, y ∈ V (H) with x 	= y, μ(xy) ≤ c(x) + c(y),

(iii) for all S ⊆ V (H), k
∑
v∈S

c(v) ≤ ε(S) +
∑

x∈S,y∈V (H)−S

min{c(x), μ(xy)},

where ε(S) denotes the number of edges of H with both ends in S.

Proposition 3.2. (Parker [15]). There exists a Pk+1-decomposition of Km,n if
and only if mn ≡ 0 (mod k) and one of the following cases occurs.

Case k m n Conditions
1 even even even k ≤ 2m, k ≤ 2n, not both equalities
2 even even odd k ≤ 2m − 2, k ≤ 2n

3 even odd even k ≤ 2m, k ≤ 2n − 2
4 odd even even k ≤ 2m− 1, k ≤ 2n − 1
5 odd even odd k ≤ 2m − 1, k ≤ n

6 odd odd even k ≤ m, k ≤ 2n − 1
7 odd odd odd k ≤ m, k ≤ n

Lemma 3.3. If λ and k are positive integers with k ≥ 2, then λKk,k is (Pk+1, Sk)-
decomposable.

Proof. Note that Kk,k = Kk,k−1 ∪ Kk,1 for k ≥ 2. It is easy to see that
Kk,k−1 is Pk+1-decomposable by cases 2 and 6 of Proposition 3.2. Clearly Kk,1 is
Sk-decomposable. Thus Kk,k is (Pk+1, Sk)-decomposable, and so is λKk,k.

In the sequel of the paper, we use (A, B) to denote the bipartition of λKn,n where
A = {a0, a1, . . . , an−1} and B = {b0, b1, . . . , bn−1}.

Lemma 3.4. Let λ, k, and n be positive integers with 3 ≤ k < n < 2k. If
λ(n − k)2 < k, then λKn,n has a (Pk+1, Sk)-packing P with |P | = �λn2/k� and
a (Pk+1, Sk)-covering C with |C | = 
λn2/k�.
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Proof. Let n = k + r. The assumption k < n < 2k implies 0 < r < k.
We first give a required packing. Note that

λKn,n = λKk,k ∪ λKk,r ∪ λKr,k ∪ λKr,r.

By Lemma 3.3, λKk,k has a (Pk+1, Sk)-decomposition D 1 with |D 1| = λk. Triv-
ially, λKk,r and λKr,k have Sk-decompositionsD 2 and D 3 with |D 2| = |D 3| =
λr, respectively. Let P =

⋃3
i=1D i. Then P is a (Pk+1, Sk)-packing of λKn,n

with |P | = λ(k+2r). Since λr2 = λ(n−k)2 < k, we have |P | = �λ(k+r)2/k� =
�λn2/k�. Thus P is a required packing.

Now we give a required covering. Let s = λr2. Note s < k < n. Let A0 =
{a0, a1, . . . , a�(s−1)/2�}, A1 = A − A0, B0 = {b0, b1, . . . , bk−1} and B1 = B − B0.
Define a (k + 1)-path P as follows:

P =

⎧⎨
⎩

b0a0b1a1 . . . b k−1
2

a k−1
2

if k is odd,

b0a0b1a1 . . . b k
2
−1a k

2
−1b k

2
if k is even.

Let P ′ be the (k − s + 1)-subpath of P with end vertices a k−1
2

, a s−1
2

, when k is odd,
s is odd, end vertices a k−1

2
, b s

2
, when k is odd, s is even, end vertices b k

2
, a s−1

2
, when

k is even, s is odd, and end vertices b k
2
, b s

2
, when k is even, s is even. Note that since

s > 0, P ′ is a proper subgraph of P .
Let

H = λKn,n − E(P ) + E(P ′).
Note that H is a proper subgraph of λKn,n.
We will show that H has an Sk-decomposition.
Note that V (H) = V (λKn,n), |E(H)| = λn2 − k + (k − s) = λn2 − λr2 =

λk(k + 2r), and μ(uv) ≤ λ for all u, v ∈ V (H). Define a function c : V (H) → N as
follows:

c(v) =

⎧⎨
⎩

0 if v ∈ B0,

λ otherwise.

We will show that the function c satisfies (i), (ii), and (iii) in Proposition 3.1. First,
k

∑
v∈V (H) c(v) = kλ(k + 2r) = |E(H)|. This proves (i). Next, if u, v ∈ B0, then

c(u) + c(v) = 0 = μ(uv); otherwise, c(u) + c(v) ≥ λ ≥ μ(uv). This proves (ii). To
prove (iii), let S ⊆ V (H). For i ∈ {0, 1}, let Xi = S∩Ai and Yi = S∩Bi. Moreover,
let X = X0 ∪ X1 and Y = Y0 ∪ Y1. Define a set T of ordered pairs of vertices as
follows:

T ={(u, v) | (u∈X, v ∈ B1 − Y1) or (u ∈ X1, v ∈ B0−Y0) or (u ∈ Y1, v ∈ A − X)}.
Note that

k
∑
w∈S

c(w) = kλ(|X |+ |Y1|),(1)
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ε(S) = λ(|X ||Y1| + |X1||Y0|) +
∑

u∈X0,v∈Y0

μ(uv),(2)

and for u ∈ S and v ∈ V (H)− S

(3) min{c(u), μ(uv)}=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ if (u, v) ∈ T,

μ(uv) if u ∈ X0, v ∈ B0 − Y0,

0 otherwise.

For S ⊆ V (H), let

g(S) = ε(S) +
∑

u∈S,v∈V (H)−S

min{c(u), μ(uv)}− k
∑
w∈S

c(w).

To show (iii), we need show g(S) ≥ 0.
Note that, if v ∈ A0 −{a� s−1

2
�}, there are λk−2 edges in H joining v and all vertices

in B0; if v = a� s−1
2

�, there are λk − ρ edges in H joining v and all vertices in B0

where ρ = 1 if s is odd, and ρ = 2 if s is even.
Hence ∑

u∈X0,v∈B0

μ(uv)

=

{ |X0|(λk − 2) if a�(s−1)/2� /∈ X0,

|X0|(λk − 2) + 2 − ρ if a�(s−1)/2� ∈ X0.

By (1)–(3) and |X0| + |X1| = |X |, we have

g(S) = λ(|X ||Y1| + |X1||Y0|) +
∑

u∈X0,v∈Y0

μ(uv)

+λ(|X |(r− |Y1|) + |X1|(k − |Y0|) + |Y1|(k + r − |X |))
+

∑
u∈X0,v∈B0−Y0

μ(uv) − kλ(|X |+ |Y1|)

= λr|X |+ λ|Y1|r − λ|Y1||X | − λk|X0| +
∑

u∈X0,v∈B0

μ(uv)

=

{
λ(r|X |+ |Y1|(r − |X |))− 2|X0| if a�(s−1)/2� /∈ X0,

λ(r|X |+ |Y1|(r − |X |))− 2|X0|+ 2 − ρ if a�(s−1)/2� ∈ X0.

If a�(s−1)/2� /∈ X0, then |X0| ≤ �(s − 1)/2�, which implies −2|X0| ≥ −s. If
a�(s−1)/2� ∈ X0, then |X0| ≤ �(s − 1)/2� + 1, which implies −2|X0| + 2 − ρ ≥
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−2�(s − 1)/2� − ρ = −2(s − ρ)/2− ρ = −s. Suppose |X | ≥ r. We have

g(S) ≥ λ(r|X | − |Y1|(|X | − r))− s

= λ(r|X | − |Y1|(|X | − r))− λr2

= λ(|X | − r)(r − |Y1|)
≥ 0.

Suppose |X | < r.
If λr = 1, then |X0| = |X | = 0, which implies −2|X0| = −λr|X0|. If λr ≥ 2,

then −2|X0| ≥ −λr|X0|. Note that 2 − ρ ≥ 0. Hence we have

g(S) ≥ λ(r|X |+ |Y1|(r − |X |))− 2|X0|
≥ λ(r|X |+ |Y1|(r − |X |))− λr|X0|
= λ(r|X1| + |Y1|(r − |X |))
≥ 0.

This settles (iii). By Proposition 3.1, H has an Sk-decomposition, say D . Since
H = λKn,n − E(P ) + E(P ′), D ∪ {P} is an (Pk+1, Sk)-covering of λKn,n. Also
since D is a packing but not a decomposition of λKn,n and D ∪ {P} is a covering
of λKn,n, we have |D ∪ {P}| = 
λn2/k�.

The following result is needed in the proof of Lemma 3.6.

Lemma 3.5. Let λ, k, and r be positive integers with k ≥ 3, r < k and λr2 ≥ k.
If k is odd or (λ, r) 	= (1, k− 1), then ��λr2/k�/2� ≤ λr/2− 1.

Proof. We first consider the case λ = 1. If r = k− 1, then �λr2/k� = �r2/(r +
1)� = r − 1, and k is odd by assumption. Thus r is even. Hence ��λr2/k�/2� =
�(r−1)/2� = r/2−1. If r ≤ k−2, then r2 ≥ r+2 from the assumption λr2 ≥ k. Thus
r ≥ 2. Note that �λr2/k� ≤ �r2/(r +2)�. In the case r = 2, ��r2/(r +2)�/2� = 0 =
r/2−1, which implies ��λr2/k�/2� ≤ r/2−1. In the case r ≥ 3, �r2/(r+2)� = r−2,
which implies ��λr2/k�/2� ≤ �(r − 2)/2� ≤ r/2 − 1.

Now we consider the case λ ≥ 2. Since λr2 ≥ k ≥ 3, we have r ≥ √
3/λ. Thus

λr2

k
≤ λr2

r + 1
= λr − λ

1 + 1/r
≤ λr − λ

1 +
√

λ/3
.

Note that λ/(1 +
√

λ/3) is increasing with respect to λ. Thus λr2/k ≤ λr − 2/(1 +√
2/3). Therefore, �λr2/k� ≤ λr − 2. In turn, ��λr2/k�/2� ≤ λr/2 − 1. This

completes the proof.
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Lemma 3.6. Let λ, k, and n be positive integers with 3 ≤ k < n < 2k. If
λ(n − k)2 ≥ k, then λKn,n has a (Pk+1, Sk)-packing P with |P | = �λn2/k� and
a (Pk+1, Sk)-covering C with |C | = 
λn2/k�.

Proof. Let n = k + r. From the assumption k < n < 2k, we have 0 < r < k.
Let λr2 = tk + s where s and t are integers with 1 ≤ t, 0 ≤ s < k. Note that
t = �λr2/k�. Hence �λn2/k� = �λ(k + r)2/k� = λ(k + 2r) + t and⌈

λn2

k

⌉
=

⌈
λ(k + r)2

k

⌉
=

⎧⎨
⎩

λ(k + 2r) + t if s = 0,

λ(k + 2r) + t + 1 if s > 0.
In the sequel of the proof, we will show that λKn,n has a packing P consisting of t

copies of (k + 1)-paths and λ(k + 2r) copies of k-stars with leave Ps+1.
Let

δ =

{
1 if t is odd,

0 if t is even.
Let A0 = {a0, a1, . . . , ak−1}, A1 = A − A0, B0 = {b0, b1, . . . , bk−1}, and B1 =
B − B0. Let G = λKn,n[A0 ∪ B0]. Clearly, G is isomorphic to λKk,k. For i ∈
{0, 1, . . . , �λk/2� − 1}, let C(i) = (b2i, a0, b2i+1, a1, . . . , b2i+k−1, ak−1) where the
subscripts of b’s are taken modulo k. Trivially, C(i) is a 2k-cycle in G for each i.
Note that

G =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�λk/2�−1⋃
i=0

C(i) if λk is even,

(
�λk/2�−1⋃

i=0

C(i)) ∪ M if λk is odd,

where M is a perfect matching in G. For s > 0 or odd t, define a (δk + s + 1)-path
P , which is a subpath of C(0), as follows:

P =

{
b0a0b1a1 . . . b�(δk+s)/2�−1a�(δk+s)/2�−1b�(δk+s)/2� if δk + s is even,

b0a0b1a1 . . . b�(δk+s)/2�−1a�(δk+s)/2�−1 if δk + s is odd.

Since λ(n − k)2 ≥ k > r, we have 1 ≤ t < λr. Thus t + 1 ≤ λr; in turn,
� t

2� ≤ t
2 ≤ λr−1

2 < λk−1
2 ≤ �λk

2 �. Hence � t
2� ≤ �λk

2 � − 1, which assures that the
following F is well-defined. Define a subgraph F of G as follows :

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P if t = 1,
�t/2�⋃
i=1

C(i) if s = 0 and t is even,

(
�t/2�⋃
i=1

C(i)) ∪ P otherwise.



1352 Hung-Chih Lee and Zhen-Chun Chen

Since C2k can be decomposed into 2 copies of Pk+1 and P can be decomposed into
δ copies of Pk+1 as well as one copy of Ps+1, there exists a decomposition of F into
t copies of Pk+1 and one copy of Ps+1. Thus F has a Pk+1-packing, say P 0, with
leave Ps+1. Let

H = λKn,n − E(F ).

Note that V (H) = V (λKn,n), |E(H)|= λn2 − (tk + s) = λn2 − λr2 = λk(k + 2r),
and μ(uv) ≤ λ for all u, v ∈ V (H) with u 	= v. Define a function c : V (H) → N as
follows:

for v ∈ V (H),

c(v) =

{
0 if v ∈ B0,

λ otherwise.
Now we show that the function c satisfies (i), (ii) and (iii) in Proposition 3.1.

First, k
∑

v∈V (H) c(v) = kλ(k+2r) = |E(H)|. This proves (i). Next, if u, v ∈ B0,
then c(u) + c(v) = 0 = μ(uv); otherwise, c(u) + c(v) ≥ λ ≥ μ(uv). This proves (ii).
Finally, we prove (iii). For S ⊆ V (H) and i ∈ {0, 1}, let Xi = S ∩ Ai, Yi = S ∩ Bi,
X = X0∪X1, and Y = Y0∪Y1. Define a set T of ordered pairs of vertices as follows:

T = {(u, v) | (u ∈ X, v ∈ B1 − Y1) or (u ∈ X1, v ∈ B0 − Y0) or (u ∈ Y1, v ∈ A − X)}.
Note that

k
∑
w∈S

c(w) = kλ(|X |+ |Y1|),(4)

ε(S) = λ(|X ||Y1| + |X1||Y0|) +
∑

u∈X0,v∈Y0

μ(uv).(5)

For u ∈ S and v ∈ V (H)− S,

min{c(u), μ(uv)} =

⎧⎪⎪⎨
⎪⎪⎩

λ if (u, v) ∈ T ,

μ(uv) if u ∈ X0, v ∈ B0 − Y0,

0 otherwise.

Thus

(6)

∑
u∈S,v∈V (H)−S

min{c(u), μ(uv)}

=
∑

(u,v)∈T

min{c(u), μ(uv)}+
∑

u∈X0,v∈B0−Y0

min{c(u), μ(uv)}

= λ(|X |(r− |Y1|) + |X1|(k − |Y0|) + |Y1|(k + r − |X |))
+

∑
u∈X0,v∈B0−Y0

μ(uv).
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For S ⊆ V (H), let

g(S) = ε(S) +
∑

u∈S,v∈V (H)−S

min{c(u), μ(uv)}− k
∑
w∈S

c(w).

Proving (iii) is equivalent to proving g(S) ≥ 0.
Let H ′ = H [A ∪ B0]. For s > 0 or odd t, let A′

0 = {a0, a1, . . . , a�(δk+s)/2�−1},
A′′

0 = A0 −A′
0. Let X ′

0 = S ∩A′
0 and X ′′

0 = S ∩A′′
0. Obviously, X0 = X ′

0 ∪X ′′
0 . We

have
for u ∈ V (H ′),

degH ′ u =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λk − t if s = 0, t is even, and u ∈ A0,

λk − 2�t/2� − 2 if s > 0 or t is odd, and u ∈ A′
0 − {a�(δk+s)/2�−1},

λk − 2�t/2� − ρ if s > 0 or t is odd, and u = a�(δk+s)/2�−1,

λk − 2�t/2� if s > 0 or t is odd, and u ∈ A′′
0,

where ρ = 1 if δk + s is odd, and ρ = 2 if δk + s is even.
Hence

∑
u∈X0,v∈Y0

μ(uv) +
∑

u∈X0,v∈B0−Y0

μ(uv)

=
∑

u∈X0,v∈B0

μ(uv)

=
∑

u∈X0

degH′u

=

⎧⎪⎪⎨
⎪⎪⎩
|X0|(λk − t) if s=0 and t is even,

|X0|(λk − 2�t/2�)−2|X′
0| if s>0 or t is odd, and a�(δk+s)/2�−1 /∈X′

0,

|X0|(λk − 2�t/2�)−2|X′
0|+2−ρ if s>0 or t is odd, and a�(δk+s)/2�−1∈ X′

0.

Let

m =

⎧⎪⎪⎨
⎪⎪⎩
−t|X0| if s = 0 and t is even,

−2(|X0|�t/2� + |X ′
0|) if s > 0 or t is odd, and a�(δk+s)/2�−1 /∈ X ′

0,

−2(|X0|�t/2� + |X ′
0| − 1)− ρ if s > 0 or t is odd, and a�(δk+s)/2�−1 ∈ X ′

0.

Then

(7)
∑

u∈X0,v∈Y0

μ(uv) +
∑

u∈X0,v∈B0−Y0

μ(uv) = |X0|λk + m.
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By the definition of g(S), and (4)− (7), we have
g(S) = λ(|X ||Y1| + |X1||Y0|) +

∑
u∈X0,v∈Y0

μ(uv)

+λ(|X |(r− |Y1|) + |X1|(k − |Y0|) + |Y1|(k + r − |X |))
+

∑
u∈X0,v∈B0−Y0

μ(uv) − kλ(|X |+ |Y1|)

= λ(|X ||Y1| + |X1||Y0|+ |X |(r − |Y1|) + |X1|(k − |Y0|)
+|Y1|(k + r − |X |)− k(|X |+ |Y1|))
+

∑
u∈X0,v∈Y0

μ(uv) +
∑

u∈X0,v∈B0−Y0

μ(uv)

=λ(|X |r + |X1|k + |Y1|r − |Y1||X | − k|X |) + |X0|λk + m

=λ(|X |r + |X1|k + |Y1|r − |Y1||X | − k|X |+ |X0|k) + m.

Since |X | = |X0| + |X1|, we have

(8) g(S) = λ(|X |r + |Y1|(r − |X |)) + m.

We first show that m ≥ −λr2. Note that |X0| ≤ k. When s = 0 and t is even,
m ≥ −kt = −λr2. When s > 0 or t is odd,

|X ′
0| ≤

{ |A′
0| − 1 if a�(δk+s)/2�−1 /∈ X ′

0,

|A′
0| if a�(δk+s)/2�−1 ∈ X ′

0.

Thus

m ≥
{−2(|X0|�t/2� + |A′

0|) + 2 if a�(δk+s)/2�−1 /∈ X ′
0,

−2(|X0|�t/2� + |A′
0|) + 2 − ρ if a�(δk+s)/2�−1 ∈ X ′

0.

≥ −2(|X0|�t/2� + |A′
0|) + 2− ρ.

In addition, �t/2� = (t − δ)/2, and |A′
0| = 
(δk + s)/2� = (δk + s + 2− ρ)/2. Thus

m ≥ −2(k(t − δ)/2 + (δk + s + 2 − ρ)/2− 1)− ρ = −(kt + s) = −λr2.
Therefore, if |X | ≥ r, we have from (8), that

g(S) ≥ λ(r|X | − |Y1|(|X | − r))− λr2 = λ(|X | − r)(r − |Y1|) ≥ 0.

So it remains to consider the case |X | < r.
We first show that m ≥ −λr|X0|.
Suppose that k is even and (λ, r) = (1, k−1). Then λr2 = (k−1)2 = (k−2)k+1 =

(r−1)k+1. This implies s = 1 and t = r−1 where t is even. Thus �t/2� = (λr−1)/2
and A′

0 = {a0}. Thus if a�(δk+s)/2�−1 /∈ X ′
0, we have |X ′

0| = 0, which implies m =
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−2(|X0|� t
2� + |X ′

0|) = −2|X0|λr−1
2 ≥ −2|X0|λr

2 = −λr|X0|; if a�(δk+s)/2�−1 ∈ X ′
0,

we have |X ′
0| = 1, which implies m = −2(|X0|� t

2�+|X ′
0|−1)−ρ = −2|X0|λr−1

2 −1 =
−λr|X0| + |X0| − 1 ≥ −λr|X0|. Hence m ≥ −λr|X0|.

Suppose that either k is odd or (λ, r) 	= (1, k − 1)â. Recall that t = �λr2/k� in
the beginning of the proof. Lemma 3.5 implies �t/2� ≤ λr/2− 1. Hence

m ≥ −2
(
|X0|� t

2
� + |X ′

0|
)

≥ −2(|X0|(λr/2− 1) + |X ′
0|)

= −λr|X0| + 2(|X0| − |X ′
0|)

≥ −λr|X0|.
Therefore, for |X | < r, we have from (8), that

g(S) ≥ λ(r|X |+ |Y1|(r − |X |))− λr|X0| = λ(r|X1| + |Y1|(r − |X |)) ≥ 0.

This settles (iii).
In the above we show that the function c : V (H) → N satisfies (i), (ii), (iii) in

Proposition 3.1. Thus H has an Sk-decomposition, say D .
Let P = D ∪ P 0. Clearly, P is a (Pk+1, Sk)-packing of λKn,n with leave

Ps+1 and |P | = �λn2/k�. Let

C =

{
P if s = 0,

P ∪ {Q} if s ≥ 1,

where Q is a (k + 1)-path containing the leave of P . It is easy to see that C is a
(Pk+1, Sk)-covering and |C | = 
λn2/k�.

Combining Lemma 3.3, Lemma 3.4 and Lemma 3.6, we obtain the following
lemma.

Lemma 3.7. If λ, k, and n be positive integers with 3 ≤ k ≤ n < 2k, then λKn,n

has a (Pk+1, Sk)-packing P with |P | = �λn2/k� and a (Pk+1, Sk)-covering C
with |C | = 
λn2/k�.

Now, we are ready for the main result of this section.

Theorem 3.8. If λ, k, and n are positive integers with 3 ≤ k ≤ n, then λKn,n has
a (Pk+1, Sk)-packing P with |P | = �λn2/k� and a (Pk+1, Sk)-covering C with
|C | = 
λn2/k�.

Proof. Due to Lemma 3.7, we only need consider n ≥ 2k.
Let n = qk + r where q and r are integers with q ≥ 2, 0 ≤ r < k. We have

λKn,n = λKk+r,k+r∪λKk+r,(q−1)k∪λK(q−1)k,n. Note that by Lemma 3.7 λKk+r,k+r
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has a (Pk+1, Sk)-packing P with |P | = �λ(k + r)2/k� and a (Pk+1, Sk)-covering
C with |C | = 
λ(k + r)2/k�. Trivially, λKk+r,(q−1)k and λK(q−1)k,n have Sk-
decompositions, say D and D ′, respectively, where |D | = λ(k + r)(q − 1) and
|D ′| = λ(q−1)n. Then P ∪D ∪D ′ is a (Pk+1, Sk)-packing of λKn,n, obviously
with cardinality �λn2/k� and C ∪ D ∪ D ′ is a (Pk+1, Sk)-covering of λKn,n,
obviously with cardinality 
λn2/k�. This completes the proof.

Clearly, if λKn,n admits a (Pk+1, Sk)-decomposition, then k ≤ n and λn2 is
divisible by k. Thus the following corollary follows from Theorem 3.8.

Corollary 3.9. For positive integers λ, k and n with k ≥ 3, the balanced complete
bipartite multigraph λKn,n is (Pk+1, Sk)-decomposable if and only if k ≤ n and λn2

is divisible by k.
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