MAXIMUM PACKINGS AND MINIMUM COVERINGS OF MULTIGRAPHS WITH PATHS AND STARS

Hung-Chih Lee* and Zhen-Chun Chen

Abstract

Let F, G, and H be multigraphs. An (F, G)-decomposition of H is an edge decomposition of H into copies of F and G using at least one of each. For subgraphs L and R of H, an (F, G)-packing of H with leave L is an (F, G)-decomposition of $H-E(L)$, and an (F, G)-covering of H with padding R is an (F, G)-decomposition of $H+E(R)$. A maximum (F, G)-packing of H is an (F, G)-packing of H with a minimum leave. A minimum (F, G)-covering of H is an (F, G)-covering of H with a minimum padding. Let k be a positive integer. A k-path, denoted by P_{k}, is a path on k vertices. A k-star, denoted by S_{k}, is a star with k edges. In this paper, we obtain a maximum $\left(P_{k+1}, S_{k}\right)$-packing of λK_{n}, which has a leave of size $<k$, and a minimum $\left(P_{k+1}, S_{k}\right)$-covering of λK_{n}, which has a padding of size $<k$. A similar result for $\lambda K_{n, n}$ is also obtained. As corollaries, necessary and sufficient conditions for the existence of $\left(P_{k+1}, S_{k}\right)$-decompositions of both λK_{n} and $\lambda K_{n, n}$ are given.

1. Introduction

For positive integers m and n, K_{n} denotes the complete graph with n vertices, and $K_{m, n}$ denotes the complete bipartite graph with parts of sizes m and n. If $m=n$, the complete bipartite graph is referred to as balanced. Let k be a positive integer. A k-star, denoted by S_{k}, is the complete bipartite graph $K_{1, k}$. A k-path, denoted by P_{k}, is a path on k vertices. A k-cycle, denoted by C_{k}, is a cycle of length k. For a graph H and a positive integer λ, we use λH to denote the multigraph obtained from H by replacing each edge e by λ edges each having the same endpoints as e.

Let F, G, and H be multigraphs. A decomposition of H is a set of edge-disjoint subgraphs of H whose union is H. A G-decomposition of H is a decomposition of H in which each subgraph is isomorphic to G. If H has a G-decomposition, we say that H is G-decomposable. An (F, G)-decomposition of H is a decomposition of H

[^0]with members isomorphic to F or G such that at least one of each occurs. If H has an (F, G)-decomposition, we say that H is (F, G)-decomposable.

Recently, decomposition of a graph into a pair of graphs has attracted a fair share of interest. Abueida and Daven [3] investigated the problem of (K_{k}, S_{k})-decomposition of the complete graph K_{n}. Abueida and Daven [4] investigated the problem of the $\left(C_{4}, E_{2}\right)$-decomposition of several graph products where E_{2} denotes two vertex disjoint edges. Abueida and O'Neil [7] studied the existence problem for $\left(C_{k}, S_{k-1}\right)$ decomposition of the complete multigraph λK_{n} for $k \in\{3,4,5\}$. Priyadharsini and Muthusamy [16, 17] investigated the existence of (G, H)-decompositions of λK_{n} and $\lambda K_{n, n}$ where $G, H \in\left\{C_{n}, P_{n}, S_{n-1}\right\}$. A graph-pair (G, H) of order m is a pair of non-isomorphic graphs G and H with $V(G)=V(H)$ such that both G and H contain no isolated vertices and $G \cup H$ is isomorphic to K_{m}. Abueida and Daven [2] and Abueida, Daven and Roblee [5] completely determined the values of n for which λK_{n} admits a (G, H)-decomposition where (G, H) is a graph-pair of order 4 or 5 . Abueida, Clark and Leach [1] and Abueida and Hampson [6] considered the existence of decompositions of $K_{n}-F$ into the graph-pairs of order 4 and 5 , respectively, where F is a Hamiltonian cycle, a 1 -factor, or an almost 1-factor. Lee [12], Lee and Lin [13], and Lin [14] established necessary and sufficient conditions for the existence of (C_{k}, S_{k})decompositions of the complete bipartite graph, the complete bipartite graph with a 1 -factor removed, and the multicrown, respectively. Shyu studied the problem of decomposing a graph into copies of a graph G and copies of a graph H where the number of copies of G and the number of copies of H are essential. He gave necessary and sufficient conditions for the decomposition of K_{n} into paths and stars (both with 3 edges) [18], paths and cycles (both with k edges where $k=3,4$) [19, 20], and cycles and stars (both with 4 edges) [21]. He [22] also gave necessary and sufficient conditions for the decomposition of $K_{m, n}$ into paths and stars both with 3 edges.

Let F, G, and H be multigraphs. For subgraphs L and R of H, an (F, G)-packing of H with leave L is an (F, G)-decomposition of $H-E(L)$, and an (F, G)-covering of H with padding R is an (F, G)-decomposition of $H+E(R)$. A maximum (F, G) packing of H is an (F, G)-packing of H with a minimum leave (i.e. a leave with the minimum number of edges). A minimum (F, G)-covering of H is an (F, G)-covering of H with a minimum padding. Clearly, an (F, G)-decomposition of H is an (F, G) packing of H with an empty graph as its leave, and is an (F, G)-covering of H with an empty graph as its padding.

Abueida and Daven [3] obtained the maximum (K_{k}, S_{k})-packing and the minimum (K_{k}, S_{k})-covering of the complete graph K_{n}. Abueida and Daven [2] and Abueida, Daven and Roblee [5] gave the maximum (F, G)-packing and the minimum (F, G) covering of K_{n} and λK_{n}, respectively, where (F, G) is a graph-pair of order 4 or 5 . In this paper, we obtain a maximum $\left(P_{k+1}, S_{k}\right)$-packing of λK_{n}, which has a leave of size $<k$, and a minimum $\left(P_{k+1}, S_{k}\right)$-covering of λK_{n}, which has a padding of size $<k$.

A similar result for $\lambda K_{n, n}$ is also obtained. As corollaries, necessary and sufficient conditions for the existence of $\left(P_{k+1}, S_{k}\right)$-decompositions of both λK_{n} and $\lambda K_{n, n}$ are given. Since P_{k+1} is isomorphic to S_{k} for $k=1,2$, we restrict the discussions to $k \geq 3$.

2. Packing and Covering of λK_{n}

In this section the problems of the maximum $\left(P_{k+1}, S_{k}\right)$-packing and the minimum $\left(P_{k+1}, S_{k}\right)$-covering of λK_{n} are investigated. We first collect some needed terminology and notation.

Let G be a multigraph. The degree of a vertex x of G, denoted by $\operatorname{deg}_{G} x$, is the number of edges incident with x. For $k \geq 2$, the vertex of degree k in S_{k} is the center of S_{k} and any vertex of degree 1 is an endvertex of S_{k}. In addition, $v_{1} v_{2} \ldots v_{k}$ denotes the k-path through vertices $v_{1}, v_{2}, \ldots, v_{k}$ in order, and the vertices v_{1} and v_{k} are referred to as its origin and terminus. If $P=x_{1} x_{2} \ldots x_{t}, Q=y_{1} y_{2} \ldots y_{s}$ and $x_{t}=y_{1}$, then $P+Q$ denotes the walk $x_{1} x_{2} \ldots x_{t} y_{2} \ldots y_{s}$. Moreover, we use $P_{k}\left(v_{1}, v_{k}\right)$ to denote a k-path with origin v_{1} and terminus v_{k}. For $U, W \subseteq V(G)$ with $U \cap W=\phi$, we use $G[U]$ and $G[U, W]$ to denote the subgraph of G induced by U, and the maximal bipartite subgraph of G with bipartition (U, W), respectively. When $G_{1}, G_{2}, \ldots, G_{t}$ are edge disjoint subgraphs of a graph, we use $G_{1} \cup G_{2} \cup \cdots \cup G_{t}$ to denote the graph with vertex set $\bigcup_{i=1}^{t} V\left(G_{i}\right)$ and edge set $\bigcup_{i=1}^{t} E\left(G_{i}\right)$.

Before going into more details, we present some results which are useful for our discussions.

Proposition 2.1. (Bryant [9]). For positive integers λ, n, and t, and any sequence $m_{1}, m_{2}, \ldots, m_{t}$ of positive integers, the complete multigraph λK_{n} can be decomposed into paths of lengths $m_{1}, m_{2}, \ldots, m_{t}$ if and only if each $m_{i} \leq n-1$ and $m_{1}+m_{2}+$ $\cdots+m_{t}=\left|E\left(\lambda K_{n}\right)\right|$.

Proposition 2.2. (Bosák [8], Hell and Rosa [10]). For an even integer n and $V\left(K_{n}\right)=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$, the complete graph K_{n} can be decomposed into the following $n / 2$ copies of n-paths : $P_{n}\left(x_{0}, x_{n / 2}\right), P_{n}\left(x_{1}, x_{1+n / 2}\right), \ldots, P_{n}\left(x_{n / 2-1}, x_{n-1}\right)$.

The following lemma is trivial.
Lemma 2.3. For an odd integer n with $n \geq 3$, the complete graph K_{n} can be decomposed into n copies of $(n+1) / 2$-paths whose origins are all distinct.

Proof. Let $V\left(K_{n}\right)=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$. We define $(n+1) / 2$-paths as follows. For $0 \leq i \leq n-1$,

$$
P^{i}=\left\{\begin{array}{lll}
x_{i} x_{i-1} x_{i+1} x_{i-2} \ldots x_{i-\frac{n-1}{4}} x_{i+\frac{n-1}{4}} & \text { if } n \equiv 1 & (\bmod 4), \\
x_{i} x_{i-1} x_{i+1} x_{i-2} \ldots x_{i+\frac{n-3}{4}} x_{i-\frac{n+1}{4}} & \text { if } n \equiv 3 & (\bmod 4),
\end{array}\right.
$$

where the subscripts of x 's are taken modulo n. It is easy to check that $\left\{P^{0}, P^{1}, \ldots\right.$, $\left.P^{n-1}\right\}$ is a $P_{(n+1) / 2}$-decomposition of K_{n} as required.

Lemma 2.4. Let k, m, p, and s be positive integers and let t be a nonnegative integer with $\max \{m, t\} \leq k-1$. If $p k+t=m(m-1) / 2+(s k+1) s k / 2+m(s k+1)$, then $p-(s+1) m>0$.

Proof. Note that

$$
\begin{aligned}
p k-(s+1) m k & =m(m-1) / 2+(s k+1) s k / 2+m-t-m k \\
& \geq m(m-1) / 2+(k+1) k / 2+m-t-m k \\
& =(k-1-m)(k-m) / 2+k-t \\
& >0 .
\end{aligned}
$$

Thus $p-(s+1) m>0$.
Theorem 2.5. Let n and k be positive integers with $k \geq 3$ and $n \geq k+2$. If $\left|E\left(K_{n}\right)\right| \equiv t(\bmod k)$ where $0 \leq t \leq k-1$, then K_{n} has a $\left(P_{k+1}, S_{k}\right)$-packing with leave P_{t+1}.

Proof. Let $n=q k+r$ where $q \in \mathbb{N}, 0 \leq r \leq k-1$ and let $\left|E\left(K_{n}\right)\right|=p k+t$ where $p \in \mathbb{N}$. We can see that $p \geq q+1$. Suppose that $r=1$. Then K_{n} can be decomposed into $K_{q k}$ and $K_{1, q k}$. Note that $\left|E\left(K_{q k}\right)\right|=(p-q) k+t$. Thus by Proposition 2.1, $K_{q k}$ can be decomposed into $p-q$ copies of $(k+1)$-paths and one $(t+1)$-path. Obviously, $K_{1, q k}$ is S_{k}-decomposable. Hence K_{n} has a (P_{k+1}, S_{k})-packing with leave P_{t+1} for $r=1$.

Now we consider the case $r \neq 1$. If $r=0$, then $n=q k$ where $q \geq 2$ for $n \geq k+2$; write $n=(k-1)+(q-1) k+1$ where $k-1 \geq 1, q-1 \geq 1$. If $r \geq 2$, then $n=q k+r=(r-1)+q k+1$ where $1 \leq r-1 \leq k-1, q \geq 1$. Thus for $r \neq 1$ we can set $n=m+s k+1$ where m and s are positive integers with $m \leq k-1$. Let $A=\left\{x_{0}, x_{1}, \ldots, x_{m-1}\right\}, B=\left\{y_{0}, y_{1}, \ldots, y_{s k}\right\}$ and $V\left(K_{n}\right)=A \cup B$. Note that $K_{n}=K_{m+s k+1}=K_{m+s k+1}[A] \cup K_{m+s k+1}[B] \cup K_{m+s k+1}[A, B]$, and $K_{m+s k+1}[A] \cong K_{m}, K_{m+s k+1}[B] \cong K_{s k+1}$, and $K_{m+s k+1}[A, B] \cong K_{m, s k+1}$. Thus $p k+t=m(m-1) / 2+(s k+1) s k / 2+m(s k+1)$. Hence by Lemma 2.4,

$$
\begin{equation*}
p-(s+1) m>0 . \tag{1}
\end{equation*}
$$

Also

$$
\begin{equation*}
\left|E\left(K_{s k+1}\right)\right|=(s k+1) s k / 2=p k+t-m(m-1) / 2-m(s k+1) . \tag{2}
\end{equation*}
$$

Case 1. m is odd.
By (2), $\left|E\left(K_{s k+1}\right)\right|=(k-(m+1) / 2) m+k(p-(s+1) m)+t$. By (1) and Proposition 2.1, $K_{s k+1}$ has a path decomposition \mathscr{F}, which consists of m copies of ($k-(m-1) / 2)$-paths, $p-(s+1) m$ copies of $(k+1)$-paths and one $(t+1)$-path.

If $m=1$, then $n=s k+2, A=\left\{x_{0}\right\}$, and as mentioned above, $K_{s k+1}$ has a decomposition consisting of one $P_{k}, p-s-1$ copies of P_{k+1} and one P_{t+1}. Assume that in the above decomposition, $P_{k}=P_{k}\left(y_{w_{0}}, y_{w_{1}}\right)$ (i.e. $y_{w_{0}}, y_{w_{1}}$ are the endvertices of this P_{k}). Let $P=P_{k}\left(y_{w_{0}}, y_{w_{1}}\right)+x_{0} y_{w_{0}}$. Then P is a $(k+1)$-path. Moreover, $K_{s k+2}[A, B]-\left\{x_{0} y_{w_{0}}\right\} \cong K_{1, s k}$, which is S_{k}-decomposable. Hence $K_{s k+2}$ has a $\left(P_{k+1}, S_{k}\right)$-packing with leave P_{t+1}.

If $m \geq 3$, then Lemma 2.3 implies that there exists a $P_{(m+1) / 2}$-decomposition \mathscr{V}^{\prime} of K_{m} where $\mathscr{V}^{\prime}=\left\{P_{(m+1) / 2}\left(x_{i}, x_{j_{i}}\right) \mid 0 \leq i \leq m-1\right\}$ and $x_{1}, x_{2}, \ldots, x_{m-1}$ are distinct. Suppose that the m copies of $(k-(m-1) / 2)$-paths in \mathscr{O} are $P_{k-(m-1) / 2}$ $\left(y_{w_{0}}, y_{w_{0}^{\prime}}^{\prime}\right), P_{k-(m-1) / 2}\left(y_{w_{1}}, y_{w_{1}^{\prime}}\right), \ldots, P_{k-(m-1) / 2}\left(y_{w_{m-1}}, y_{w_{m-1}^{\prime}}\right)$. For $i \in\{0,1, \ldots$, $m-1\}$, let

$$
P^{i}=P_{\frac{m+1}{2}}\left(x_{i}, x_{j_{i}}\right)+x_{i} y_{w_{i}}+P_{k-\frac{m-1}{2}}\left(y_{w_{i}}, y_{w_{i}^{\prime}}\right) .
$$

Then P^{i} is a $(k+1)$-path for each i. Moreover, let $G=K_{m+s k+1}[A, B]-\left\{x_{i} y_{w_{i}} \mid\right.$ $0 \leq i \leq m-1\}$. Then G is a bipartite graph with $\operatorname{deg}_{G} x_{i}=s k$ for $0 \leq i \leq m-1$. Thus G is S_{k}-decomposable, and in turn, $K_{m+s k+1}$ has a $\left(P_{k+1}, S_{k}\right)$-packing with leave P_{t+1}.

Case 2. m is even.
By Proposition 2.2, there exists a P_{m}-decomposition $\left\{P_{m}\left(x_{i}, x_{i+m / 2}\right) \mid 0 \leq i \leq\right.$ $m / 2-1\}$ of K_{m}. By (2), $\left|E\left(K_{s k+1}\right)\right|=(k-m-1) m / 2+k(p-s m-m / 2)+t$. By (1), $p-s m-m / 2>0$. Hence by Proposition 2.1, $K_{s k+1}$ has a path decomposition $\mathscr{V}^{\prime \prime}$, which consists of $m / 2$ copies of $(k-m)$-paths, $p-s m-m / 2$ copies of $(k+1)$-paths and one $(t+1)$-path. Suppose that the $m / 2$ copies of $(k-m)$-paths in $\mathscr{V}^{\prime \prime}$ are $P_{k-m}\left(y_{w_{0}}, y_{w_{0}^{\prime}}\right), P_{k-m}\left(y_{w_{1}}, y_{w_{1}^{\prime}}\right), \ldots, P_{k-m}\left(y_{w_{m / 2-1}}, y_{w_{m / 2-1}^{\prime}}\right)$. For $i \in$ $\{0,1, \ldots, m / 2-1\}$, let

$$
Q^{i}=P_{m}\left(x_{i}, x_{i+\frac{m}{2}}\right)+x_{i} y_{w_{i}}+P_{k-m}\left(y_{w_{i}}, y_{w_{i}^{\prime}}\right)+x_{i+\frac{m}{2}} y_{v_{i}}
$$

where $y_{v_{i}} \notin V\left(P_{k-m}\left(y_{w_{i}}, y_{w_{i}^{\prime}}\right)\right)$. Then Q^{i} is a $(k+1)$-path for each i. Moreover, let $H=K_{m+s k+1}[A, B]-\left\{x_{i} y_{w_{i}}, x_{i+m / 2} y_{v_{i}} \mid 0 \leq i \leq m / 2-1\right\}$. Then H is a bipartite graph with $\operatorname{deg}_{H} x_{i}=s k$ for $0 \leq i \leq m-1$. Thus H is S_{k}-decomposable, and in turn $K_{m+s k+1}$ has a (P_{k+1}, S_{k})-packing with leave P_{t+1}.

It is trivial that the leave P_{t+1} in Theorem 2.5 can be chosen arbitrarily.
Theorem 2.6. Let λ, n and k be positive integers with $k \geq 3$ and $n \geq k+2$. If $\left|E\left(\lambda K_{n}\right)\right| \equiv t(\bmod k)$ where $0 \leq t \leq k-1$, then (1) λK_{n} has a $\left(P_{k+1}, S_{k}\right)$-packing with leave P_{t+1}, (2) λK_{n} has a $\left(P_{k+1}, S_{k}\right)$-covering with padding P_{k-t+1}.

Proof. (1) Let $V\left(K_{n}\right)=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ and $\left|E\left(K_{n}\right)\right| \equiv r(\bmod k)$ with $0 \leq r \leq k-1$. From the assumption $\left|E\left(\lambda K_{n}\right)\right| \equiv t(\bmod k)$, we have $\lambda r \equiv t$ $(\bmod k)$. Clearly, λK_{n} can be decomposed into λ copies of K_{n}, say $G_{0}, G_{1}, \ldots, G_{\lambda-1}$.

Theorem 2.5 implies that each G_{i} has a $\left(P_{k+1}, S_{k}\right)$-packing with leave $(r+1)$-path, say P^{i}. By the note following Theorem 2.5, we can assume that for $0 \leq i \leq \lambda-1$, $P^{i}=x_{i r} x_{i r+1} \ldots x_{i r+r}$ where the subscripts of x 's are taken modulo n. By cutting method, we can see that $P^{0}+P^{1}+\cdots+P^{\lambda-1}$ which is a walk with λr edges can be decomposed into several copies of $(k+1)$-paths and one $(t+1)$-path. This completes the proof of (1).
(2) follows from (1) directly.

In the proof of the following corollary, we use $S\left(u ; v_{1}, v_{2}, \ldots, v_{k}\right)$ to denote a star with center u and endvertices $v_{1}, v_{2}, \ldots, v_{k}$.

Corollary 2.7. For positive integers λ, k, and n with $k \geq 3$, the complete multigraph λK_{n} is $\left(P_{k+1}, S_{k}\right)$-decomposable if and only if $n \geq k+1, \lambda n(n-1) / 2 \equiv 0$ $(\bmod k)$ and $(\lambda, n) \neq(1, k+1)$.

Proof. (Necessity) Since $\left|V\left(K_{n}\right)\right|$ and $\left|V\left(P_{k+1}\right)\right|$ are n and $k+1$, respectively, $n \geq k+1$ is necessary. Since λK_{n} has $\lambda n(n-1) / 2$ edges and each subgraph in a decomposition has k edges, k must divide $\lambda n(n-1) / 2$. Since $K_{k+1}-E\left(S_{k}\right)$ contains no $(k+1)$-path, K_{k+1} is not $\left(P_{k+1}, S_{k}\right)$-decomposable. Hence $(\lambda, n) \neq(1, k+1)$.
(Sufficiency) When $n \geq k+2$ and k divides $\lambda n(n-1) / 2$, the existence of $\left(P_{k+1}, S_{k}\right)$ decomposition of λK_{n} follows from Theorem 2.6. So it remains to consider $n=k+1$. Then $\lambda \geq 2$ by the assumption. We distinguish two cases according to the parity of λ.

Case 1. λ is even.
Let $V\left(2 K_{k+1}\right)=\left\{x_{0}, x_{1}, \ldots, x_{k-1}, x_{\infty}\right\}$. For $i=0,1, \ldots, k-1$, let

$$
P^{i}=x_{i} x_{i-1} x_{i+1} x_{i-2} \ldots x_{\lfloor i+k / 2\rfloor} x_{\infty}
$$

where the subscripts of x 's are taken modulo k. It is easy to see that $\left\{S\left(x_{\infty} ; x_{0}, x_{1}, \ldots\right.\right.$, $\left.\left.x_{k-1}\right), P^{0}, P^{1}, \ldots, P^{k-1}\right\}$ is a $\left(P_{k+1}, S_{k}\right)$-decomposition of $2 K_{k+1}$. Since λ is even, λK_{k+1} can be decomposed into $\lambda / 2$ copies of $2 K_{k+1}$. Hence λK_{k+1} is $\left(P_{k+1}, S_{k}\right)$ decomposable.

Case 2. $\lambda \geq 3$ is odd.
The condition $\lambda n(n-1) / 2 \equiv 0(\bmod k)$ with $n=k+1$ and odd λ implies that $k+1$ is even. Note that $\lambda K_{k+1}=(\lambda-1) K_{k+1} \cup K_{k+1}$. By Case $1,(\lambda-1) K_{k+1}$ is (P_{k+1}, S_{k})-decomposable. By Proposition 2.2, K_{k+1} is P_{k+1}-decomposable. Thus λK_{k+1} is $\left(P_{k+1}, S_{k}\right)$-decomposable.

3. Packing and Covering of $\lambda K_{n, n}$

In this section the $\left(P_{k+1}, S_{k}\right)$-packing, $\left(P_{k+1}, S_{k}\right)$-covering and $\left(P_{k+1}, S_{k}\right)$-decomposition of $\lambda K_{n, n}$ are investigated. Before moving on, we need more terminology and notation, and some useful results.

Let G be a multigraph. We use $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ to denote the k-cycle of G, which is through vertices $v_{1}, v_{2}, \ldots, v_{k}$ in order, and $\mu(u v)$ to denote the number of edges of G joining the vertices u and v. Given an S_{k}-decomposition of G, a central function c from $V(G)$ to the set of nonnegative integers is defined as follows: for each $v \in V(G)$, $c(v)$ is the number of k-stars in the decomposition whose center is v.

Proposition 3.1. (Hoffman [11]). Let H be a multigraph and c be a function from $V(H)$ to the set of nonnegative integers. Then c is a central function for some S_{k}-decomposition of H if and only if
(i) $k \sum_{v \in V(H)} c(v)=|E(H)|$,
(ii) for all $x, y \in V(H)$ with $x \neq y, \mu(x y) \leq c(x)+c(y)$,
(iii) for all $S \subseteq V(H), k \sum_{v \in S} c(v) \leq \varepsilon(S)+\sum_{x \in S, y \in V(H)-S} \min \{c(x), \mu(x y)\}$,
where $\varepsilon(S)$ denotes the number of edges of H with both ends in S.
Proposition 3.2. (Parker [15]). There exists a P_{k+1}-decomposition of $K_{m, n}$ if and only if $m n \equiv 0(\bmod k)$ and one of the following cases occurs.

Case	k	m	n	Conditions
1	even	even	even	$k \leq 2 m, k \leq 2 n$, not both equalities
2	even	even	odd	$k \leq 2 m-2, k \leq 2 n$
3	even	odd	even	$k \leq 2 m, k \leq 2 n-2$
4	odd	even	even	$k \leq 2 m-1, k \leq 2 n-1$
5	odd	even	odd	$k \leq 2 m-1, k \leq n$
6	odd	odd	even	$k \leq m, k \leq 2 n-1$
7	odd	odd	odd	$k \leq m, k \leq n$

Lemma 3.3. If λ and k are positive integers with $k \geq 2$, then $\lambda K_{k, k}$ is $\left(P_{k+1}, S_{k}\right)$ decomposable.

Proof. Note that $K_{k, k}=K_{k, k-1} \cup K_{k, 1}$ for $k \geq 2$. It is easy to see that $K_{k, k-1}$ is P_{k+1}-decomposable by cases 2 and 6 of Proposition 3.2. Clearly $K_{k, 1}$ is S_{k}-decomposable. Thus $K_{k, k}$ is $\left(P_{k+1}, S_{k}\right)$-decomposable, and so is $\lambda K_{k, k}$.

In the sequel of the paper, we use (A, B) to denote the bipartition of $\lambda K_{n, n}$ where $A=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$ and $B=\left\{b_{0}, b_{1}, \ldots, b_{n-1}\right\}$.

Lemma 3.4. Let λ, k, and n be positive integers with $3 \leq k<n<2 k$. If $\lambda(n-k)^{2}<k$, then $\lambda K_{n, n}$ has a $\left(P_{k+1}, S_{k}\right)$-packing \mathscr{P}° with $|\mathscr{P}|=\left\lfloor\lambda n^{2} / k\right\rfloor$ and $a\left(P_{k+1}, S_{k}\right)$-covering \mathscr{C} with $|\mathscr{C}|=\left\lceil\lambda n^{2} / k\right\rceil$.

Proof. Let $n=k+r$. The assumption $k<n<2 k$ implies $0<r<k$.
We first give a required packing. Note that

$$
\lambda K_{n, n}=\lambda K_{k, k} \cup \lambda K_{k, r} \cup \lambda K_{r, k} \cup \lambda K_{r, r} .
$$

By Lemma 3.3, $\lambda K_{k, k}$ has a $\left(P_{k+1}, S_{k}\right)$-decomposition \mathscr{V}_{1} with $\left|\mathscr{O}_{1}\right|=\lambda k$. Trivially, $\lambda K_{k, r}$ and $\lambda K_{r, k}$ have S_{k}-decompositions \mathscr{S}_{2} and \mathscr{S}_{3} with $\left|\mathscr{S}_{2}\right|=\left|\mathscr{S}_{3}\right|=$ λr, respectively. Let $\mathscr{P}=\bigcup_{i=1}^{3} \mathscr{O}_{i}$. Then \mathscr{P} is a $\left(P_{k+1}, S_{k}\right)$-packing of $\lambda K_{n, n}$ with $|\mathscr{O}|=\lambda(k+2 r)$. Since $\lambda r^{2}=\lambda(n-k)^{2}<k$, we have $|\mathscr{O}|=\left\lfloor\lambda(k+r)^{2} / k\right\rfloor=$ $\left\lfloor\lambda n^{2} / k\right\rfloor$. Thus \mathscr{P} is a required packing.

Now we give a required covering. Let $s=\lambda r^{2}$. Note $s<k<n$. Let $A_{0}=$ $\left\{a_{0}, a_{1}, \ldots, a_{\lfloor(s-1) / 2\rfloor}\right\}, A_{1}=A-A_{0}, B_{0}=\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}$ and $B_{1}=B-B_{0}$. Define a $(k+1)$-path P as follows:

$$
P= \begin{cases}b_{0} a_{0} b_{1} a_{1} \ldots b_{\frac{k-1}{2}} a_{\frac{k-1}{2}} & \text { if } k \text { is odd, } \\ b_{0} a_{0} b_{1} a_{1} \ldots b_{\frac{k}{2}-1} a_{\frac{k}{2}-1} b_{\frac{k}{2}} & \text { if } k \text { is even. }\end{cases}
$$

Let P^{\prime} be the $(k-s+1)$-subpath of P with end vertices $a_{\frac{k-1}{2}}, a_{\frac{s-1}{2}}$, when k is odd, s is odd, end vertices $a_{\frac{k-1}{2}}, b_{\frac{s}{2}}$, when k is odd, s is even, end vertices $b_{\frac{k}{2}}, a_{\frac{s-1}{2}}$, when k is even, s is odd, and end vertices $b_{\frac{k}{2}}, b_{\frac{s}{2}}$, when k is even, s is even. Note that since $s>0, P^{\prime}$ is a proper subgraph of P.

Let

$$
H=\lambda K_{n, n}-E(P)+E\left(P^{\prime}\right) .
$$

Note that H is a proper subgraph of $\lambda K_{n, n}$.
We will show that H has an S_{k}-decomposition.
Note that $V(H)=V\left(\lambda K_{n, n}\right),|E(H)|=\lambda n^{2}-k+(k-s)=\lambda n^{2}-\lambda r^{2}=$ $\lambda k(k+2 r)$, and $\mu(u v) \leq \lambda$ for all $u, v \in V(H)$. Define a function $c: V(H) \rightarrow \mathbb{N}$ as follows:

$$
c(v)= \begin{cases}0 & \text { if } v \in B_{0} \\ \lambda & \text { otherwise }\end{cases}
$$

We will show that the function c satisfies (i), (ii), and (iii) in Proposition 3.1. First, $k \sum_{v \in V(H)} c(v)=k \lambda(k+2 r)=|E(H)|$. This proves (i). Next, if $u, v \in B_{0}$, then $c(u)+c(v)=0=\mu(u v)$; otherwise, $c(u)+c(v) \geq \lambda \geq \mu(u v)$. This proves (ii). To prove (iii), let $S \subseteq V(H)$. For $i \in\{0,1\}$, let $X_{i}=S \cap A_{i}$ and $Y_{i}=S \cap B_{i}$. Moreover, let $X=X_{0} \cup X_{1}$ and $Y=Y_{0} \cup Y_{1}$. Define a set T of ordered pairs of vertices as follows:
$T=\left\{(u, v) \mid\left(u \in X, v \in B_{1}-Y_{1}\right)\right.$ or $\left(u \in X_{1}, v \in B_{0}-Y_{0}\right)$ or $\left.\left(u \in Y_{1}, v \in A-X\right)\right\}$.
Note that

$$
\begin{equation*}
k \sum_{w \in S} c(w)=k \lambda\left(|X|+\left|Y_{1}\right|\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon(S)=\lambda\left(|X|\left|Y_{1}\right|+\left|X_{1}\right|\left|Y_{0}\right|\right)+\sum_{u \in X_{0}, v \in Y_{0}} \mu(u v) \tag{2}
\end{equation*}
$$

and for $u \in S$ and $v \in V(H)-S$

$$
\min \{c(u), \mu(u v)\}= \begin{cases}\lambda & \text { if }(u, v) \in T \tag{3}\\ \mu(u v) & \text { if } u \in X_{0}, v \in B_{0}-Y_{0} \\ 0 & \text { otherwise }\end{cases}
$$

For $S \subseteq V(H)$, let

$$
g(S)=\varepsilon(S)+\sum_{u \in S, v \in V(H)-S} \min \{c(u), \mu(u v)\}-k \sum_{w \in S} c(w)
$$

To show (iii), we need show $g(S) \geq 0$.
Note that, if $v \in A_{0}-\left\{a_{\left\lfloor\frac{s-1}{2}\right\rfloor}\right\}$, there are $\lambda k-2$ edges in H joining v and all vertices in B_{0}; if $v=a_{\left\lfloor\frac{s-1}{2}\right\rfloor}$, there are $\lambda k-\rho$ edges in H joining v and all vertices in B_{0} where $\rho=1$ if s is odd, and $\rho=2$ if s is even.

Hence

$$
\begin{aligned}
& \sum_{u \in X_{0}, v \in B_{0}} \mu(u v) \\
= & \begin{cases}\left|X_{0}\right|(\lambda k-2) & \text { if } a_{\lfloor(s-1) / 2\rfloor} \notin X_{0}, \\
\left|X_{0}\right|(\lambda k-2)+2-\rho & \text { if } a_{\lfloor(s-1) / 2\rfloor} \in X_{0} .\end{cases}
\end{aligned}
$$

By (1)-(3) and $\left|X_{0}\right|+\left|X_{1}\right|=|X|$, we have

$$
\begin{aligned}
g(S)= & \lambda\left(|X|\left|Y_{1}\right|+\left|X_{1}\right|\left|Y_{0}\right|\right)+\sum_{u \in X_{0}, v \in Y_{0}} \mu(u v) \\
& +\lambda\left(|X|\left(r-\left|Y_{1}\right|\right)+\left|X_{1}\right|\left(k-\left|Y_{0}\right|\right)+\left|Y_{1}\right|(k+r-|X|)\right) \\
& +\sum_{u \in X_{0}, v \in B_{0}-Y_{0}} \mu(u v)-k \lambda\left(|X|+\left|Y_{1}\right|\right) \\
= & \lambda r|X|+\lambda\left|Y_{1}\right| r-\lambda\left|Y_{1}\right||X|-\lambda k\left|X_{0}\right|+\sum_{u \in X_{0}, v \in B_{0}} \mu(u v) \\
= & \begin{cases}\lambda\left(r|X|+\left|Y_{1}\right|(r-|X|)\right)-2\left|X_{0}\right| \quad \text { if } a_{\lfloor(s-1) / 2\rfloor} \notin X_{0} \\
\lambda\left(r|X|+\left|Y_{1}\right|(r-|X|)\right)-2\left|X_{0}\right|+2-\rho & \text { if } a_{\lfloor(s-1) / 2\rfloor} \in X_{0}\end{cases}
\end{aligned}
$$

If $a_{\lfloor(s-1) / 2\rfloor} \notin X_{0}$, then $\left|X_{0}\right| \leq\lfloor(s-1) / 2\rfloor$, which implies $-2\left|X_{0}\right| \geq-s$. If $a_{\lfloor(s-1) / 2\rfloor} \in X_{0}$, then $\left|X_{0}\right| \leq\lfloor(s-1) / 2\rfloor+1$, which implies $-2\left|X_{0}\right|+2-\rho \geq$
$-2\lfloor(s-1) / 2\rfloor-\rho=-2(s-\rho) / 2-\rho=-s$. Suppose $|X| \geq r$. We have

$$
\begin{aligned}
g(S) & \geq \lambda\left(r|X|-\left|Y_{1}\right|(|X|-r)\right)-s \\
& =\lambda\left(r|X|-\left|Y_{1}\right|(|X|-r)\right)-\lambda r^{2} \\
& =\lambda(|X|-r)\left(r-\left|Y_{1}\right|\right) \\
& \geq 0 .
\end{aligned}
$$

Suppose $|X|<r$.
If $\lambda r=1$, then $\left|X_{0}\right|=|X|=0$, which implies $-2\left|X_{0}\right|=-\lambda r\left|X_{0}\right|$. If $\lambda r \geq 2$, then $-2\left|X_{0}\right| \geq-\lambda r\left|X_{0}\right|$. Note that $2-\rho \geq 0$. Hence we have

$$
\begin{aligned}
g(S) & \geq \lambda\left(r|X|+\left|Y_{1}\right|(r-|X|)\right)-2\left|X_{0}\right| \\
& \geq \lambda\left(r|X|+\left|Y_{1}\right|(r-|X|)\right)-\lambda r\left|X_{0}\right| \\
& =\lambda\left(r\left|X_{1}\right|+\left|Y_{1}\right|(r-|X|)\right) \\
& \geq 0 .
\end{aligned}
$$

This settles (iii). By Proposition 3.1, H has an S_{k}-decomposition, say \mathscr{O}. Since $H=\lambda K_{n, n}-E(P)+E\left(P^{\prime}\right), \mathscr{F} \cup\{P\}$ is an $\left(P_{k+1}, S_{k}\right)$-covering of $\lambda K_{n, n}$. Also since \mathscr{V} is a packing but not a decomposition of $\lambda K_{n, n}$ and $\mathscr{V} \cup\{P\}$ is a covering of $\lambda K_{n, n}$, we have $|\mathscr{\mathscr { V }} \cup\{P\}|=\left\lceil\lambda n^{2} / k\right\rceil$.

The following result is needed in the proof of Lemma 3.6.
Lemma 3.5. Let λ, k, and r be positive integers with $k \geq 3, r<k$ and $\lambda r^{2} \geq k$. If k is odd or $(\lambda, r) \neq(1, k-1)$, then $\left\lfloor\left\lfloor\lambda r^{2} / k\right\rfloor / 2\right\rfloor \leq \lambda r / 2-1$.

Proof. We first consider the case $\lambda=1$. If $r=k-1$, then $\left\lfloor\lambda r^{2} / k\right\rfloor=\left\lfloor r^{2} /(r+\right.$ 1) $\rfloor=r-1$, and k is odd by assumption. Thus r is even. Hence $\left\lfloor\left\lfloor\lambda r^{2} / k\right\rfloor / 2\right\rfloor=$ $\lfloor(r-1) / 2\rfloor=r / 2-1$. If $r \leq k-2$, then $r^{2} \geq r+2$ from the assumption $\lambda r^{2} \geq k$. Thus $r \geq 2$. Note that $\left\lfloor\lambda r^{2} / k\right\rfloor \leq\left\lfloor r^{2} /(r+2)\right\rfloor$. In the case $r=2,\left\lfloor\left\lfloor r^{2} /(r+2)\right\rfloor / 2\right\rfloor=0=$ $r / 2-1$, which implies $\left\lfloor\left\lfloor r^{2} / k\right\rfloor / 2\right\rfloor \leq r / 2-1$. In the case $r \geq 3,\left\lfloor r^{2} /(r+2)\right\rfloor=r-2$, which implies $\left\lfloor\left\lfloor\lambda r^{2} / k\right\rfloor / 2\right\rfloor \leq\lfloor(r-2) / 2\rfloor \leq r / 2-1$.

Now we consider the case $\lambda \geq 2$. Since $\lambda r^{2} \geq k \geq 3$, we have $r \geq \sqrt{3 / \lambda}$. Thus

$$
\frac{\lambda r^{2}}{k} \leq \frac{\lambda r^{2}}{r+1}=\lambda r-\frac{\lambda}{1+1 / r} \leq \lambda r-\frac{\lambda}{1+\sqrt{\lambda / 3}} .
$$

Note that $\lambda /(1+\sqrt{\lambda / 3})$ is increasing with respect to λ. Thus $\lambda r^{2} / k \leq \lambda r-2 /(1+$ $\sqrt{2 / 3}$). Therefore, $\left\lfloor\lambda r^{2} / k\right\rfloor \leq \lambda r-2$. In turn, $\left\lfloor\left\lfloor\lambda r^{2} / k\right\rfloor / 2\right\rfloor \leq \lambda r / 2-1$. This completes the proof.

Lemma 3.6. Let λ, k, and n be positive integers with $3 \leq k<n<2 k$. If $\lambda(n-k)^{2} \geq k$, then $\lambda K_{n, n}$ has a $\left(P_{k+1}, S_{k}\right)$-packing \mathscr{P} with $|\mathscr{P}|=\left\lfloor\lambda n^{2} / k\right\rfloor$ and a $\left(P_{k+1}, S_{k}\right)$-covering \mathscr{C} with $|\mathscr{C}|=\left\lceil\lambda n^{2} / k\right\rceil$.

Proof. Let $n=k+r$. From the assumption $k<n<2 k$, we have $0<r<k$. Let $\lambda r^{2}=t k+s$ where s and t are integers with $1 \leq t, 0 \leq s<k$. Note that $t=\left\lfloor\lambda r^{2} / k\right\rfloor$. Hence $\left\lfloor\lambda n^{2} / k\right\rfloor=\left\lfloor\lambda(k+r)^{2} / k\right\rfloor=\lambda(k+2 r)+t$ and

$$
\left\lceil\frac{\lambda n^{2}}{k}\right\rceil=\left\lceil\frac{\lambda(k+r)^{2}}{k}\right\rceil= \begin{cases}\lambda(k+2 r)+t & \text { if } s=0 \\ \lambda(k+2 r)+t+1 & \text { if } s>0\end{cases}
$$

In the sequel of the proof, we will show that $\lambda K_{n, n}$ has a packing $\operatorname{Ponsisting~of~} t$ copies of $(k+1)$-paths and $\lambda(k+2 r)$ copies of k-stars with leave P_{s+1}.

Let

$$
\delta= \begin{cases}1 & \text { if } t \text { is odd } \\ 0 & \text { if } t \text { is even }\end{cases}
$$

Let $A_{0}=\left\{a_{0}, a_{1}, \ldots, a_{k-1}\right\}, A_{1}=A-A_{0}, B_{0}=\left\{b_{0}, b_{1}, \ldots, b_{k-1}\right\}$, and $B_{1}=$ $B-B_{0}$. Let $G=\lambda K_{n, n}\left[A_{0} \cup B_{0}\right]$. Clearly, G is isomorphic to $\lambda K_{k, k}$. For $i \in$ $\{0,1, \ldots,\lfloor\lambda k / 2\rfloor-1\}$, let $C(i)=\left(b_{2 i}, a_{0}, b_{2 i+1}, a_{1}, \ldots, b_{2 i+k-1}, a_{k-1}\right)$ where the subscripts of b 's are taken modulo k. Trivially, $C(i)$ is a $2 k$-cycle in G for each i. Note that

$$
G= \begin{cases}\bigcup_{i=0}^{\lfloor\lambda k / 2\rfloor-1} C(i) & \text { if } \lambda k \text { is even, } \\ \left(\bigcup_{i=0}^{\lfloor\lambda k / 2\rfloor-1} C(i)\right) \cup M & \text { if } \lambda k \text { is odd }\end{cases}
$$

where M is a perfect matching in G. For $s>0$ or odd t, define a $(\delta k+s+1)$-path P, which is a subpath of $C(0)$, as follows:

$$
P= \begin{cases}b_{0} a_{0} b_{1} a_{1} \ldots b_{\lceil(\delta k+s) / 2\rceil-1} a_{\lceil(\delta k+s) / 2\rceil-1} b_{\lceil(\delta k+s) / 2\rceil} & \text { if } \delta k+s \text { is even, } \\ b_{0} a_{0} b_{1} a_{1} \ldots b_{\lceil(\delta k+s) / 2\rceil-1} a_{\lceil(\delta k+s) / 2\rceil-1} & \text { if } \delta k+s \text { is odd. }\end{cases}
$$

Since $\lambda(n-k)^{2} \geq k>r$, we have $1 \leq t<\lambda r$. Thus $t+1 \leq \lambda r$; in turn, $\left\lfloor\frac{t}{2}\right\rfloor \leq \frac{t}{2} \leq \frac{\lambda r-1}{2}<\frac{\lambda k-1}{2} \leq\left\lfloor\frac{\lambda k}{2}\right\rfloor$. Hence $\left\lfloor\frac{t}{2}\right\rfloor \leq\left\lfloor\frac{\lambda k}{2}\right\rfloor-1$, which assures that the following F is well-defined. Define a subgraph F of G as follows :

$$
F= \begin{cases}P & \text { if } t=1 \\ \bigcup_{i=1}^{\lfloor t / 2\rfloor} C(i) & \text { if } s=0 \text { and } t \text { is even, } \\ \left(\bigcup_{i=1}^{\lfloor t / 2\rfloor} C(i)\right) \cup P & \text { otherwise. }\end{cases}
$$

Since $C_{2 k}$ can be decomposed into 2 copies of P_{k+1} and P can be decomposed into δ copies of P_{k+1} as well as one copy of P_{s+1}, there exists a decomposition of F into t copies of P_{k+1} and one copy of P_{s+1}. Thus F has a P_{k+1}-packing, say \mathscr{P}_{0}, with leave P_{s+1}. Let

$$
H=\lambda K_{n, n}-E(F) .
$$

Note that $V(H)=V\left(\lambda K_{n, n}\right),|E(H)|=\lambda n^{2}-(t k+s)=\lambda n^{2}-\lambda r^{2}=\lambda k(k+2 r)$, and $\mu(u v) \leq \lambda$ for all $u, v \in V(H)$ with $u \neq v$. Define a function $c: V(H) \rightarrow \mathbb{N}$ as follows:
for $v \in V(H)$,

$$
c(v)= \begin{cases}0 & \text { if } v \in B_{0} \\ \lambda & \text { otherwise } .\end{cases}
$$

Now we show that the function c satisfies (i), (ii) and (iii) in Proposition 3.1.
First, $k \sum_{v \in V(H)} c(v)=k \lambda(k+2 r)=|E(H)|$. This proves (i). Next, if $u, v \in B_{0}$, then $c(u)+c(v)=0=\mu(u v)$; otherwise, $c(u)+c(v) \geq \lambda \geq \mu(u v)$. This proves (ii). Finally, we prove (iii). For $S \subseteq V(H)$ and $i \in\{0,1\}$, let $X_{i}=S \cap A_{i}, Y_{i}=S \cap B_{i}$, $X=X_{0} \cup X_{1}$, and $Y=Y_{0} \cup Y_{1}$. Define a set T of ordered pairs of vertices as follows:
$T=\left\{(u, v) \mid\left(u \in X, v \in B_{1}-Y_{1}\right)\right.$ or $\left(u \in X_{1}, v \in B_{0}-Y_{0}\right)$ or ($\left.\left.u \in Y_{1}, v \in A-X\right)\right\}$.
Note that

$$
\begin{equation*}
k \sum_{w \in S} c(w)=k \lambda\left(|X|+\left|Y_{1}\right|\right), \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\varepsilon(S)=\lambda\left(|X|\left|Y_{1}\right|+\left|X_{1}\right|\left|Y_{0}\right|\right)+\sum_{u \in X_{0}, v \in Y_{0}} \mu(u v) . \tag{5}
\end{equation*}
$$

For $u \in S$ and $v \in V(H)-S$,

$$
\min \{c(u), \mu(u v)\}= \begin{cases}\lambda & \text { if }(u, v) \in T \\ \mu(u v) & \text { if } u \in X_{0}, v \in B_{0}-Y_{0} \\ 0 & \text { otherwise }\end{cases}
$$

Thus

$$
\begin{align*}
& \sum_{u \in S, v \in V(H)-S} \min \{c(u), \mu(u v)\} \\
= & \sum_{(u, v) \in T} \min \{c(u), \mu(u v)\}+\sum_{u \in X_{0}, v \in B_{0}-Y_{0}} \min \{c(u), \mu(u v)\} \tag{6}\\
= & \lambda\left(|X|\left(r-\left|Y_{1}\right|\right)+\left|X_{1}\right|\left(k-\left|Y_{0}\right|\right)+\left|Y_{1}\right|(k+r-|X|)\right) \\
& +\sum_{u \in X_{0}, v \in B_{0}-Y_{0}} \mu(u v) .
\end{align*}
$$

For $S \subseteq V(H)$, let

$$
g(S)=\varepsilon(S)+\sum_{u \in S, v \in V(H)-S} \min \{c(u), \mu(u v)\}-k \sum_{w \in S} c(w) .
$$

Proving (iii) is equivalent to proving $g(S) \geq 0$.
Let $H^{\prime}=H\left[A \cup B_{0}\right]$. For $s>0$ or odd t, let $A_{0}^{\prime}=\left\{a_{0}, a_{1}, \ldots, a_{\lceil(\delta k+s) / 2\rceil-1}\right\}$, $A_{0}^{\prime \prime}=A_{0}-A_{0}^{\prime}$. Let $X_{0}^{\prime}=S \cap A_{0}^{\prime}$ and $X_{0}^{\prime \prime}=S \cap A_{0}^{\prime \prime}$. Obviously, $X_{0}=X_{0}^{\prime} \cup X_{0}^{\prime \prime}$. We have
for $u \in V\left(H^{\prime}\right)$,
$\operatorname{deg}_{H^{\prime}} u= \begin{cases}\lambda k-t & \text { if } s=0, t \text { is even, and } u \in A_{0}, \\ \lambda k-2\lfloor t / 2\rfloor-2 & \text { if } s>0 \text { or } t \text { is odd, and } u \in A_{0}^{\prime}-\left\{a_{\lceil(\delta k+s) / 2\rceil-1}\right\}, \\ \lambda k-2\lfloor t / 2\rfloor-\rho & \text { if } s>0 \text { or } t \text { is odd, and } u=a_{\lceil(\delta k+s) / 2\rceil-1,}, \\ \lambda k-2\lfloor t / 2\rfloor & \text { if } s>0 \text { or } t \text { is odd, and } u \in A_{0}^{\prime \prime},\end{cases}$
where $\rho=1$ if $\delta k+s$ is odd, and $\rho=2$ if $\delta k+s$ is even.
Hence

$$
\begin{aligned}
& \sum_{u \in X_{0}, v \in Y_{0}} \mu(u v)+\sum_{u \in X_{0}, v \in B_{0}-Y_{0}} \mu(u v) \\
= & \sum_{u \in X_{0}, v \in B_{0}} \mu(u v) \\
= & \sum_{u \in X_{0}} \operatorname{deg}_{H^{\prime}} u \\
= & \begin{cases}\left|X_{0}\right|(\lambda k-t) & \text { if } s=0 \text { and } t \text { is even, } \\
\left|X_{0}\right|(\lambda k-2\lfloor t / 2\rfloor)-2\left|X_{0}^{\prime}\right| & \text { if } s>0 \text { or } t \text { is odd, and } a_{\lceil(\delta k+s) / 2\rceil-1} \notin X_{0}^{\prime}, \\
\left|X_{0}\right|(\lambda k-2\lfloor t / 2\rfloor)-2\left|X_{0}^{\prime}\right|+2-\rho & \text { if } s>0 \text { or } t \text { is odd, and } a_{\lceil(\delta k+s) / 2\rceil-1} \in X_{0}^{\prime} .\end{cases}
\end{aligned}
$$

Let

$$
m= \begin{cases}-t\left|X_{0}\right| & \text { if } s=0 \text { and } t \text { is even, } \\ -2\left(\left|X_{0}\right|\lfloor t / 2\rfloor+\left|X_{0}^{\prime}\right|\right) & \text { if } s>0 \text { or } t \text { is odd, and } a_{\lceil(\delta k+s) / 2\rceil-1} \notin X_{0}^{\prime}, \\ -2\left(\left|X_{0}\right|\lfloor t / 2\rfloor+\left|X_{0}^{\prime}\right|-1\right)-\rho & \text { if } s>0 \text { or } t \text { is odd, and } a_{\lceil(\delta k+s) / 2\rceil-1} \in X_{0}^{\prime} .\end{cases}
$$

Then

$$
\begin{equation*}
\sum_{u \in X_{0}, v \in Y_{0}} \mu(u v)+\sum_{u \in X_{0}, v \in B_{0}-Y_{0}} \mu(u v)=\left|X_{0}\right| \lambda k+m . \tag{7}
\end{equation*}
$$

By the definition of $g(S)$, and (4) - (7), we have

$$
\begin{aligned}
g(S)= & \lambda\left(|X|\left|Y_{1}\right|+\left|X_{1}\right|\left|Y_{0}\right|\right)+\sum_{u \in X_{0}, v \in Y_{0}} \mu(u v) \\
& +\lambda\left(|X|\left(r-\left|Y_{1}\right|\right)+\left|X_{1}\right|\left(k-\left|Y_{0}\right|\right)+\left|Y_{1}\right|(k+r-|X|)\right) \\
& +\sum_{u \in X_{0}, v \in B_{0}-Y_{0}} \mu(u v)-k \lambda\left(|X|+\left|Y_{1}\right|\right) \\
= & \lambda\left(|X|\left|Y_{1}\right|+\left|X_{1}\right|\left|Y_{0}\right|+|X|\left(r-\left|Y_{1}\right|\right)+\left|X_{1}\right|\left(k-\left|Y_{0}\right|\right)\right. \\
& \left.+\left|Y_{1}\right|(k+r-|X|)-k\left(|X|+\left|Y_{1}\right|\right)\right) \\
& +\sum_{u \in X_{0}, v \in Y_{0}} \mu(u v)+\sum_{u \in X_{0}, v \in B_{0}-Y_{0}} \mu(u v) \\
= & \lambda\left(|X| r+\left|X_{1}\right| k+\left|Y_{1}\right| r-\left|Y_{1}\right||X|-k|X|\right)+\left|X_{0}\right| \lambda k+m \\
= & \lambda\left(|X| r+\left|X_{1}\right| k+\left|Y_{1}\right| r-\left|Y_{1}\right||X|-k|X|+\left|X_{0}\right| k\right)+m .
\end{aligned}
$$

Since $|X|=\left|X_{0}\right|+\left|X_{1}\right|$, we have

$$
\begin{equation*}
g(S)=\lambda\left(|X| r+\left|Y_{1}\right|(r-|X|)\right)+m \tag{8}
\end{equation*}
$$

We first show that $m \geq-\lambda r^{2}$. Note that $\left|X_{0}\right| \leq k$. When $s=0$ and t is even, $m \geq-k t=-\lambda r^{2}$. When $s>0$ or t is odd,

$$
\left|X_{0}^{\prime}\right| \leq \begin{cases}\left|A_{0}^{\prime}\right|-1 & \text { if } a_{\lceil(\delta k+s) / 2\rceil-1} \notin X_{0}^{\prime} \\ \left|A_{0}^{\prime}\right| & \text { if } a_{\lceil(\delta k+s) / 2\rceil-1} \in X_{0}^{\prime}\end{cases}
$$

Thus

$$
\begin{aligned}
m & \geq \begin{cases}-2\left(\left|X_{0}\right|\lfloor t / 2\rfloor+\left|A_{0}^{\prime}\right|\right)+2 & \text { if } a_{\lceil(\delta k+s) / 2\rceil-1} \notin X_{0}^{\prime} \\
-2\left(\left|X_{0}\right|\lfloor t / 2\rfloor+\left|A_{0}^{\prime}\right|\right)+2-\rho & \text { if } a_{\lceil(\delta k+s) / 2\rceil-1} \in X_{0}^{\prime}\end{cases} \\
& \geq-2\left(\left|X_{0}\right|\lfloor t / 2\rfloor+\left|A_{0}^{\prime}\right|\right)+2-\rho
\end{aligned}
$$

In addition, $\lfloor t / 2\rfloor=(t-\delta) / 2$, and $\left|A_{0}^{\prime}\right|=\lceil(\delta k+s) / 2\rceil=(\delta k+s+2-\rho) / 2$. Thus $m \geq-2(k(t-\delta) / 2+(\delta k+s+2-\rho) / 2-1)-\rho=-(k t+s)=-\lambda r^{2}$.

Therefore, if $|X| \geq r$, we have from (8), that

$$
g(S) \geq \lambda\left(r|X|-\left|Y_{1}\right|(|X|-r)\right)-\lambda r^{2}=\lambda(|X|-r)\left(r-\left|Y_{1}\right|\right) \geq 0
$$

So it remains to consider the case $|X|<r$.
We first show that $m \geq-\lambda r\left|X_{0}\right|$.
Suppose that k is even and $(\lambda, r)=(1, k-1)$. Then $\lambda r^{2}=(k-1)^{2}=(k-2) k+1=$ $(r-1) k+1$. This implies $s=1$ and $t=r-1$ where t is even. Thus $\lfloor t / 2\rfloor=(\lambda r-1) / 2$ and $A_{0}^{\prime}=\left\{a_{0}\right\}$. Thus if $a_{\lceil(\delta k+s) / 2\rceil-1} \notin X_{0}^{\prime}$, we have $\left|X_{0}^{\prime}\right|=0$, which implies $m=$
$-2\left(\left|X_{0}\right|\left\lfloor\frac{t}{2}\right\rfloor+\left|X_{0}^{\prime}\right|\right)=-2\left|X_{0}\right| \frac{\lambda r-1}{2} \geq-2\left|X_{0}\right| \frac{\lambda r}{2}=-\lambda r\left|X_{0}\right|$; if $a_{\lceil(\delta k+s) / 2\rceil-1} \in X_{0}^{\prime}$, we have $\left|X_{0}^{\prime}\right|=1$, which implies $m=-2\left(\left|X_{0}\right|\left\lfloor\frac{t}{2}\right\rfloor+\left|X_{0}^{\prime}\right|-1\right)-\rho=-2\left|X_{0}\right| \frac{\lambda r-1}{2}-1=$ $-\lambda r\left|X_{0}\right|+\left|X_{0}\right|-1 \geq-\lambda r\left|X_{0}\right|$. Hence $m \geq-\lambda r\left|X_{0}\right|$.

Suppose that either k is odd or $(\lambda, r) \neq(1, k-1)$ â. Recall that $t=\left\lfloor\lambda r^{2} / k\right\rfloor$ in the beginning of the proof. Lemma 3.5 implies $\lfloor t / 2\rfloor \leq \lambda r / 2-1$. Hence

$$
\begin{aligned}
m & \geq-2\left(\left|X_{0}\right|\left\lfloor\frac{t}{2}\right\rfloor+\left|X_{0}^{\prime}\right|\right) \\
& \geq-2\left(\left|X_{0}\right|(\lambda r / 2-1)+\left|X_{0}^{\prime}\right|\right) \\
& =-\lambda r\left|X_{0}\right|+2\left(\left|X_{0}\right|-\left|X_{0}^{\prime}\right|\right) \\
& \geq-\lambda r\left|X_{0}\right| .
\end{aligned}
$$

Therefore, for $|X|<r$, we have from (8), that

$$
g(S) \geq \lambda\left(r|X|+\left|Y_{1}\right|(r-|X|)\right)-\lambda r\left|X_{0}\right|=\lambda\left(r\left|X_{1}\right|+\left|Y_{1}\right|(r-|X|)\right) \geq 0 .
$$

This settles (iii).
In the above we show that the function $c: V(H) \rightarrow \mathbb{N}$ satisfies (i), (ii), (iii) in Proposition 3.1. Thus H has an S_{k}-decomposition, say \mathscr{F}.

Let $\mathscr{P}=\mathscr{O} \cup \mathscr{P}{ }_{0}$. Clearly, \mathscr{P} is a $\left(P_{k+1}, S_{k}\right)$-packing of $\lambda K_{n, n}$ with leave P_{s+1} and $|\mathscr{P}|=\left\lfloor\lambda n^{2} / k\right\rfloor$. Let

$$
\mathscr{C}= \begin{cases}\mathscr{P} & \text { if } s=0 \\ \mathscr{P} \cup\{Q\} & \text { if } s \geq 1,\end{cases}
$$

where Q is a $(k+1)$-path containing the leave of \mathscr{P}. It is easy to see that \mathscr{C} is a $\left(P_{k+1}, S_{k}\right)$-covering and $|\mathscr{C}|=\left\lceil\lambda n^{2} / k\right\rceil$.

Combining Lemma 3.3, Lemma 3.4 and Lemma 3.6, we obtain the following lemma.

Lemma 3.7. If λ, k, and n be positive integers with $3 \leq k \leq n<2 k$, then $\lambda K_{n, n}$ has a $\left(P_{k+1}, S_{k}\right)$-packing \mathscr{P} with $|\mathscr{P}|=\left\lfloor\lambda n^{2} / k\right\rfloor$ and a $\left(P_{k+1}, S_{k}\right)$-covering \mathscr{C} with $|\mathscr{C}|=\left\lceil\lambda n^{2} / k\right\rceil$.

Now, we are ready for the main result of this section.
Theorem 3.8. If λ, k, and n are positive integers with $3 \leq k \leq n$, then $\lambda K_{n, n}$ has a $\left(P_{k+1}, S_{k}\right)$-packing \mathscr{P} with $|\mathscr{P}|=\left\lfloor\lambda n^{2} / k\right\rfloor$ and $a\left(P_{k+1}, S_{k}\right)$-covering \mathscr{C}° with $|\mathscr{C}|=\left\lceil\lambda n^{2} / k\right\rceil$.

Proof. Due to Lemma 3.7, we only need consider $n \geq 2 k$.
Let $n=q k+r$ where q and r are integers with $q \geq 2,0 \leq r<k$. We have $\lambda K_{n, n}=\lambda K_{k+r, k+r} \cup \lambda K_{k+r,(q-1) k} \cup \lambda K_{(q-1) k, n}$. Note that by Lemma $3.7 \lambda K_{k+r, k+r}$
has a $\left(P_{k+1}, S_{k}\right)$-packing \mathscr{P} with $|\mathscr{P}|=\left\lfloor\lambda(k+r)^{2} / k\right\rfloor$ and a $\left(P_{k+1}, S_{k}\right)$-covering \mathscr{C} with $|\mathscr{C}|=\left\lceil\lambda(k+r)^{2} / k\right\rceil$. Trivially, $\lambda K_{k+r,(q-1) k}$ and $\lambda K_{(q-1) k, n}$ have $S_{k^{-}}$ decompositions, say \mathscr{F} and \mathscr{V}^{\prime}, respectively, where $|\mathscr{I}|=\lambda(k+r)(q-1)$ and $\left|\mathscr{V}^{\prime}\right|=\lambda(q-1) n$. Then $\mathscr{P} \cup \mathscr{T} \cup \mathscr{V}^{\prime}$ is a $\left(P_{k+1}, S_{k}\right)$-packing of $\lambda K_{n, n}$, obviously with cardinality $\left\lfloor\lambda n^{2} / k\right\rfloor$ and $\mathscr{C} \cup \mathscr{V} \cup \mathscr{V}^{\prime}$ is a $\left(P_{k+1}, S_{k}\right)$-covering of $\lambda K_{n, n}$, obviously with cardinality $\left\lceil\lambda n^{2} / k\right\rceil$. This completes the proof.

Clearly, if $\lambda K_{n, n}$ admits a $\left(P_{k+1}, S_{k}\right)$-decomposition, then $k \leq n$ and λn^{2} is divisible by k. Thus the following corollary follows from Theorem 3.8.

Corollary 3.9. For positive integers λ, k and n with $k \geq 3$, the balanced complete bipartite multigraph $\lambda K_{n, n}$ is $\left(P_{k+1}, S_{k}\right)$-decomposable if and only if $k \leq n$ and λn^{2} is divisible by k.

References

1. A. Abueida, S. Clark, and D. Leach, Multidecomposition of the complete graph into graph pairs of order 4 with various leaves, Ars Combin., 93 (2009), 403-407.
2. A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin., 19 (2003), 433-447.
3. A. Abueida and M. Daven, Multidecompositons of the complete graph, Ars Combin., 72 (2004), 17-22 .
4. A. Abueida and M. Daven, Multidecompositions of several graph products, Graphs Combin., 29 (2013), 315-326.
5. A. Abueida, M. Daven, and K. J. Roblee, Multidesigns of the λ-fold complete graph for graph-pairs of order 4 and 5, Australas J. Combin., 32 (2005), 125-136.
6. A. Abueida and C. Hampson, Multidecomposition of $K_{n}-F$ into graph-pairs of order 5 where F is a Hamilton cycle or an (almost) 1-factor, Ars Combin., 97 (2010), 399-416
7. A. Abueida and T. O’Neil, Multidecomposition of λK_{m} into small cycles and claws, Bull. Inst. Combin. Appl., 49 (2007), 32-40.
8. J. Bosák, Decompositions of Graphs, Kluwer, Dordrecht, Netherlands, 1990.
9. Darryn Bryant, Packing paths in complete graphs, J. Combin. Theory Ser. B 100 (2010), 206-215.
10. P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners and balanced P designs, Discrete Math., 2 (1972), 229-252.
11. D.G. Hoffman, The real truth about star designs, Discrete Math., 284 (2004), 177-180.
12. H.-C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin., 108 (2013), 355-364.
13. H.-C. Lee and J.-J. Lin, Decomposition of the complete bipartite graph with a 1 -factor removed into cycles and stars, Discrete Math., 313 (2013), 2354-2358.
14. J.-J. Lin, Decompositions of multicrowns into cycles and stars, Taiwanese J. Mathematics, accepted.
15. C. A. Parker, Complete bipartite graph path decompositions, Ph.D. Thesis, Auburn University, Auburn, Alabama, 1998.
16. H. M. Priyadharsini and A. Muthusamy, $\left(G_{m}, H_{m}\right)$-multifactorization of λK_{m}, J. Combin. Math. Combin. Comput., 69 (2009), 145-150.
17. H. M. Priyadharsini and A. Muthusamy, $\left(G_{m}, H_{m}\right)$-multidecomposition of $K_{m, m}(\lambda)$, Bull. Inst. Combin. Appl., 66 (2012), 42-48.
18. T.-W. Shyu, Decomposition of complete graphs into paths and stars, Discrete Math., 310 (2010), 2164-2169.
19. T.-W. Shyu, Decompositions of complete graphs into paths and cycles, Ars Combin., 97 (2010), 257-270.
20. T.-W. Shyu, Decomposition of complete graphs into paths of length three and triangles, Ars Combin., 107 (2012), 209-224.
21. T.-W. Shyu, Decomposition of complete graphs into cycles and stars, Graphs Combin., 29 (2013), 301-313.
22. T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with same number of edges, Discrete Math., 313 (2013), 865-871.

Hung-Chih Lee
Department of Information Technology
Ling Tung University
Taichung 40852, Taiwan
E-mail: birdy@teamail.ltu.edu.tw
Zhen-Chun Chen
Department of Mathematics
National Central University
Chung Li 320, Taiwan
E-mail: amco0624@yahoo.com.tw

[^0]: Received February 19, 2014, accepted May 26, 2015.
 Communicated by Gerard Jennhwa Chang.
 2010 Mathematics Subject Classification: 05C38, 05C70.
 Key words and phrases: Packing, Covering, Path, Star.
 *Corresponding author.

