TAIWANESE JOURNAL OF MATHEMATICS Vol. 19, No. 5, pp. 1341-1357, October 2015 DOI: 10.11650/tjm.19.2015.4456 This paper is available online at http://journal.taiwanmathsoc.org.tw

MAXIMUM PACKINGS AND MINIMUM COVERINGS OF MULTIGRAPHS WITH PATHS AND STARS

Hung-Chih Lee* and Zhen-Chun Chen

Abstract. Let F, G, and H be multigraphs. An (F, G)-decomposition of H is an edge decomposition of H into copies of F and G using at least one of each. For subgraphs L and R of H, an (F, G)-packing of H with leave L is an (F, G)-decomposition of H - E(L), and an (F, G)-covering of H with padding R is an (F, G)-decomposition of H + E(R). A maximum (F, G)-packing of H is an (F, G)-packing of H with a minimum leave. A minimum (F, G)-covering of H is an (F, G)-covering of H with a minimum padding. Let k be a positive integer. A k-path, denoted by P_k , is a path on k vertices. A k-star, denoted by S_k , is a star with k edges. In this paper, we obtain a maximum (P_{k+1}, S_k) -packing of λK_n , which has a leave of size < k. A similar result for $\lambda K_{n,n}$ is also obtained. As corollaries, necessary and sufficient conditions for the existence of (P_{k+1}, S_k) -decompositions of both λK_n and $\lambda K_{n,n}$ are given.

1. INTRODUCTION

For positive integers m and n, K_n denotes the complete graph with n vertices, and $K_{m,n}$ denotes the complete bipartite graph with parts of sizes m and n. If m = n, the complete bipartite graph is referred to as *balanced*. Let k be a positive integer. A k-star, denoted by S_k , is the complete bipartite graph $K_{1,k}$. A k-path, denoted by P_k , is a path on k vertices. A k-cycle, denoted by C_k , is a cycle of length k. For a graph H and a positive integer λ , we use λH to denote the multigraph obtained from H by replacing each edge e by λ edges each having the same endpoints as e.

Let F, G, and H be multigraphs. A *decomposition* of H is a set of edge-disjoint subgraphs of H whose union is H. A *G*-decomposition of H is a decomposition of H in which each subgraph is isomorphic to G. If H has a *G*-decomposition, we say that H is *G*-decomposable. An (F, G)-decomposition of H is a decomposition of H

Received February 19, 2014, accepted May 26, 2015.

Communicated by Gerard Jennhwa Chang.

²⁰¹⁰ Mathematics Subject Classification: 05C38, 05C70.

Key words and phrases: Packing, Covering, Path, Star.

^{*}Corresponding author.

with members isomorphic to F or G such that at least one of each occurs. If H has an (F, G)-decomposition, we say that H is (F, G)-decomposable.

Recently, decomposition of a graph into a pair of graphs has attracted a fair share of interest. Abueida and Daven [3] investigated the problem of (K_k, S_k) -decomposition of the complete graph K_n . Abueida and Daven [4] investigated the problem of the (C_4, E_2) -decomposition of several graph products where E_2 denotes two vertex disjoint edges. Abueida and O'Neil [7] studied the existence problem for (C_k, S_{k-1}) decomposition of the complete multigraph λK_n for $k \in \{3, 4, 5\}$. Priyadharsini and Muthusamy [16, 17] investigated the existence of (G, H)-decompositions of λK_n and $\lambda K_{n,n}$ where $G, H \in \{C_n, P_n, S_{n-1}\}$. A graph-pair (G, H) of order m is a pair of non-isomorphic graphs G and H with V(G) = V(H) such that both G and H contain no isolated vertices and $G \cup H$ is isomorphic to K_m . Abueida and Daven [2] and Abueida, Daven and Roblee [5] completely determined the values of n for which λK_n admits a (G, H)-decomposition where (G, H) is a graph-pair of order 4 or 5. Abueida, Clark and Leach [1] and Abueida and Hampson [6] considered the existence of decompositions of $K_n - F$ into the graph-pairs of order 4 and 5, respectively, where F is a Hamiltonian cycle, a 1-factor, or an almost 1-factor. Lee [12], Lee and Lin [13], and Lin [14] established necessary and sufficient conditions for the existence of (C_k, S_k) decompositions of the complete bipartite graph, the complete bipartite graph with a 1-factor removed, and the multicrown, respectively. Shyu studied the problem of decomposing a graph into copies of a graph G and copies of a graph H where the number of copies of G and the number of copies of H are essential. He gave necessary and sufficient conditions for the decomposition of K_n into paths and stars (both with 3 edges) [18], paths and cycles (both with k edges where k = 3, 4) [19, 20], and cycles and stars (both with 4 edges) [21]. He [22] also gave necessary and sufficient conditions for the decomposition of $K_{m,n}$ into paths and stars both with 3 edges.

Let F, G, and H be multigraphs. For subgraphs L and R of H, an (F, G)-packing of H with leave L is an (F, G)-decomposition of H - E(L), and an (F, G)-covering of H with padding R is an (F, G)-decomposition of H + E(R). A maximum (F, G)packing of H is an (F, G)-packing of H with a minimum leave (i.e. a leave with the minimum number of edges). A minimum (F, G)-covering of H is an (F, G)-covering of H with a minimum padding. Clearly, an (F, G)-decomposition of H is an (F, G)packing of H with an empty graph as its leave, and is an (F, G)-covering of H with an empty graph as its padding.

Abueida and Daven [3] obtained the maximum (K_k, S_k) -packing and the minimum (K_k, S_k) -covering of the complete graph K_n . Abueida and Daven [2] and Abueida, Daven and Roblee [5] gave the maximum (F, G)-packing and the minimum (F, G)-covering of K_n and λK_n , respectively, where (F, G) is a graph-pair of order 4 or 5. In this paper, we obtain a maximum (P_{k+1}, S_k) -packing of λK_n , which has a leave of size < k, and a minimum (P_{k+1}, S_k) -covering of λK_n , which has a padding of size < k.

A similar result for $\lambda K_{n,n}$ is also obtained. As corollaries, necessary and sufficient conditions for the existence of (P_{k+1}, S_k) -decompositions of both λK_n and $\lambda K_{n,n}$ are given. Since P_{k+1} is isomorphic to S_k for k = 1, 2, we restrict the discussions to $k \geq 3.$

2. Packing and Covering of λK_n

In this section the problems of the maximum (P_{k+1}, S_k) -packing and the minimum (P_{k+1}, S_k) -covering of λK_n are investigated. We first collect some needed terminology and notation.

Let G be a multigraph. The *degree* of a vertex x of G, denoted by $\deg_G x$, is the number of edges incident with x. For $k \ge 2$, the vertex of degree k in S_k is the *center* of S_k and any vertex of degree 1 is an *endvertex* of S_k . In addition, $v_1v_2 \dots v_k$ denotes the k-path through vertices v_1, v_2, \ldots, v_k in order, and the vertices v_1 and v_k are referred to as its origin and terminus. If $P = x_1 x_2 \dots x_t$, $Q = y_1 y_2 \dots y_s$ and $x_t = y_1$, then P + Q denotes the walk $x_1 x_2 \dots x_t y_2 \dots y_s$. Moreover, we use $P_k(v_1, v_k)$ to denote a k-path with origin v_1 and terminus v_k . For $U, W \subseteq V(G)$ with $U \cap W = \phi$, we use G[U] and G[U, W] to denote the subgraph of G induced by U, and the maximal bipartite subgraph of G with bipartition (U, W), respectively. When G_1, G_2, \ldots, G_t are edge disjoint subgraphs of a graph, we use $G_1 \cup G_2 \cup \cdots \cup G_t$ to denote the graph with vertex set $\bigcup_{i=1}^{t} V(G_i)$ and edge set $\bigcup_{i=1}^{t} E(G_i)$. Before going into more details, we present some results which are useful for our

discussions.

Proposition 2.1. (Bryant [9]). For positive integers λ , n, and t, and any sequence m_1, m_2, \ldots, m_t of positive integers, the complete multigraph λK_n can be decomposed into paths of lengths m_1, m_2, \ldots, m_t if and only if each $m_i \leq n-1$ and $m_1 + m_2 + m_1$ $\cdots + m_t = |E(\lambda K_n)|.$

Proposition 2.2. (Bosák [8], Hell and Rosa [10]). For an even integer n and $V(K_n) = \{x_0, x_1, \dots, x_{n-1}\}$, the complete graph K_n can be decomposed into the following n/2 copies of n-paths : $P_n(x_0, x_{n/2}), P_n(x_1, x_{1+n/2}), \ldots, P_n(x_{n/2-1}, x_{n-1}).$

The following lemma is trivial.

Lemma 2.3. For an odd integer n with $n \ge 3$, the complete graph K_n can be decomposed into n copies of (n+1)/2-paths whose origins are all distinct.

Proof. Let $V(K_n) = \{x_0, x_1, \dots, x_{n-1}\}$. We define (n+1)/2-paths as follows. For $0 \le i \le n-1$,

$$P^{i} = \begin{cases} x_{i}x_{i-1}x_{i+1}x_{i-2}\dots x_{i-\frac{n-1}{4}}x_{i+\frac{n-1}{4}} & \text{if } n \equiv 1 \pmod{4}, \\ x_{i}x_{i-1}x_{i+1}x_{i-2}\dots x_{i+\frac{n-3}{4}}x_{i-\frac{n+1}{4}} & \text{if } n \equiv 3 \pmod{4}, \end{cases}$$

where the subscripts of x's are taken modulo n. It is easy to check that $\{P^0, P^1, \ldots, P^{n-1}\}$ is a $P_{(n+1)/2}$ -decomposition of K_n as required.

Lemma 2.4. Let k, m, p, and s be positive integers and let t be a nonnegative integer with $\max\{m, t\} \le k-1$. If pk+t = m(m-1)/2 + (sk+1)sk/2 + m(sk+1), then p - (s+1)m > 0.

Proof. Note that

$$pk - (s+1)mk = m(m-1)/2 + (sk+1)sk/2 + m - t - mk$$

 $\ge m(m-1)/2 + (k+1)k/2 + m - t - mk$
 $= (k-1-m)(k-m)/2 + k - t$
 $> 0.$

Thus p - (s+1)m > 0.

Theorem 2.5. Let n and k be positive integers with $k \ge 3$ and $n \ge k+2$. If $|E(K_n)| \equiv t \pmod{k}$ where $0 \le t \le k-1$, then K_n has a (P_{k+1}, S_k) -packing with leave P_{t+1} .

Proof. Let n = qk+r where $q \in \mathbb{N}$, $0 \le r \le k-1$ and let $|E(K_n)| = pk+t$ where $p \in \mathbb{N}$. We can see that $p \ge q+1$. Suppose that r = 1. Then K_n can be decomposed into K_{qk} and $K_{1,qk}$. Note that $|E(K_{qk})| = (p-q)k+t$. Thus by Proposition 2.1, K_{qk} can be decomposed into p-q copies of (k+1)-paths and one (t+1)-path. Obviously, $K_{1,qk}$ is S_k -decomposable. Hence K_n has a (P_{k+1}, S_k) -packing with leave P_{t+1} for r = 1.

Now we consider the case $r \neq 1$. If r = 0, then n = qk where $q \geq 2$ for $n \geq k+2$; write n = (k-1) + (q-1)k + 1 where $k-1 \geq 1, q-1 \geq 1$. If $r \geq 2$, then n = qk + r = (r-1) + qk + 1 where $1 \leq r-1 \leq k-1, q \geq 1$. Thus for $r \neq 1$ we can set n = m + sk + 1 where m and s are positive integers with $m \leq k-1$. Let $A = \{x_0, x_1, \dots, x_{m-1}\}, B = \{y_0, y_1, \dots, y_{sk}\}$ and $V(K_n) = A \cup B$. Note that $K_n = K_{m+sk+1} = K_{m+sk+1}[A] \cup K_{m+sk+1}[B] \cup K_{m+sk+1}[A, B]$, and $K_{m+sk+1}[A] \cong K_m, K_{m+sk+1}[B] \cong K_{sk+1}$, and $K_{m+sk+1}[A, B] \cong K_{m,sk+1}$. Thus pk + t = m(m-1)/2 + (sk+1)sk/2 + m(sk+1). Hence by Lemma 2.4,

(1)
$$p - (s+1)m > 0.$$

Also

(2)
$$|E(K_{sk+1})| = (sk+1)sk/2 = pk + t - m(m-1)/2 - m(sk+1).$$

Case 1. m is odd.

By (2), $|E(K_{sk+1})| = (k - (m+1)/2)m + k(p - (s+1)m) + t$. By (1) and Proposition 2.1, K_{sk+1} has a path decomposition \mathcal{D} , which consists of m copies of (k - (m-1)/2)-paths, p - (s+1)m copies of (k+1)-paths and one (t+1)-path. If m = 1, then n = sk + 2, $A = \{x_0\}$, and as mentioned above, K_{sk+1} has a decomposition consisting of one P_k , p - s - 1 copies of P_{k+1} and one P_{t+1} . Assume that in the above decomposition, $P_k = P_k(y_{w_0}, y_{w_1})$ (i.e. y_{w_0}, y_{w_1} are the endvertices of this P_k). Let $P = P_k(y_{w_0}, y_{w_1}) + x_0y_{w_0}$. Then P is a (k + 1)-path. Moreover, $K_{sk+2}[A, B] - \{x_0y_{w_0}\} \cong K_{1,sk}$, which is S_k -decomposable. Hence K_{sk+2} has a (P_{k+1}, S_k) -packing with leave P_{t+1} .

If $m \ge 3$, then Lemma 2.3 implies that there exists a $P_{(m+1)/2}$ -decomposition \mathcal{D}' of K_m where $\mathcal{D}' = \{P_{(m+1)/2}(x_i, x_{j_i}) \mid 0 \le i \le m-1\}$ and $x_1, x_2, \ldots, x_{m-1}$ are distinct. Suppose that the *m* copies of (k - (m - 1)/2)-paths in \mathcal{D} are $P_{k-(m-1)/2}(y_{w_0}, y_{w'_0}), P_{k-(m-1)/2}(y_{w_1}, y_{w'_1}), \ldots, P_{k-(m-1)/2}(y_{w_{m-1}}, y_{w'_{m-1}})$. For $i \in \{0, 1, \ldots, m-1\}$, let

$$P^{i} = P_{\frac{m+1}{2}}(x_{i}, x_{j_{i}}) + x_{i}y_{w_{i}} + P_{k-\frac{m-1}{2}}(y_{w_{i}}, y_{w_{i}'})$$

Then P^i is a (k + 1)-path for each i. Moreover, let $G = K_{m+sk+1}[A, B] - \{x_i y_{w_i} \mid 0 \le i \le m-1\}$. Then G is a bipartite graph with $\deg_G x_i = sk$ for $0 \le i \le m-1$. Thus G is S_k -decomposable, and in turn, K_{m+sk+1} has a (P_{k+1}, S_k) -packing with leave P_{t+1} .

Case 2. m is even.

By Proposition 2.2, there exists a P_m -decomposition $\{P_m(x_i, x_{i+m/2}) \mid 0 \le i \le m/2-1\}$ of K_m . By (2), $|E(K_{sk+1})| = (k-m-1)m/2 + k(p-sm-m/2) + t$. By (1), p - sm - m/2 > 0. Hence by Proposition 2.1, K_{sk+1} has a path decomposition \mathcal{D} ", which consists of m/2 copies of (k-m)-paths, p - sm - m/2 copies of (k+1)-paths and one (t+1)-path. Suppose that the m/2 copies of (k-m)-paths in \mathcal{D} " are $P_{k-m}(y_{w_0}, y_{w'_0}), P_{k-m}(y_{w_1}, y_{w'_1}), \ldots, P_{k-m}(y_{w_{m/2-1}}, y_{w'_{m/2-1}})$. For $i \in \{0, 1, \ldots, m/2 - 1\}$, let

$$Q^{i} = P_{m}(x_{i}, x_{i+\frac{m}{2}}) + x_{i}y_{w_{i}} + P_{k-m}(y_{w_{i}}, y_{w'_{i}}) + x_{i+\frac{m}{2}}y_{v_{i}}$$

where $y_{v_i} \notin V(P_{k-m}(y_{w_i}, y_{w'_i}))$. Then Q^i is a (k+1)-path for each *i*. Moreover, let $H = K_{m+sk+1}[A, B] - \{x_i y_{w_i}, x_{i+m/2} y_{v_i} \mid 0 \le i \le m/2 - 1\}$. Then *H* is a bipartite graph with $\deg_H x_i = sk$ for $0 \le i \le m - 1$. Thus *H* is S_k -decomposable, and in turn K_{m+sk+1} has a (P_{k+1}, S_k) -packing with leave P_{t+1} .

It is trivial that the leave P_{t+1} in Theorem 2.5 can be chosen arbitrarily.

Theorem 2.6. Let λ , n and k be positive integers with $k \ge 3$ and $n \ge k+2$. If $|E(\lambda K_n)| \equiv t \pmod{k}$ where $0 \le t \le k-1$, then (1) λK_n has a (P_{k+1}, S_k) -packing with leave P_{t+1} , (2) λK_n has a (P_{k+1}, S_k) -covering with padding P_{k-t+1} .

Proof. (1) Let $V(K_n) = \{x_0, x_1, \ldots, x_{n-1}\}$ and $|E(K_n)| \equiv r \pmod{k}$ with $0 \leq r \leq k-1$. From the assumption $|E(\lambda K_n)| \equiv t \pmod{k}$, we have $\lambda r \equiv t \pmod{k}$. Clearly, λK_n can be decomposed into λ copies of K_n , say $G_0, G_1, \ldots, G_{\lambda-1}$.

Theorem 2.5 implies that each G_i has a (P_{k+1}, S_k) -packing with leave (r+1)-path, say P^i . By the note following Theorem 2.5, we can assume that for $0 \le i \le \lambda - 1$, $P^i = x_{ir}x_{ir+1} \dots x_{ir+r}$ where the subscripts of x's are taken modulo n. By cutting method, we can see that $P^0 + P^1 + \dots + P^{\lambda-1}$ which is a walk with λr edges can be decomposed into several copies of (k+1)-paths and one (t+1)-path. This completes the proof of (1).

(2) follows from (1) directly.

In the proof of the following corollary, we use $S(u; v_1, v_2, ..., v_k)$ to denote a star with center u and endvertices $v_1, v_2, ..., v_k$.

Corollary 2.7. For positive integers λ , k, and n with $k \ge 3$, the complete multigraph λK_n is (P_{k+1}, S_k) -decomposable if and only if $n \ge k + 1$, $\lambda n(n-1)/2 \equiv 0 \pmod{k}$ and $(\lambda, n) \ne (1, k + 1)$.

Proof. (Necessity) Since $|V(K_n)|$ and $|V(P_{k+1})|$ are n and k+1, respectively, $n \ge k+1$ is necessary. Since λK_n has $\lambda n(n-1)/2$ edges and each subgraph in a decomposition has k edges, k must divide $\lambda n(n-1)/2$. Since $K_{k+1} - E(S_k)$ contains no (k+1)-path, K_{k+1} is not (P_{k+1}, S_k) -decomposable. Hence $(\lambda, n) \ne (1, k+1)$.

(Sufficiency) When $n \ge k+2$ and k divides $\lambda n(n-1)/2$, the existence of (P_{k+1}, S_k) -decomposition of λK_n follows from Theorem 2.6. So it remains to consider n = k+1. Then $\lambda \ge 2$ by the assumption. We distinguish two cases according to the parity of λ .

Case 1.
$$\lambda$$
 is even.
Let $V(2K_{k+1}) = \{x_0, x_1, \dots, x_{k-1}, x_\infty\}$. For $i = 0, 1, \dots, k-1$, let
 $P^i = x_i x_{i-1} x_{i+1} x_{i-2} \dots x_{\lfloor i+k/2 \rfloor} x_\infty$

where the subscripts of x's are taken modulo k. It is easy to see that $\{S(x_{\infty}; x_0, x_1, \ldots, x_{k-1}), P^0, P^1, \ldots, P^{k-1}\}$ is a (P_{k+1}, S_k) -decomposition of $2K_{k+1}$. Since λ is even, λK_{k+1} can be decomposed into $\lambda/2$ copies of $2K_{k+1}$. Hence λK_{k+1} is (P_{k+1}, S_k) -decomposable.

Case 2. $\lambda \geq 3$ is odd.

The condition $\lambda n(n-1)/2 \equiv 0 \pmod{k}$ with n = k+1 and odd λ implies that k+1 is even. Note that $\lambda K_{k+1} = (\lambda - 1)K_{k+1} \cup K_{k+1}$. By Case 1, $(\lambda - 1)K_{k+1}$ is (P_{k+1}, S_k) -decomposable. By Proposition 2.2, K_{k+1} is P_{k+1} -decomposable. Thus λK_{k+1} is (P_{k+1}, S_k) -decomposable.

3. Packing and Covering of $\lambda K_{n,n}$

In this section the (P_{k+1}, S_k) -packing, (P_{k+1}, S_k) -covering and (P_{k+1}, S_k) -decomposition of $\lambda K_{n,n}$ are investigated. Before moving on, we need more terminology and notation, and some useful results.

1346

Let G be a multigraph. We use $(v_1, v_2, ..., v_k)$ to denote the k-cycle of G, which is through vertices $v_1, v_2, ..., v_k$ in order, and $\mu(uv)$ to denote the number of edges of G joining the vertices u and v. Given an S_k -decomposition of G, a central function c from V(G) to the set of nonnegative integers is defined as follows: for each $v \in V(G)$, c(v) is the number of k-stars in the decomposition whose center is v.

Proposition 3.1. (Hoffman [11]). Let H be a multigraph and c be a function from V(H) to the set of nonnegative integers. Then c is a central function for some S_k -decomposition of H if and only if

- (i) $k \sum_{v \in V(H)} c(v) = |E(H)|,$
- (ii) for all $x, y \in V(H)$ with $x \neq y$, $\mu(xy) \leq c(x) + c(y)$,

(iii) for all
$$S \subseteq V(H)$$
, $k \sum_{v \in S} c(v) \le \varepsilon(S) + \sum_{x \in S, y \in V(H) - S} \min\{c(x), \mu(xy)\}$,

where $\varepsilon(S)$ denotes the number of edges of H with both ends in S.

Proposition 3.2. (Parker [15]). There exists a P_{k+1} -decomposition of $K_{m,n}$ if and only if $mn \equiv 0 \pmod{k}$ and one of the following cases occurs.

Case	k	т	п	Conditions
1	even	even	even	$k \leq 2m, k \leq 2n$, not both equalities
2	even	even	odd	$k \le 2m-2, k \le 2n$
3	even	odd	even	$k\leq 2m,k\leq 2n-2$
4	odd	even	even	$k \le 2m - 1, k \le 2n - 1$
5	odd	even	odd	$k \le 2m - 1, k \le n$
6	odd	odd	even	$k \le m, k \le 2n - 1$
7	odd	odd	odd	$k \leq m, k \leq n$

Lemma 3.3. If λ and k are positive integers with $k \geq 2$, then $\lambda K_{k,k}$ is (P_{k+1}, S_k) -decomposable.

Proof. Note that $K_{k,k} = K_{k,k-1} \cup K_{k,1}$ for $k \ge 2$. It is easy to see that $K_{k,k-1}$ is P_{k+1} -decomposable by cases 2 and 6 of Proposition 3.2. Clearly $K_{k,1}$ is S_k -decomposable. Thus $K_{k,k}$ is (P_{k+1}, S_k) -decomposable, and so is $\lambda K_{k,k}$.

In the sequel of the paper, we use (A, B) to denote the bipartition of $\lambda K_{n,n}$ where $A = \{a_0, a_1, \ldots, a_{n-1}\}$ and $B = \{b_0, b_1, \ldots, b_{n-1}\}$.

Lemma 3.4. Let λ , k, and n be positive integers with $3 \le k < n < 2k$. If $\lambda(n-k)^2 < k$, then $\lambda K_{n,n}$ has a (P_{k+1}, S_k) -packing \mathscr{P} with $|\mathscr{P}| = \lfloor \lambda n^2/k \rfloor$ and a (P_{k+1}, S_k) -covering \mathscr{C} with $|\mathscr{C}| = \lceil \lambda n^2/k \rceil$.

Proof. Let n = k + r. The assumption k < n < 2k implies 0 < r < k. We first give a required packing. Note that

$$\lambda K_{n,n} = \lambda K_{k,k} \cup \lambda K_{k,r} \cup \lambda K_{r,k} \cup \lambda K_{r,r}.$$

By Lemma 3.3, $\lambda K_{k,k}$ has a (P_{k+1}, S_k) -decomposition \mathcal{D}_1 with $|\mathcal{D}_1| = \lambda k$. Trivially, $\lambda K_{k,r}$ and $\lambda K_{r,k}$ have S_k -decompositions \mathcal{D}_2 and \mathcal{D}_3 with $|\mathcal{D}_2| = |\mathcal{D}_3| = \lambda r$, respectively. Let $\mathcal{P} = \bigcup_{i=1}^3 \mathcal{D}_i$. Then \mathcal{P} is a (P_{k+1}, S_k) -packing of $\lambda K_{n,n}$ with $|\mathcal{P}| = \lambda(k+2r)$. Since $\lambda r^2 = \lambda(n-k)^2 < k$, we have $|\mathcal{P}| = \lfloor \lambda(k+r)^2/k \rfloor = \lfloor \lambda n^2/k \rfloor$. Thus \mathcal{P} is a required packing.

Now we give a required covering. Let $s = \lambda r^2$. Note s < k < n. Let $A_0 = \{a_0, a_1, \ldots, a_{\lfloor (s-1)/2 \rfloor}\}$, $A_1 = A - A_0$, $B_0 = \{b_0, b_1, \ldots, b_{k-1}\}$ and $B_1 = B - B_0$. Define a (k+1)-path P as follows:

$$P = \begin{cases} b_0 a_0 b_1 a_1 \dots b_{\frac{k-1}{2}} a_{\frac{k-1}{2}} & \text{if } k \text{ is odd,} \\ \\ b_0 a_0 b_1 a_1 \dots b_{\frac{k}{2}-1} a_{\frac{k}{2}-1} b_{\frac{k}{2}} & \text{if } k \text{ is even.} \end{cases}$$

Let P' be the (k - s + 1)-subpath of P with end vertices $a_{\frac{k-1}{2}}$, $a_{\frac{s-1}{2}}$, when k is odd, s is odd, end vertices $a_{\frac{k-1}{2}}$, $b_{\frac{s}{2}}$, when k is odd, s is even, end vertices $b_{\frac{k}{2}}$, $a_{\frac{s-1}{2}}$, when k is even, s is odd, and end vertices $b_{\frac{k}{2}}$, $b_{\frac{s}{2}}$, when k is even, s is even. Note that since s > 0, P' is a proper subgraph of P.

Let

$$H = \lambda K_{n,n} - E(P) + E(P').$$

Note that H is a proper subgraph of $\lambda K_{n,n}$.

We will show that H has an S_k -decomposition. Note that $V(H) = V(\lambda K_{n,n})$, $|E(H)| = \lambda n^2 - k + (k - s) = \lambda n^2 - \lambda r^2 = \lambda k(k + 2r)$, and $\mu(uv) \leq \lambda$ for all $u, v \in V(H)$. Define a function $c : V(H) \to \mathbb{N}$ as follows:

$$c(v) = \begin{cases} 0 & \text{if } v \in B_0, \\ \lambda & \text{otherwise.} \end{cases}$$

We will show that the function c satisfies (i), (ii), and (iii) in Proposition 3.1. First, $k \sum_{v \in V(H)} c(v) = k\lambda(k+2r) = |E(H)|$. This proves (i). Next, if $u, v \in B_0$, then $c(u) + c(v) = 0 = \mu(uv)$; otherwise, $c(u) + c(v) \ge \lambda \ge \mu(uv)$. This proves (ii). To prove (iii), let $S \subseteq V(H)$. For $i \in \{0, 1\}$, let $X_i = S \cap A_i$ and $Y_i = S \cap B_i$. Moreover, let $X = X_0 \cup X_1$ and $Y = Y_0 \cup Y_1$. Define a set T of ordered pairs of vertices as follows:

$$T = \{(u, v) \mid (u \in X, v \in B_1 - Y_1) \text{ or } (u \in X_1, v \in B_0 - Y_0) \text{ or } (u \in Y_1, v \in A - X)\}.$$

Note that

(1)
$$k\sum_{w\in S} c(w) = k\lambda(|X| + |Y_1|),$$

(2)
$$\varepsilon(S) = \lambda(|X||Y_1| + |X_1||Y_0|) + \sum_{u \in X_0, v \in Y_0} \mu(uv),$$

and for $u \in S$ and $v \in V(H) - S$

(3)
$$\min\{c(u), \mu(uv)\} = \begin{cases} \lambda & \text{if } (u, v) \in T, \\ \mu(uv) & \text{if } u \in X_0, v \in B_0 - Y_0, \\ 0 & \text{otherwise.} \end{cases}$$

For $S \subseteq V(H)$, let

$$g(S) = \varepsilon(S) + \sum_{u \in S, v \in V(H) - S} \min\{c(u), \mu(uv)\} - k \sum_{w \in S} c(w).$$

To show (iii), we need show $g(S) \ge 0$.

Note that, if $v \in A_0 - \{a_{\lfloor \frac{s-1}{2} \rfloor}\}$, there are $\lambda k - 2$ edges in H joining v and all vertices in B_0 ; if $v = a_{\lfloor \frac{s-1}{2} \rfloor}$, there are $\lambda k - \rho$ edges in H joining v and all vertices in B_0 where $\rho = 1$ if s is odd, and $\rho = 2$ if s is even.

Hence

$$\begin{split} &\sum_{u\in X_0, v\in B_0} \mu(uv) \\ &= \begin{cases} |X_0|(\lambda k-2) & \text{ if } a_{\lfloor (s-1)/2 \rfloor} \notin X_0, \\ |X_0|(\lambda k-2)+2-\rho & \text{ if } a_{\lfloor (s-1)/2 \rfloor} \in X_0. \end{cases} \end{split}$$

By (1)–(3) and $|X_0| + |X_1| = |X|$, we have

$$\begin{split} g(S) &= \lambda(|X||Y_1| + |X_1||Y_0|) + \sum_{u \in X_0, v \in Y_0} \mu(uv) \\ &+ \lambda(|X|(r - |Y_1|) + |X_1|(k - |Y_0|) + |Y_1|(k + r - |X|)) \\ &+ \sum_{u \in X_0, v \in B_0 - Y_0} \mu(uv) - k\lambda(|X| + |Y_1|) \\ &= \lambda r|X| + \lambda|Y_1|r - \lambda|Y_1||X| - \lambda k|X_0| + \sum_{u \in X_0, v \in B_0} \mu(uv) \\ &= \begin{cases} \lambda(r|X| + |Y_1|(r - |X|)) - 2|X_0| & \text{if } a_{\lfloor (s-1)/2 \rfloor} \notin X_0, \\ \lambda(r|X| + |Y_1|(r - |X|)) - 2|X_0| + 2 - \rho & \text{if } a_{\lfloor (s-1)/2 \rfloor} \in X_0. \end{cases} \end{split}$$

If $a_{\lfloor (s-1)/2 \rfloor} \notin X_0$, then $|X_0| \leq \lfloor (s-1)/2 \rfloor$, which implies $-2|X_0| \geq -s$. If $a_{\lfloor (s-1)/2 \rfloor} \in X_0$, then $|X_0| \leq \lfloor (s-1)/2 \rfloor + 1$, which implies $-2|X_0| + 2 - \rho \geq -s$.

$$\begin{split} -2\lfloor (s-1)/2 \rfloor - \rho &= -2(s-\rho)/2 - \rho = -s. \text{ Suppose } |X| \ge r. \text{ We have} \\ g(S) &\ge \lambda(r|X| - |Y_1|(|X| - r)) - s \\ &= \lambda(r|X| - |Y_1|(|X| - r)) - \lambda r^2 \\ &= \lambda(|X| - r)(r - |Y_1|) \\ &\ge 0. \end{split}$$

Suppose |X| < r.

If $\lambda r = 1$, then $|X_0| = |X| = 0$, which implies $-2|X_0| = -\lambda r|X_0|$. If $\lambda r \ge 2$, then $-2|X_0| \ge -\lambda r|X_0|$. Note that $2 - \rho \ge 0$. Hence we have

$$g(S) \ge \lambda(r|X| + |Y_1|(r - |X|)) - 2|X_0|$$

$$\ge \lambda(r|X| + |Y_1|(r - |X|)) - \lambda r|X_0$$

$$= \lambda(r|X_1| + |Y_1|(r - |X|))$$

$$\ge 0.$$

This settles (iii). By Proposition 3.1, H has an S_k -decomposition, say \mathscr{D} . Since $H = \lambda K_{n,n} - E(P) + E(P')$, $\mathscr{D} \cup \{P\}$ is an (P_{k+1}, S_k) -covering of $\lambda K_{n,n}$. Also since \mathscr{D} is a packing but not a decomposition of $\lambda K_{n,n}$ and $\mathscr{D} \cup \{P\}$ is a covering of $\lambda K_{n,n}$, we have $|\mathscr{D} \cup \{P\}| = \lceil \lambda n^2 / k \rceil$.

The following result is needed in the proof of Lemma 3.6.

Lemma 3.5. Let λ , k, and r be positive integers with $k \ge 3$, r < k and $\lambda r^2 \ge k$. If k is odd or $(\lambda, r) \ne (1, k - 1)$, then $||\lambda r^2/k|/2| \le \lambda r/2 - 1$.

Proof. We first consider the case $\lambda = 1$. If r = k - 1, then $\lfloor \lambda r^2/k \rfloor = \lfloor r^2/(r + 1) \rfloor = r - 1$, and k is odd by assumption. Thus r is even. Hence $\lfloor \lfloor \lambda r^2/k \rfloor/2 \rfloor = \lfloor (r-1)/2 \rfloor = r/2 - 1$. If $r \le k - 2$, then $r^2 \ge r + 2$ from the assumption $\lambda r^2 \ge k$. Thus $r \ge 2$. Note that $\lfloor \lambda r^2/k \rfloor \le \lfloor r^2/(r + 2) \rfloor$. In the case r = 2, $\lfloor \lfloor r^2/(r + 2) \rfloor/2 \rfloor = 0 = r/2 - 1$, which implies $\lfloor \lfloor \lambda r^2/k \rfloor/2 \rfloor \le r/2 - 1$. In the case $r \ge 3$, $\lfloor r^2/(r + 2) \rfloor = r - 2$, which implies $\lfloor \lfloor \lambda r^2/k \rfloor/2 \rfloor \le \lfloor (r - 2)/2 \rfloor \le r/2 - 1$.

Now we consider the case $\lambda \ge 2$. Since $\lambda r^2 \ge k \ge 3$, we have $r \ge \sqrt{3/\lambda}$. Thus

$$\frac{\lambda r^2}{k} \le \frac{\lambda r^2}{r+1} = \lambda r - \frac{\lambda}{1+1/r} \le \lambda r - \frac{\lambda}{1+\sqrt{\lambda/3}}.$$

Note that $\lambda/(1 + \sqrt{\lambda/3})$ is increasing with respect to λ . Thus $\lambda r^2/k \leq \lambda r - 2/(1 + \sqrt{2/3})$. Therefore, $\lfloor \lambda r^2/k \rfloor \leq \lambda r - 2$. In turn, $\lfloor \lfloor \lambda r^2/k \rfloor/2 \rfloor \leq \lambda r/2 - 1$. This completes the proof.

Lemma 3.6. Let λ , k, and n be positive integers with $3 \le k < n < 2k$. If $\lambda(n-k)^2 \ge k$, then $\lambda K_{n,n}$ has a (P_{k+1}, S_k) -packing \mathscr{P} with $|\mathscr{P}| = \lfloor \lambda n^2/k \rfloor$ and a (P_{k+1}, S_k) -covering \mathscr{C} with $|\mathscr{C}| = \lceil \lambda n^2/k \rceil$.

Proof. Let n = k + r. From the assumption k < n < 2k, we have 0 < r < k. Let $\lambda r^2 = tk + s$ where s and t are integers with $1 \le t$, $0 \le s < k$. Note that $t = \lfloor \lambda r^2/k \rfloor$. Hence $\lfloor \lambda n^2/k \rfloor = \lfloor \lambda (k+r)^2/k \rfloor = \lambda (k+2r) + t$ and

$$\left\lceil \frac{\lambda n^2}{k} \right\rceil = \left\lceil \frac{\lambda (k+r)^2}{k} \right\rceil = \begin{cases} \lambda (k+2r) + t & \text{if } s = 0, \\ \lambda (k+2r) + t + 1 & \text{if } s > 0. \end{cases}$$

In the sequel of the proof, we will show that $\lambda K_{n,n}$ has a packing \mathscr{P} consisting of t copies of (k+1)-paths and $\lambda(k+2r)$ copies of k-stars with leave P_{s+1} .

Let

$$\delta = \begin{cases} 1 & \text{ if } t \text{ is odd,} \\ 0 & \text{ if } t \text{ is even} \end{cases}$$

Let $A_0 = \{a_0, a_1, \ldots, a_{k-1}\}$, $A_1 = A - A_0$, $B_0 = \{b_0, b_1, \ldots, b_{k-1}\}$, and $B_1 = B - B_0$. Let $G = \lambda K_{n,n}[A_0 \cup B_0]$. Clearly, G is isomorphic to $\lambda K_{k,k}$. For $i \in \{0, 1, \ldots, \lfloor \lambda k/2 \rfloor - 1\}$, let $C(i) = (b_{2i}, a_0, b_{2i+1}, a_1, \ldots, b_{2i+k-1}, a_{k-1})$ where the subscripts of b's are taken modulo k. Trivially, C(i) is a 2k-cycle in G for each i. Note that

$$G = \begin{cases} \bigcup_{i=0}^{\lfloor \lambda k/2 \rfloor - 1} C(i) & \text{if } \lambda k \text{ is even,} \\ \\ \bigcup_{i=0}^{\lfloor \lambda k/2 \rfloor - 1} (\bigcup_{i=0}^{\lfloor \lambda k/2 \rfloor - 1} C(i)) \cup M & \text{if } \lambda k \text{ is odd,} \end{cases}$$

where M is a perfect matching in G. For s > 0 or odd t, define a $(\delta k + s + 1)$ -path P, which is a subpath of C(0), as follows:

$$P = \begin{cases} b_0 a_0 b_1 a_1 \dots b_{\lceil (\delta k+s)/2 \rceil - 1} a_{\lceil (\delta k+s)/2 \rceil - 1} b_{\lceil (\delta k+s)/2 \rceil} & \text{if } \delta k+s \text{ is even,} \\ b_0 a_0 b_1 a_1 \dots b_{\lceil (\delta k+s)/2 \rceil - 1} a_{\lceil (\delta k+s)/2 \rceil - 1} & \text{if } \delta k+s \text{ is odd.} \end{cases}$$

Since $\lambda(n-k)^2 \geq k > r$, we have $1 \leq t < \lambda r$. Thus $t+1 \leq \lambda r$; in turn, $\lfloor \frac{t}{2} \rfloor \leq \frac{t}{2} \leq \frac{\lambda r-1}{2} < \frac{\lambda k-1}{2} \leq \lfloor \frac{\lambda k}{2} \rfloor$. Hence $\lfloor \frac{t}{2} \rfloor \leq \lfloor \frac{\lambda k}{2} \rfloor - 1$, which assures that the following F is well-defined. Define a subgraph F of G as follows :

$$F = \begin{cases} P & \text{if } t = 1, \\ \bigcup_{i=1}^{\lfloor t/2 \rfloor} C(i) & \text{if } s = 0 \text{ and } t \text{ is even} \\ (\bigcup_{i=1}^{\lfloor t/2 \rfloor} C(i)) \cup P & \text{otherwise.} \end{cases}$$

Since C_{2k} can be decomposed into 2 copies of P_{k+1} and P can be decomposed into δ copies of P_{k+1} as well as one copy of P_{s+1} , there exists a decomposition of F into t copies of P_{k+1} and one copy of P_{s+1} . Thus F has a P_{k+1} -packing, say \mathscr{P}_0 , with leave P_{s+1} . Let

$$H = \lambda K_{n,n} - E(F).$$

Note that $V(H) = V(\lambda K_{n,n})$, $|E(H)| = \lambda n^2 - (tk + s) = \lambda n^2 - \lambda r^2 = \lambda k(k + 2r)$, and $\mu(uv) \leq \lambda$ for all $u, v \in V(H)$ with $u \neq v$. Define a function $c : V(H) \to \mathbb{N}$ as follows:

for $v \in V(H)$,

$$c(v) = \begin{cases} 0 & \text{if } v \in B_0, \\ \lambda & \text{otherwise.} \end{cases}$$

Now we show that the function c satisfies (i), (ii) and (iii) in Proposition 3.1.

First, $k \sum_{v \in V(H)} c(v) = k\lambda(k+2r) = |E(H)|$. This proves (i). Next, if $u, v \in B_0$, then $c(u) + c(v) = 0 = \mu(uv)$; otherwise, $c(u) + c(v) \ge \lambda \ge \mu(uv)$. This proves (ii). Finally, we prove (iii). For $S \subseteq V(H)$ and $i \in \{0, 1\}$, let $X_i = S \cap A_i$, $Y_i = S \cap B_i$, $X = X_0 \cup X_1$, and $Y = Y_0 \cup Y_1$. Define a set T of ordered pairs of vertices as follows: $T = \{(u, v) \mid (u \in X, v \in B_1 - Y_1) \text{ or } (u \in X_1, v \in B_0 - Y_0) \text{ or } (u \in Y_1, v \in A - X)\}.$

Note that

(4)
$$k\sum_{w\in S} c(w) = k\lambda(|X| + |Y_1|),$$

(5)
$$\varepsilon(S) = \lambda(|X||Y_1| + |X_1||Y_0|) + \sum_{u \in X_0, v \in Y_0} \mu(uv).$$

For $u \in S$ and $v \in V(H) - S$,

$$\min\{c(u), \mu(uv)\} = \begin{cases} \lambda & \text{if } (u, v) \in T, \\ \mu(uv) & \text{if } u \in X_0, v \in B_0 - Y_0 \\ 0 & \text{otherwise.} \end{cases}$$

Thus

(6)

$$\sum_{\substack{u \in S, v \in V(H) - S \\ (u,v) \in T \\ (u,v) \in T \\ = \lambda(|X|(r - |Y_1|) + |X_1|(k - |Y_0|) + |Y_1|(k + r - |X|)) \\ + \sum_{\substack{u \in X_0, v \in B_0 - Y_0 \\ u \in X_0, v \in B_0 - Y_0 \\ (uv).}} \min\{c(u), \mu(uv)\}$$

1352

For $S \subseteq V(H)$, let

$$g(S) = \varepsilon(S) + \sum_{u \in S, v \in V(H) - S} \min\{c(u), \mu(uv)\} - k \sum_{w \in S} c(w).$$

Proving (iii) is equivalent to proving $g(S) \ge 0$.

Let $H' = H[A \cup B_0]$. For s > 0 or odd t, let $A'_0 = \{a_0, a_1, \dots, a_{\lceil (\delta k + s)/2 \rceil - 1}\}, A''_0 = A_0 - A'_0$. Let $X'_0 = S \cap A'_0$ and $X''_0 = S \cap A''_0$. Obviously, $X_0 = X'_0 \cup X''_0$. We have

for $u \in V(H')$,

$$\deg_{H'} u = \begin{cases} \lambda k - t & \text{if } s = 0, t \text{ is even, and } u \in A_0, \\ \lambda k - 2\lfloor t/2 \rfloor - 2 & \text{if } s > 0 \text{ or } t \text{ is odd, and } u \in A'_0 - \{a_{\lceil (\delta k + s)/2 \rceil - 1}\}, \\ \lambda k - 2\lfloor t/2 \rfloor - \rho & \text{if } s > 0 \text{ or } t \text{ is odd, and } u = a_{\lceil (\delta k + s)/2 \rceil - 1}, \\ \lambda k - 2\lfloor t/2 \rfloor & \text{if } s > 0 \text{ or } t \text{ is odd, and } u \in A''_0, \end{cases}$$

where $\rho = 1$ if $\delta k + s$ is odd, and $\rho = 2$ if $\delta k + s$ is even. Hence

$$\begin{split} &\sum_{u \in X_0, v \in Y_0} \mu(uv) + \sum_{u \in X_0, v \in B_0 - Y_0} \mu(uv) \\ &= \sum_{u \in X_0, v \in B_0} \mu(uv) \\ &= \sum_{u \in X_0} deg_{H'} u \\ &= \begin{cases} |X_0| (\lambda k - t) & \text{if } s = 0 \text{ and } t \text{ is even,} \\ |X_0| (\lambda k - 2\lfloor t/2 \rfloor) - 2|X'_0| & \text{if } s > 0 \text{ or } t \text{ is odd, and } a_{\lceil (\delta k + s)/2 \rceil - 1} \notin X'_0, \\ |X_0| (\lambda k - 2\lfloor t/2 \rfloor) - 2|X'_0| + 2 - \rho & \text{if } s > 0 \text{ or } t \text{ is odd, and } a_{\lceil (\delta k + s)/2 \rceil - 1} \notin X'_0. \end{split}$$

Let

$$m = \begin{cases} -t|X_0| & \text{if } s = 0 \text{ and } t \text{ is even,} \\ -2(|X_0|\lfloor t/2 \rfloor + |X_0'|) & \text{if } s > 0 \text{ or } t \text{ is odd, and } a_{\lceil (\delta k+s)/2 \rceil - 1} \notin X_0' \\ -2(|X_0|\lfloor t/2 \rfloor + |X_0'| - 1) - \rho & \text{if } s > 0 \text{ or } t \text{ is odd, and } a_{\lceil (\delta k+s)/2 \rceil - 1} \in X_0' \end{cases}$$

Then

(7)
$$\sum_{u \in X_0, v \in Y_0} \mu(uv) + \sum_{u \in X_0, v \in B_0 - Y_0} \mu(uv) = |X_0|\lambda k + m.$$

$$\begin{split} & \text{By the definition of } g(S), \text{ and } (4) - (7), \text{ we have} \\ & g(S) = \lambda(|X||Y_1| + |X_1||Y_0|) + \sum_{u \in X_0, v \in Y_0} \mu(uv) \\ & + \lambda(|X|(r - |Y_1|) + |X_1|(k - |Y_0|) + |Y_1|(k + r - |X|)) \\ & + \sum_{u \in X_0, v \in B_0 - Y_0} \mu(uv) - k\lambda(|X| + |Y_1|) \\ & = \lambda(|X||Y_1| + |X_1||Y_0| + |X|(r - |Y_1|) + |X_1|(k - |Y_0|) \\ & + |Y_1|(k + r - |X|) - k(|X| + |Y_1|)) \\ & + \sum_{u \in X_0, v \in Y_0} \mu(uv) + \sum_{u \in X_0, v \in B_0 - Y_0} \mu(uv) \\ & = \lambda(|X|r + |X_1|k + |Y_1|r - |Y_1||X| - k|X|) + |X_0|\lambda k + m \\ & = \lambda(|X|r + |X_1|k + |Y_1|r - |Y_1||X| - k|X| + |X_0|k) + m. \end{split}$$

Since $|X| = |X_0| + |X_1|$, we have

(8)
$$g(S) = \lambda(|X|r + |Y_1|(r - |X|)) + m.$$

We first show that $m \ge -\lambda r^2$. Note that $|X_0| \le k$. When s = 0 and t is even, $m \ge -kt = -\lambda r^2$. When s > 0 or t is odd,

$$|X'_{0}| \leq \begin{cases} |A'_{0}| - 1 & \text{if } a_{\lceil (\delta k + s)/2 \rceil - 1} \notin X'_{0}, \\ |A'_{0}| & \text{if } a_{\lceil (\delta k + s)/2 \rceil - 1} \in X'_{0}. \end{cases}$$

Thus

$$m \geq \begin{cases} -2(|X_0|\lfloor t/2 \rfloor + |A'_0|) + 2 & \text{if } a_{\lceil (\delta k+s)/2 \rceil - 1} \notin X'_0, \\ -2(|X_0|\lfloor t/2 \rfloor + |A'_0|) + 2 - \rho & \text{if } a_{\lceil (\delta k+s)/2 \rceil - 1} \in X'_0. \\ \geq -2(|X_0|\lfloor t/2 \rfloor + |A'_0|) + 2 - \rho. \end{cases}$$

In addition, $\lfloor t/2 \rfloor = (t-\delta)/2$, and $|A'_0| = \lceil (\delta k + s)/2 \rceil = (\delta k + s + 2 - \rho)/2$. Thus $m \ge -2(k(t-\delta)/2 + (\delta k + s + 2 - \rho)/2 - 1) - \rho = -(kt+s) = -\lambda r^2$. Therefore, if $|Y| \ge r$, we have from (8), that

Therefore, if $|X| \ge r$, we have from (8), that

$$g(S) \ge \lambda(r|X| - |Y_1|(|X| - r)) - \lambda r^2 = \lambda(|X| - r)(r - |Y_1|) \ge 0.$$

So it remains to consider the case |X| < r.

We first show that $m \ge -\lambda r |X_0|$.

Suppose that k is even and $(\lambda, r) = (1, k-1)$. Then $\lambda r^2 = (k-1)^2 = (k-2)k+1 = (r-1)k+1$. This implies s = 1 and t = r-1 where t is even. Thus $\lfloor t/2 \rfloor = (\lambda r-1)/2$ and $A'_0 = \{a_0\}$. Thus if $a_{\lceil (\delta k+s)/2 \rceil - 1} \notin X'_0$, we have $|X'_0| = 0$, which implies $m = (k-1)^2 = (k-2)k+1 = (k-1)^2 = (k-2)k+1 = (k-1)^2 = (k-2)k+1 = (k-1)^2 = (k-2)k+1 = (k-2$

 $\begin{aligned} -2(|X_0|\lfloor \frac{t}{2} \rfloor + |X_0'|) &= -2|X_0|\frac{\lambda r - 1}{2} \ge -2|X_0|\frac{\lambda r}{2} = -\lambda r|X_0|; \text{ if } a_{\lceil (\delta k + s)/2 \rceil - 1} \in X_0', \\ \text{we have } |X_0'| &= 1, \text{ which implies } m = -2(|X_0|\lfloor \frac{t}{2} \rfloor + |X_0'| - 1) - \rho = -2|X_0|\frac{\lambda r - 1}{2} - 1 = -\lambda r|X_0| + |X_0| - 1 \ge -\lambda r|X_0|. \end{aligned}$

Suppose that either k is odd or $(\lambda, r) \neq (1, k - 1)$ â. Recall that $t = \lfloor \lambda r^2 / k \rfloor$ in the beginning of the proof. Lemma 3.5 implies $\lfloor t/2 \rfloor \leq \lambda r/2 - 1$. Hence

$$m \ge -2\left(|X_0|\lfloor \frac{t}{2} \rfloor + |X_0'|\right) \\\ge -2(|X_0|(\lambda r/2 - 1) + |X_0'|) \\= -\lambda r|X_0| + 2(|X_0| - |X_0'|) \\\ge -\lambda r|X_0|.$$

Therefore, for |X| < r, we have from (8), that

$$g(S) \ge \lambda(r|X| + |Y_1|(r - |X|)) - \lambda r|X_0| = \lambda(r|X_1| + |Y_1|(r - |X|)) \ge 0.$$

This settles (iii).

In the above we show that the function $c: V(H) \to \mathbb{N}$ satisfies (i), (ii), (iii) in Proposition 3.1. Thus H has an S_k -decomposition, say \mathcal{D} .

Let $\mathscr{P} = \mathscr{D} \cup \mathscr{P}_0$. Clearly, \mathscr{P} is a (P_{k+1}, S_k) -packing of $\lambda K_{n,n}$ with leave P_{s+1} and $|\mathscr{P}| = \lfloor \lambda n^2 / k \rfloor$. Let

$$\mathscr{C} = \begin{cases} \mathscr{P} & \text{if } s = 0, \\ \\ \mathscr{P} \cup \{Q\} & \text{if } s \ge 1, \end{cases}$$

where Q is a (k + 1)-path containing the leave of \mathscr{P} . It is easy to see that \mathscr{C} is a (P_{k+1}, S_k) -covering and $|\mathscr{C}| = \lceil \lambda n^2 / k \rceil$.

Combining Lemma 3.3, Lemma 3.4 and Lemma 3.6, we obtain the following lemma.

Lemma 3.7. If λ , k, and n be positive integers with $3 \le k \le n < 2k$, then $\lambda K_{n,n}$ has a (P_{k+1}, S_k) -packing \mathscr{P} with $|\mathscr{P}| = \lfloor \lambda n^2/k \rfloor$ and a (P_{k+1}, S_k) -covering \mathscr{C} with $|\mathscr{C}| = \lceil \lambda n^2/k \rceil$.

Now, we are ready for the main result of this section.

Theorem 3.8. If λ , k, and n are positive integers with $3 \le k \le n$, then $\lambda K_{n,n}$ has a (P_{k+1}, S_k) -packing \mathscr{P} with $|\mathscr{P}| = \lfloor \lambda n^2/k \rfloor$ and a (P_{k+1}, S_k) -covering \mathscr{C} with $|\mathscr{C}| = \lceil \lambda n^2/k \rceil$.

Proof. Due to Lemma 3.7, we only need consider $n \ge 2k$.

Let n = qk + r where q and r are integers with $q \ge 2$, $0 \le r < k$. We have $\lambda K_{n,n} = \lambda K_{k+r,k+r} \cup \lambda K_{k+r,(q-1)k} \cup \lambda K_{(q-1)k,n}$. Note that by Lemma 3.7 $\lambda K_{k+r,k+r}$

has a (P_{k+1}, S_k) -packing \mathscr{P} with $|\mathscr{P}| = \lfloor \lambda(k+r)^2/k \rfloor$ and a (P_{k+1}, S_k) -covering \mathscr{C} with $|\mathscr{C}| = \lceil \lambda(k+r)^2/k \rceil$. Trivially, $\lambda K_{k+r,(q-1)k}$ and $\lambda K_{(q-1)k,n}$ have S_k -decompositions, say \mathscr{D} and \mathscr{D}' , respectively, where $|\mathscr{D}| = \lambda(k+r)(q-1)$ and $|\mathscr{D}'| = \lambda(q-1)n$. Then $\mathscr{P} \cup \mathscr{D} \cup \mathscr{D}'$ is a (P_{k+1}, S_k) -packing of $\lambda K_{n,n}$, obviously with cardinality $\lfloor \lambda n^2/k \rfloor$ and $\mathscr{C} \cup \mathscr{D} \cup \mathscr{D}'$ is a (P_{k+1}, S_k) -covering of $\lambda K_{n,n}$, obviously with cardinality $\lceil \lambda n^2/k \rceil$. This completes the proof.

Clearly, if $\lambda K_{n,n}$ admits a (P_{k+1}, S_k) -decomposition, then $k \leq n$ and λn^2 is divisible by k. Thus the following corollary follows from Theorem 3.8.

Corollary 3.9. For positive integers λ , k and n with $k \geq 3$, the balanced complete bipartite multigraph $\lambda K_{n,n}$ is (P_{k+1}, S_k) -decomposable if and only if $k \leq n$ and λn^2 is divisible by k.

References

- 1. A. Abueida, S. Clark, and D. Leach, Multidecomposition of the complete graph into graph pairs of order 4 with various leaves, *Ars Combin.*, **93** (2009), 403-407.
- 2. A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, *Graphs Combin.*, **19** (2003), 433-447.
- 3. A. Abueida and M. Daven, Multidecompositons of the complete graph, *Ars Combin.*, **72** (2004), 17-22.
- 4. A. Abueida and M. Daven, Multidecompositions of several graph products, *Graphs Combin.*, **29** (2013), 315-326.
- 5. A. Abueida, M. Daven, and K. J. Roblee, Multidesigns of the λ -fold complete graph for graph-pairs of order 4 and 5, *Australas J. Combin.*, **32** (2005), 125-136.
- 6. A. Abueida and C. Hampson, Multidecomposition of $K_n F$ into graph-pairs of order 5 where F is a Hamilton cycle or an (almost) 1-factor, Ars Combin., **97** (2010), 399-416
- 7. A. Abueida and T. O'Neil, Multidecomposition of λK_m into small cycles and claws, *Bull. Inst. Combin. Appl.*, **49** (2007), 32-40.
- 8. J. Bosák, Decompositions of Graphs, Kluwer, Dordrecht, Netherlands, 1990.
- 9. Darryn Bryant, Packing paths in complete graphs, *J. Combin. Theory Ser. B* **100** (2010), 206-215.
- P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners and balanced Pdesigns, Discrete Math., 2 (1972), 229-252.
- 11. D.G. Hoffman, The real truth about star designs, Discrete Math., 284 (2004), 177-180.
- 12. H.-C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, *Ars Combin.*, **108** (2013), 355-364.

- 13. H.-C. Lee and J.-J. Lin, Decomposition of the complete bipartite graph with a 1-factor removed into cycles and stars, *Discrete Math.*, **313** (2013), 2354-2358.
- 14. J.-J. Lin, Decompositions of multicrowns into cycles and stars, *Taiwanese J. Mathematics*, accepted.
- 15. C. A. Parker, *Complete bipartite graph path decompositions*, Ph.D. Thesis, Auburn University, Auburn, Alabama, 1998.
- 16. H. M. Priyadharsini and A. Muthusamy, (G_m, H_m) -multifactorization of λK_m , J. Combin. Math. Combin. Comput., 69 (2009), 145-150.
- 17. H. M. Priyadharsini and A. Muthusamy, (G_m, H_m) -multidecomposition of $K_{m,m}(\lambda)$, Bull. Inst. Combin. Appl., **66** (2012), 42-48.
- 18. T.-W. Shyu, Decomposition of complete graphs into paths and stars, *Discrete Math.*, **310** (2010), 2164-2169.
- 19. T.-W. Shyu, Decompositions of complete graphs into paths and cycles, *Ars Combin.*, **97** (2010), 257-270.
- 20. T.-W. Shyu, Decomposition of complete graphs into paths of length three and triangles, *Ars Combin.*, **107** (2012), 209-224.
- 21. T.-W. Shyu, Decomposition of complete graphs into cycles and stars, *Graphs Combin.*, **29** (2013), 301-313.
- 22. T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with same number of edges, *Discrete Math.*, **313** (2013), 865-871.

Hung-Chih Lee Department of Information Technology Ling Tung University Taichung 40852, Taiwan E-mail: birdy@teamail.ltu.edu.tw

Zhen-Chun Chen Department of Mathematics National Central University Chung Li 320, Taiwan E-mail: amco0624@yahoo.com.tw