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BILATERAL CONTACT PROBLEM WITH FRICTION AND WEAR FOR AN
ELECTRO ELASTIC-VISCOPLASTIC MATERIALS WITH DAMAGE

Abdelmoumene Djabi and Abdelbaki Merouani

Abstract. We consider a mathematical problem for quasistatic contact between
an electro elastic-viscoplastic body and an obstacle. The contact is frictional and
bilateral with a moving rigid foundation which results in the wear of the contact-
ing surface. We employ the electro elastic-viscoplastic with damage constitutive
law for the material. The evolution of the damage is described by an inclusion of
parabolic type. The problem is formulated as a system of an elliptic variational
inequality for the displacement, a parabolic variational inequality for the damage
and a variational equality for the electric stress. We establish a variational for-
mulation for the model and we give the wear conditions for the existence of a
unique weak solution to the problem. The proofs are based on classical results for
elliptic variational inequalities, parabolic inequalities and fixed point arguments.

1. INTRODUCTION

Scientific research in mechanics are articulated around two main components: one
devoted to the laws of behavior and other boundary conditions imposed on the body.
The boundary conditions reflect the binding of the body with the outside world.

In this paper, we study a problem involving boundary conditions describing real
phenomena such as contact and friction and other very important such as the damage
and the wear of materials. for the constitutive law we consider an electro elastic-
viscoplastic body .The piezoelectric effect is characterized by the coupling between the
mechanical and electrical behavior of the materials.

The piezoelectric effect is the apparition of electric charges on surfaces of partic-
ular crystals after deformation. Its reverse effect consists of the generation of stress
and strain in crystals under the action of the electric field on the boundary. Materials
undergoing piezoelectric effects are called piezoelectric materials; their study require
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techniques and results from electromagnetic theory and continuum mechanics. How-
ever, there are very few mathematical results concerning contact problems involving
piezoelectric materials and therefore, there is a need to extend the results on models
for contact with deformable bodies which include coupling between mechanical and
electrical properties. General models for elastic materials with piezoelectric effects can
be found in [4, 5, 9, 10, 11] . A static frictional contact problem for electric-elastic
materials was considered in [5, 11]. A frictional contact problem for electro viscoelastic
materials was studied in [10].Contact problems with friction and adhesion for electro
elastic-viscoplastic materials were studied recently in [1] . The goal of this paper is to
make the coupling of an electro elastic-viscoplastic problem with damage and a fric-
tional contact problem with wear. We study a quasistatic problem of frictional bilateral
contact with wear. We model the material behavior with an electro elastic-viscoplastic
constitutive law with damage and the contact is frictional and bilateral with a mov-
ing rigid foundation. We derive a variational formulation and prove the existence and
uniqueness of the weak solution.

The paper is organized as follows. In Section 2 we introduce the notation and
give some preliminaries. In Section 3 we present the mechanical problem, list the
assumptions on the data, give the variational formulation of the problem. In Section
4 we state our main existence and uniqueness result, Theorem (4.1) The proof of the
theorem is based on arguments for elliptic variational inequalities, parabolic inequalities
and fixed point arguments.

2. NOTATIONS AND PRELIMINARIES

In this short section, we present the notation we shall use and some preliminary
material. For more details, we refer the reader to [6, 7, 15]. We denote by S

d the
space of second order symmetric tensors on Rd (d = 2, 3), while “·” and ‖·‖ represent
the inner product and the Euclidean norm on S

d and R
d , respectively. Let Ω ⊂ R

d

be a bounded domain with outer Lipschitz boundary Γ and let ν denote the unit outer
normal on ∂Ω = Γ. We shall use the notation

H = L2(Ω)d =
{
u = (ui) : ui ∈ L2(Ω)

}
,

H =
{
σ = (σij) : σij = σji ∈ L2(Ω)

}
,

H1(Ω)d = {u = (ui) ∈ H : ui ∈ H1(Ω)},
H1 = {σ ∈ H : Divσ ∈ H},

Here ε : H1(Ω)d → H and Div : H1 → H are the deformation and divergence
operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i), Divσ = (σij,j) .
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Here and below, the indices i and j run from 1 to d, the summation convention
over repeated indices is used and the index that follows a comma indicates a partial
derivative with respect to the corresponding component of the independent variable.
The spaces H , H, H1(Ω)d and H1 are real Hilbert spaces endowed with the canonical
inner products given by :

(u, v)H =
∫

Ω
uividx, (σ, τ)H =

∫
Ω
σijτijdx,

(σ, τ)H =
∫

Ω
σ · τdx ∀σ, τ ∈H,

(u, v)H1(Ω)d =
∫

Ω
u.vdx+

∫
Ω
∇u·∇vdx ∀u, v ∈H1(Ω)d,

where
∇v = (vi,j) ∀v ∈H1(Ω)d.

(σ, τ)H1 = (σ, τ)H + (Divσ,Divτ)H ∀σ, τ ∈H1,

The associated norms are denoted by ‖ · ‖H , ‖ · ‖H, ‖ · ‖H1 and ‖ · ‖H1, respectively.
Let HΓ = (H1/2(Γ))d and γ : H1(Γ))d → HΓ be the trace map. For every element
v ∈ H1(Ω)d , we also use the notation v to denote the trace map γv of v on Γ, and
we denote by vν and vτ the normal and tangential components of v on Γ given by

(2.1) vν = v · ν, vτ = v−vνν.

Similarly, for a regular (say C1) tensor field σ : Ω → Sd we define its normal and
tangential components by

(2.2) σν = (σν) · ν, vτ = σν − σνν,

and for all σ ∈H1 the following Green’s formula holds:

(σ, ε(v))H + (Divσ, v)H =
∫

Γ
σν · vda ∀v ∈ H1(Ω)d.

Finally, for any real Hilbert space X , we use the classical notation for the spaces
Lp(0, T ;X) and W k,p(0, T ;X), where 1 � p � ∞ and k > 1. For T > 0 we denote
by C(0, T ;X) and C1(0, T ;X) the space of continuous and continuously differentiable
functions from [0, T ] to X , respectively, with the norms

‖f‖C(0,T ;X) = max
t∈[0,T ]

‖f (t) ‖X ,

‖f‖C1(0,T ;X) = max
t∈[0,T ]

‖f‖X + max
t∈[0,T ]

‖ḟ‖X ,

respectively. Moreover, we use the dot above to indicate the derivative with respect to
the time variable and if X1 and X2 are real Hilbert spaces then X1 ×X2 denotes the
product Hilbert space endowed with the canonical inner product (·,·)X1×X2 .
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3. THE MODEL AND VARIATIONAL PROBLEM

We describe the model for the process, we present its variational formulation.
The physical setting is the following. An electro elastic-viscoplastic body occupies
a bounded domain Ω ⊂ Rd (d = 2, 3) with outer Lipschitz surface Γ. The body
undergoes the action of body forces of density f0 and volume electric charges of den-
sity q0. It also undergoes the mechanical and electric constraint on the boundary.We
consider a partition of Γ into three disjoint parts Γ1, Γ2 and Γ3, on one hand, and into
two measurable parts Γa and Γb, on the other hand. We assume that meas(Γ1) > 0
, meas(Γa) > 0 , and Γ3 ⊂ Γb . Let T > 0 and let [0, T ] be the time interval of
interest. The body is clamped on Γ1 × (0, T ), so the displacement field vanishes there.
A surface traction of density f2 act on Γ2 × (0, T ) and a body force of density f0 acts
in Ω × (0, T ). We also assume that the electrical potential vanishes on Γa × (0, T )
and a surface electric charge of density q2 is prescribed on Γb × (0, T ). The contact
is frictional and bilateral with a moving rigid foundation which results in the wear of
the contacting surface. We suppose that the body forces and tractions vary slowly in
time, and therefore, the accelerations in the system may be neglected. Neglecting the
inertial terms in the equation of motion leads to a quasistatic approach to the process.
We denote by u the displacement field, by σ the stress tensor field and by ε(u) the
linearized strain tensor. We use an electro elastic-viscoplastic constitutive law with
damage given by

σ(t) = A(ε(u̇(t))) + B(ε(u(t)), β)

+
∫ t

0
G
(
σ(s) −A(ε(u̇(s))), ε(u(s))

)
ds− E∗E(ϕ),

D = Eε(u) + BE(ϕ),

where A and B are nonlinear operators describing the purely viscous and the elastic
properties of the material, respectively, E(ϕ) = −∇ϕ is the electric field, E = (eijk)
represents the third order piezoelectric tensor E∗ is its transpose and B denotes the
electric permittivity tensor, and G is a nonlinear constitutive function which describes
the visco-plastic behavior of the material, where β is an internal variable describing
the damage of the material caused by elastic deformations. The differential inclusion
used for the evolution of the damage field is

β̇ − kΔβ + ∂ϕk(β) 	 S(ε(u), β),

where K denotes the set of admissible damage functions defined by

K = {ξ ∈ V : 0 � ξ(x) � 1 a.e. x ∈ Ω},

where k is a positive coefficient, ∂ϕk denotes the subdifferential of the indicator func-
tion of the set K and S is a given constitutive function which describes the sources of
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the damage in the system. When β = 1 the material is undamaged, when β = 0 the
material is completely damaged, and for 0 < β < 1 there is partial damage. General
models of mechanical damage, which were derived from thermodynamical considera-
tions and the principle of virtual work, can be found in [16] and references therein.
The models describe the evolution of the material damage which results from the ex-
cess tension or compression in the body as a result of applied forces and tractions.
Mathematical analysis of one-dimensional damage models can be found in [12].

We now briefly describe the boundary conditions on the contact surface Γ3 , based
on the model derived in [16]. We introduce the wear function w : Γ3 × [0, T ] → R+

which measures the wear of the surface. The wear is identified as the normal depth of
the material that is lost. Since the body is in bilateral contact with the foundation, it
follows that

(3.1) uν = −w on Γ3.

Thus the location of the contact evolves with the wear. We point out that the effect
of the wear is the recession on Γ3 and therefore, it is natural to expect that uν � 0 on
Γ3 , which implies w � 0 on Γ3 .

The evolution of the wear of the contacting surface is governed by a simplified
version of Archard’s law (see [16]) which we now describe. The rate form of

Archard’s law is
ẇ = −k1σν |u̇τ − v∗| ,

where k1 > 0 is a wear coefficient, v∗ is the tangential velocity of the foundation and
|u̇τ − v∗| represents the slip speed between the contact surface and the foundation.

We see that the rate of wear is assumed to be proportional to the contact stress
and the slip speed. For the sake of simplicity we assume in the rest of the section
that the motion of the foundation is uniform, i.e., v∗ does not vary in time. Denote
v∗ = |v∗| > 0.

We assume that v∗ is large so that we can neglect in the sequel u̇τ ascompared
with v∗ to obtain the following version of Archard’s law

(3.2) ẇ = −k1v
∗σν ,

The use of the simplified law (3.2) for the evolution of the wear avoids some
mathematical difficulties in the study of the quasistatic electro-viscoplastic contact
problem.

We can now eliminate the unknown function w from the problem. In this manner,
the problem decouples, and once the solution of the frictional contact problem has been
obtained, the wear of the surface can be obtained by integration of (3.2).Let ζ = k1v

∗

and α = 1
ζ . Using (3.1) and (3.2) we have

(3.3) σν=αu̇ν .
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We model the frictional contact between the electro-viscoplastic body and the foun-
dation with Coulomb’s law of dry friction. Since there is only sliding contact, it

(3.4) |στ | = μ |σν| , στ = −λ (u̇τ − v∗) , λ � 0,

where μ > 0 is the coefficient of friction. These relations set constraints on the
evolution of the tangential stress; in particular, the tangential stress is in the direction
opposite to the relative sliding velocity u̇τ − v∗ .

Naturally, the wear increases in time, i.e. ẇ � 0. Hence, it follows from (3.1) and
(3.2) that u̇ν � 0 and σν � 0 on Γ3 . Thus, the conditions (3.3) and (3.4) imply

(3.5) −σν=α |u̇ν | , |στ | = −μσν , στ = −λ (u̇τ − v∗) , λ � 0 .

To simplify the notation, we do not indicate explicitly the dependence of various
functions on the variables x ∈ Ω ∪ Γ and t ∈ [0, T ]. Then, the classical formulation
of the mechanical problem of a frictional bilateral contact with wear may be stated as
follows.

Problem P
Find a displacement field u : Ω×[0, T ] → Rd, a stress field σ : Ω×[0, T ] → Sd, an

electric potential ϕ : Ω×[0, T ] → R, an electric displacement field D : Ω×[0, T ] → R
d,

and a damage field β : Ω × [0, T ] → R such that

σ(t) = Aε(u̇(t)) + B(ε(u(t)), β) +
∫ t

0
G
(
σ(s)−Aε(u̇(s)), ε(u(s))

)
ds

+ E∗∇ϕ(t) in Ω × (0, T ),
(3.6)

D = Eε(u)− B∇(ϕ) in Ω × (0, T ),(3.7)

β̇ − kΔβ + ∂ϕK(β) 	 S(ε(u), β),(3.8)

Divσ + f0 = 0 in Ω × (0, T ),(3.9)

divD− q0 = 0 in Ω× (0, T ),(3.10)

u = 0 on Γ1 × (0, T ),(3.11)

σν = f2 on Γ2 × (0, T ),(3.12) ⎧⎨
⎩

σν = −α |u̇ν | , |στ | = −μσν ,

στ = −λ (u̇τ − v∗) , λ � 0,
on Γ3 × (0, T ),(3.13)

∂β

∂ν
= 0 on Γ × (0, T ),(3.14)
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ϕ = 0 on Γa × (0, T ),(3.15)

D · ν = q2 on Γb × (0, T ),(3.16)

u(0) = u0, β(0) = β0 in Ω.(3.17)

We now describe problem (3.6)-(3.17) and provide explanation of the equations
and the boundary conditions.

Equations(3.6) and (3.7) represent the electro elastic-viscoplastic constitutive law
with damage,the evolution of the damage field is governed by the inclusion of parabolic
type given by the relation (3.8) where S is the mechanical source of the damage
growth, assumed to be rather general function of the strains and damage itself, ∂ϕk

is the subdifferential of the indicator function of the admissible damage functions set
K. Next equations(3.9) and (3.10) are the steady equations for the stress and electric-
displacement field, respectively, in which “Div” and “div” denote the divergence oper-
ator for tensor and vector valued functions, i.e.,

Divσ = (σij,j), divD = (Di,i).

We use these equations since the process is assumed to be mechanically quasistatic
and electrically static.

Conditions (3.11) and (3.12) are the displacement and traction boundary conditions,
where as (3.15) and (3.16) represent the electric boundary conditions; the displacement
field and the electrical potential vanish on Γ1 and Γa, respectively, while the forces
and free electric charges are prescribed on Γ2 and Γb, respectively.

We turn to the boundary condition (3.13) describe the frictional bilateral contact
with wear described above on the potential contact surface Γ3.

The relation (3.14) describes a homogeneous Neumann boundary condition where
∂β/∂ν is the normal derivative of β.

Next, (3.17) represents the initial displacement field and the initial damage field
where u0 is the initial displacement, and β0 is the initial damage.

To obtain the variational formulation of problem (3.6)-(3.17), we introduce the
closed subspace of H1(Ω)d defined by

V =
{
v ∈H1(Ω)d : v =0 on Γ1

}
.

Since meas(Γ1) > 0, Korn’s inequality holds and there exists a constant Ck > 0,
depending only on Ω and Γ1 , such that

‖ε (v)‖H � Ck‖v‖H1(Ω)d ∀v ∈V.
A proof of Korn’s inequality may be found in ([15], p. 79). On the space V we

consider the inner product and the associated norm given by

(3.18) (u, v)V = (ε (u) , ε(v))H, ‖v‖V = ‖ε (v) ‖H ∀u, v ∈V.



1168 Abdelmoumene Djabi and Abdelbaki Merouani

It follows that the norms ‖ · ‖H1(Ω)d and ‖ · ‖V are equivalent on V and, therefore,
the space (V, (·, ·)V ) is a real Hilbert space. Moreover, by the Sobolev trace theorem
and (3.7) , there exists a constant C0 > 0, depending only on Ω, Γ1 and Γ3, such that

(3.19) ‖v‖L2(Γ3)d � C0‖v‖V , ∀v ∈ V.

We also introduce the spaces

W =
{
φ ∈ H1(Ω)d : φ = 0 on Γa

}
,

W = { D = (Di) : Di ∈ L2(Ω), divD ∈ L2(Ω)},

The spaces W and W are real Hilbert spaces with the inner products given by

(ϕ, φ)W =
∫

Ω

∇ϕ · ∇φ dx,

(D,E)W =
∫

Ω
D ·E dx+

∫
Ω

divD · divEdx .

The associated norms will be denoted by ‖ · ‖W and ‖ · ‖W, respectively. Moreover,
when D ∈ W is a regular function, the following Green’s type formula holds:

(D,∇φ)H + (divD, φ)L2(Ω) =
∫

Ω
D · νφda, ∀φ ∈ H1(Ω).

Since measΓa > 0, the Friedrichs-Poincaré inequality holds, thus,

(3.20) ‖∇φ‖W � CF ‖φ‖H1(Ω), ∀φ ∈W,

where CF > 0 is a constant which depends only on Ω and Γa. On W , we use the
inner product

(ϕ, ζ)W = (∇ϕ,∇ζ)W,
We now list the assumptions on the problem’s data.
The viscosity operator A : Ω × Sd → Sd satisfies

(3.21)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) There exists LA > 0 such that
‖A(x, ε1)−A(x, ε2)‖�LA‖ε1−ε2‖ for all ε1, ε2 ∈ S

d, a.e.x∈Ω.
(b) There exists mA > 0 such that

(A(x, ε1) −A(x, ε2)) · (ε1 − ε2) � mA‖ε1 − ε2‖2

for all ε1, ε2 ∈ S
d, a.e.x ∈ Ω.

(c) The mapping x �→ A(x, ε) is Lebesgue measurable on Ω,
for any ε ∈ Sd.

(d) The mapping x �→ A(x, 0) belongs to H.
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The elasticity operator B : Ω × Sd × R → Sd satisfies

(3.22)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a) There exists LB > 0 such that
‖B(x, ε1, α1) − B(x, ε2, α2)‖ � LB (‖ε1 − ε2‖ + ‖α1 − α2‖)
∀ ε1, ε2 ∈ S

d, ∀α1, α2 ∈ R , a.e. x ∈ Ω.
(b) The mapping x �→ B(x, ε, α) is Lebesque measurable on Ω,

for any ε ∈ Sd and α ∈ R .

(c) The mapping x �→ B(x, 0, 0) belongs to H.
The plasticity operator G : Ω × Sd × Sd → Sd satisfies

(3.23)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a) There exists a constant LG > 0 such that
‖G(x,σ1, ε1) − G(x,σ2, ε2)‖ � LG(‖σ1 − σ2‖ + ‖ε1 − ε2‖)
for all σ1,σ2 ∈ S

d, for all ε1, ε2 ∈ S
d a.e. x ∈ Ω.

(b) The mapping x → G(x,σ, ε)is Lebesgue measurable on Ω ,
for all σ, ε ∈ Sd.

(c) The mapping x → G(x, 0, 0) ∈ H.
The damage source function S : Ω × Sd × R → R satisfies

(3.24)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a) There exists a constant MS > 0 such that
‖S(x, ε1, α1) − S(x, ε2, α2)‖ � MS(‖ε1 − ε2‖ + ‖α1 − α2‖)
for all ε1, ε2 ∈ S

d, for all α1, α2 ∈ R, a.e. x ∈ Ω.
(b) for all ε ∈ S

d, α ∈ R, x �→ S(x, ε, α) is Lebesgue measurable on Ω.
(c) The mapping x �→ S(x, 0, 0) belongs to L2(Ω).

The electric permittivity operator B = (Bij) : Ω× R
d → R

d satisfies

(3.25)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a) B(x, E) = (Bij(x)Ej) for all E = (Ei) ∈ R
d, a.e. x ∈ Ω.

(b) Bij = Bji ∈ L∞(Ω), 1 � i, j � d.

(c) There exists a constant MB > 0 such that BE.E � MB|E|2
for all E = (Ei) ∈ Rd, a.e. in Ω.

The piezoelectric operator E : Ω × Sd → Rd satisfies

(3.26)

{
(a) E (x, τ) = (eijkτjk) , ∀τ = (τjk) ∈ Sd, a.e. x in Ω.
(b) eijk = eikj ∈ L∞(Ω) ,1 � i, j, k � d.

We also suppose that the body forces and surface tractions have the regularity

f0 ∈ C(0, T ;H), f2 ∈ C(0, T ;L2(Γ2)d),(3.27)

q0 ∈ C(0, T ;L2(Ω)), q2 ∈ C(0, T ;L2(Γb)),(3.28)

q2 (t) = 0 on Γ3, ∀t ∈ [0, T ] .(3.29)
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The functions α and μ have the following properties:

α ∈ L∞(Γ3) , α (x) � α∗ > 0, a.e. on Γ3,(3.30)

μ ∈ L∞(Γ3) , μ (x) > 0, a.e. on Γ3.(3.31)

Note that we need to impose the assumption (3.29) for physical reasons, indeed the
foundation is assumed to be an insulator and therefore, the electric charges (which are
prescribed on Γb ⊃ Γ3 ) have to vanish on the potential contact surface.

The initial displacement field satisfies

(3.32) u0 ∈ V,

and the initial damage field satisfies

(3.33) β0 ∈ K.

The forces, tractions, volume and surface free charge densities satisfy Here, 1 �
p � ∞. We define the bilinear form a : H1(Ω) ×H1(Ω) → R

(3.34) a(ξ, ϕ) = k

∫
Ω

∇ξ · ∇ϕdx.

Next, we define the three mappings j : V × V → R, f : [0, T ] → V and q :
[0, T ] →W , respectively, by

(f(t), v)V =
∫

Ω
f0(t) · v dx+

∫
Γ2

f2(t) · v da,(3.35)

(q(t), φ)W =
∫

Ω
q0(t)φ dx−

∫
Γb

q2(t)φ da,(3.36)

j(u, v) =
∫

Γ3

α‖uν‖ (μ ‖vτ − v∗‖) + vν) da.(3.37)

for all u, v ∈ V , φ ∈W and t ∈ [0, T ]. We note that the definitions of h, f and q are
based on the Riesz representation theorem,Moreover, the conditions (3.27) and (3.28)
imply that

(3.38) f ∈C(0, T ; V ) , q ∈ C(0, T ;W ) .

Using standard arguments we obtain the variational formulation of the mechanical
problem (3.6)-(3.17).

Problem PV .

Find a displacement field u : [0, T ] → V , σ : [0, T ] → H1 and an electric potential
ϕ : [0, T ] → W , an electric displacement field D :[0, T ] → H ,and damage field
β : [0, T ] → H1(Ω) such that
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σ(t) = Aε(u̇(t)) + B(ε(u(t)), β) +
∫ t

0
G
(
σ(s) −Aε(u̇(s)), ε(u(s))

)
ds

+ E∗∇ϕ(t) in Ω × (0, T ),
(3.39)

(σ(t), ε(v− u̇(t))H + j(u̇(t), v)− j(u(t), u̇(t)) � (f(t), v− u̇(t))V ,(3.40)

for all v ∈ V and t ∈ (0, T ),

(3.41)
(β̇(t), ζ − β(t))L2(Ω) + a(β(t), ζ − β(t))

� (S (ε (u (t)) , β (t)) , ζ − β(t))L2(Ω) ,

for all β (t) ∈ K , ζ ∈ K and t ∈ (0, T ) ,

(3.42) D (t) = Eε(u(t)) − B∇ϕ(t),

(3.43) (D (t) ,∇φ)H = (q(t), φ)W ,

for all φ ∈W and t ∈ (0, T ), and

(3.44) u(0) = u0, β(0) = β0.

Remark 3.1. We remark that if v∗ is large enough then α = 1/(k1v
∗) is sufficiently

small and therefore, the condition (4.1) for the unique solvability of Problem PV is
satisfied. We conclude that the mechanical problem (3.6)-(3.17) has a unique weak
solution if the tangential velocity of the foundation is large enough. Moreover, having
solved the problem (3.6)-(3.17) , we can find the wear function by integrating (3.2)
and using the initial condition w(0) = 0 which means that at the initial moment the
body is not subject to any prior wear.

Remark 3.2. The functions u,σ, ϕ,D and β which satisfy (3.39)-(3.44) are called
a weak solution of the contact problem P . We conclude that, under the assumptions
(3.21)-(3.33) and if (4.1), the mechanical problem (3.6)-(3.17) has a unique weak
solution satisfying (4.2)-(4.6).

4. EXISTENCE AND UNIQUENESS OF A SOLUTION

Now, we propose our existence and uniqueness result.

Theorem 4.1. Assume that (3.21)-(3.33) hold.Then there exists a constant α0which
depends only on Ω,Γ1,Γ3 and A such that if

(4.1) ‖α‖L∞(Γ3)

(
‖μ‖L∞(Γ3)

+ 1
)
< α0,
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Then there exists a unique solution {u,σ, ϕ,D, β} to problem PV. Moreover, the
solution satisfies

u ∈ C1(0, T ; V ),(4.2)

σ ∈ C(0, T ;H1), Diυσ ∈ C(0, T ;H),(4.3)

ϕ ∈ C(0, T ;W ),(4.4)

D ∈ C(0, T ;W),(4.5)

β ∈W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),(4.6)

Remark 4.2. We conclude that the mechanical problem (3.6)-(3.17) has a unique
weak solution if the tangential velocity of the foundation is large enough. This is
neglecting the term u̇τ in the wear conditions(3.2) ascompared with v∗ .Moreover,
having solved the problem (3.6)-(3.17), we can find the wear function by integrating
(3.2) and using the initial condition w(0) = 0.

The proof of Theorem 4.1 is carried in several steps .It is based on results of elliptic
variational inequalities, parabolic inequalities and fixed point arguments.

First step

Let η ∈ C(0, T ;X) and g ∈C(0, T ; V ).
We consider the following variational problem

Problem PVη,g

Find a displacement field vη,g : [0, T ] → V and a stress field ση,g : [0, T ] → H
such that

(4.7) ση,g(t) = A(ε(vη,g(t))) + η (t) , ∀t ∈ [0, T ] ,

(4.8)
(ση,g(t), ε(v− vη,g(t)))H + j(g(t), v)− j(g(t), vη,g(t))

� (f(t), v− vη,g(t))V ,

for all v ∈ V and t ∈ (0, T ),
We have the following result for PVη,g.

Lemma 4.3. PVη,g has a unique weak solution such that

(4.9) vη,g ∈ C(0, T ; V ) , ση,g ∈ C(0, T ;H1).



Bilateral Contact Problem 1173

Proof of Lemma 4.3. We define the operator A : V → V such that

(4.10) (Au, v) = (Aε (u) , ε (v))H , ∀u, v ∈ V.

It follows from (4.10) and (3.21)(a) that

(4.11) ‖Au− Av‖V � LA ‖u− v‖V ,

which shows that A : V → V is Lipschitz continuous. Now, by (4.10) and (3.21)(b)
we find

(4.12) (Au −Av,u− v)V � mA ‖u− v‖2
V , ∀u, v ∈ V,

i.e., that A : V → V is a strongly monotone operator on V . Moreover, using Riesz
Representation Theorem, we may define an element F ∈C(0, T ; V ) by

(F (t) , v)V = (f (t) , v)V − (η (t) , ε (v))H , ∀u, v ∈ V.

Since A is a strongly monotone and Lipschitz continuous operator on V and since
v → j(g(t), v) is a proper convex lower semicontinuous functional, it follows from
classical result on elliptic inequalities (see for example [6]) that there exists a unique
function vη,g ∈ V which satisfies

(4.13)
(Avη,g(t), v− vη,g(t))H + j(g(t), v)− j(g(t), vη,g(t))

� (F (t) , v − vη,g(t))V , ∀v ∈ V.

We use the relation (4.7), the assumption (3.21), and the properties of the deforma-
tion tensor to obtain that ση,g(t) ∈ H . Since v = vη,g(t) ± ψ satisfies (4.8), where
ψ ∈ D (Ω)d is arbitrary, using the definition (3.35) for f (t), we find

(4.14) Divση,g(t) + f0(t) = 0, t ∈ (0, T ) ,

With the regularity assumption (3.27) on f0 we see thatDivση,g(t) ∈ H . Therefore,
ση,g(t) ∈ H1. Let t1, t2 ∈ [0, T ] and denote η (ti) = ηi, f (ti) = fi, g (ti) = gi,
vη,g (ti) = vi , ση,g (ti) = σi for i = 1, 2. Using the relation (4.8), we find that

(4.15)
(Aε (v1) −Aε (v2) ,ε (v1 − v2))H

� (f1 − f2, v1 − v2)V − (η1 − η2, ε (v1 − v2))H
+ j(g1, v2) + j(g2, v1) − j(g1, v1)− j(g2, v2).

From the definition of the functional j given by (3.37) we have

j(g1, v2) + j(g2, v1) − j(g1, v1)− j(g2, v2)

=
∫

Γ3

(α‖g1ν‖ − α‖g2ν‖) (μ ‖v2τ − v∗‖ − μ ‖v1τ − v∗‖) + v2ν − v1ν da.
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The relation (3.19) and the assumptions (3.30) and (3.31) imply

(4.16)
‖j(g1, v2) + j(g2, v1)− j(g1, v1) − j(g2, v2)‖

� C2
0 ‖α‖L∞(Γ3)

(
‖μ‖L∞(Γ3)

+ 1
)
‖g1 − g2‖V ‖v1 − v2‖V .

The relation (3.18), the assumption (3.21), and the inequality (4.16) combined with
(4.15) give us

(4.17)
mA‖u−v‖V

� C2
0 ‖α‖L∞(Γ3)

(
‖μ‖L∞(Γ3)+1

)
‖g1−g2‖V +‖f1−f2‖V +‖η1−η2‖H .

The inequality (4.17) and the regularity of the functions f , g, and η show that

vη,g ∈ C(0, T ; V ).

From the assumption (3.21) and the relation (4.7) we have

(4.18) ‖σ1 − σ2‖H � LA ‖v1 − v2‖V + ‖η1 − η2‖H ,
and from (4.14) we have

(4.19) Divσ(ti) + f0(ti) = 0, i = 1, 2.

The regularity of the function η , v, f0 and the relations (4.18)-(4.19) show that

ση,g ∈ C(0, T ;H1).

We consider the following operator

Λη : C(0, T ; V ) → C(0, T ; V ),

defined by

(4.20) Ληg = vη,g , ∀g ∈ C(0, T ; V ).

Lemma 4.4. Assume that (3.21)-(3.33) hold. Then there exists a real α0 > 0 which
depends only on Ω, Γ1 ,Γ3, and A such that if (4.1) is satisfied then the operator Λη

has a unique fixed point g∗
η ∈ C(0, T ; V ).

Proof. Let g1, g2 ∈ C(0, T ; V ) and let η ∈ C(0, T ;X). We use the notation
vη,g (ti) = vi and ση,g (ti) = σi for i = 1, 2. Using similar arguments as those in
(4.17), we find

(4.21)
mA‖v1 (t) − v2 (t) ‖V

� C2
0 ‖α‖L∞(Γ3)

(
‖μ‖L∞(Γ3)

+ 1
)
‖g1 (t) − g2 (t)‖V ,∀t ∈ [0, T ] ,
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From (4.20) and (4.21) we find that

(4.22)
‖Ληg1 (t) − Ληg2 (t) ‖V

� C2
0

mA
‖α‖L∞(Γ3)

(
‖μ‖L∞(Γ3)

+ 1
)
‖g1 (t) − g2 (t)‖V , ∀t ∈ [0, T ] .

Let
α0 =

C2
0

mA
,

where α0 is a positive constant which depends on Ω, Γ1 ,Γ3, and on the operator A
If (4.1) is satisfied we deduce from (4.22) that the operator Λη is a contraction. From
Banach’s Fixed Point Theorem we conclude that the operator Λη has a unique fixed
point g∗

η ∈ C(0, T ; V ).

Remark 4.5. If the condition of the wear ‖α‖L∞(Γ3)

(
‖μ‖L∞(Γ3) + 1

)
< α0 =

C2
0

mA
, then the problem PV has unique weak solution

Second step
Denote

(4.23) vη = vη,g∗ , ση = ση,g∗,

and let uη : [0, T ] → V be the function defined by

(4.24) uη (t) =
∫ t

0
vη (s) ds+ u0 ∀t ∈ [0, T ] .

Using (4.9) we find that uη satisfies the regularity expressed in (4.2). In the
second step, let η ∈ C(0, T ;H); we use the displacement field uη obtained in (4.24)
and consider the following variational problem.

Problem PV2
η

Find an electrical potential ϕη : [0, T ] →W such that

(4.25) (B∇ϕη(t),∇φ)H − (Eε(uη(t)),∇φ)H = (q(t), φ)W .

for all φ ∈W , t ∈ (0, T ).
The well-posedness of problem PV2

η follows.

Lemma 4.6. PV2
η has a unique solution φη which satisfies the regularity (4.4).

Proof. We define a bilinear form b (·, ·) : W ×W → R such that

(4.26) b (ϕ, φ) = (B∇ϕ(t),∇φ)H , ∀ϕ, φ ∈W.
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We use (3.25) to show that the bilinear form b is continuous, symmetric, and
coercive on W . Moreover using the Riesz Representation Theorem we may define an
element qη : [0, T ] →W such that

(qη (t) ,φ)W = (q (t) ,φ)W − (Eε(uη(t)),∇φ)H ; ∀φ ∈W, ∀t ∈ (0, T ) .

We apply the Lax-Milgram Theorem to deduce that there exists a unique element
ϕη ∈W such that

(4.27) b (ϕη (t) , φ) = (qη (t) ,φ)W ; ∀φ ∈W.

We conclude that ϕη (t) is a solution of PV2
η . Let t1, t2 ∈ [0, T ]. It follows from

(3.20),(3.25),(3.26), (4.26), and (4.27) that

‖ϕη1(t)− ϕη2(t)‖W � c
(‖uη1(t)− uη2(t)‖V + ‖q (t1)− q (t2)‖W

)
,

and the previous inequality and the regularity of uη and q imply that ϕη ∈
C (0, T ;W ).

Third step

Let θ ∈ C (
0, T ;L2 (Ω)

)
be given and consider the following variational problem

for the damage filed.

Problem PVθ

Find the damage field βθ : [0, T ] → H1(Ω) such that βθ(t) ∈ K and

(4.28)
(β̇θ(t), ξ − βθ)L2(Ω) + a(βθ(t), ξ − βθ(t))

� (θ(t), ξ − βθ(t))L2(Ω) ∀ξ ∈ K, a.e. t ∈ (0, T ),

(4.29) βθ(0) = β0.

To solve PVθ , we recall the following standard result for parabolic variational
inequalities (see [[3], p. 124]). Let V and H be real Hilbert spaces such that V is
dense in H and the injection map is continuous. The space H is identified with its
own dual and with a subspace of the dual V ′ of V . We write

V ⊂ H ⊂ V ′.

and we say that the inclusions above define a Gelfand triple. We denote by ‖·‖V ,
‖·‖ H , and ‖·‖V ′ , the norms on the spaces V , H and V ′ respectively, and we use
(·, ·)V ′×V for the duality pairing between V ′ and V .Note that if f ∈ H then

(f, v)V ′×V = (f, v)H , ∀v ∈ H.
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Theorem 4.7. Let V ⊂ H ⊂ V ′ be a Gelfand triple. Let K be a nonempty, closed,
and convex set of V . Assume that a (·, ·) : V ×V → R is a continuous and symmetric
bilinear form such that for some constants ζ > 0 and c0,

a (v, v) = c0 ‖v‖2
H � ζ ‖v‖2

V , ∀v ∈ H.

Then, for every u0 ∈ K and f ∈ L2 (0, T ;H), there exists a unique function u ∈
H1 (0, T ;H) ∩ L2 (0, T ; V ) such that u (0) = u0, u (t) ∈ K for all t ∈ [0, T ], and
for almost all t ∈ (0, T ),

(u̇ (t) , v − u (t))V ′×V + a (u (t) , v − u (t)) � (f (t) , v − u (t))H , ∀v ∈ K.

We apply this theorem to Problem PVθ .

Lemma 4.8. There exists a unique solution βθ to the auxiliary problem PVθ such
that:

(4.30) βθ ∈W 1,2
(
0, T ;L2 (Ω)

) ∩ L2
(
0, T ;H1 (Ω)

)
.

The above lemma follows from a standard result for parabolic variational inequal-
ities, see [3, p. 124].

Proof. The inclusion mapping of
(
H1 (Ω) , ‖ .‖H1(Ω)

)
into

(
L2 (Ω) , ‖ .‖L2(Ω)

)
is continuous and its range is dense. We denote by

(
H1 (Ω)

)′ the dual space of H1 (Ω)
and, identifying the dual of L2 (Ω) with itself, we can write the Gelfand triple

H1 (Ω) ⊂ L2 (Ω) ⊂ (
H1 (Ω)

)′
.

We use the notation (·, ·)(H1(Ω))′×H1(Ω) to represent the duality pairing between
(
H1 (Ω)

)′
and H1 (Ω) . we have

(β, ξ)(H1(Ω))′×H1(Ω) = (β, ξ)L2(Ω) , ∀β ∈ L2 (Ω) , ξ ∈ H1 (Ω)

and we note that K is a closed convex set in H1 (Ω). Then, using the definition (3.34)
of the bilinear form a , and the fact that βθ ∈ K in (3.33), it is easy to see that Lemma
(4.8) is a consequence of Theorem (4.7).

Finally, as a consequence of these results and using the properties of the operator
B , the operator G and the function S for t ∈ [0, T ], we consider the element

(4.31) Λ(η, θ)(t) = (Λ1(η, θ)(t),Λ2(η, θ)(t)) ∈ H × L2(Ω),

defined by
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Λ1(η, θ)(t) =B (ε (uη (t)) , βθ (t)) +
( ∫ t

0

G
(
ση,θ(s), ε(uη(s))

)
ds

)
+ E∗∇ϕη(t), ∀t ∈ [0, T ] ,

(4.32)

Λ2(η, θ)(t) = S
(
ε(uη(t)), βθ(t)

)
, ∀t ∈ [0, T ] .(4.33)

We have the following result.

Lemma 4.9. Let (4.1) be satisfied. Then for (η, θ) ∈ C(0, T ;H× L2(Ω)) , the
maping Λ(η, θ) : [0, T ] → H × L2(Ω) has a unique element (η∗, θ∗) ∈ C(0, T ;H×
L2(Ω)) such that Λ(η∗, θ∗) = (η∗, θ∗)

Proof. Let (η1, θ1), (η2, θ2) ∈ C(0, T ;H× L2(Ω)), and t ∈ [0, T ]. We use
the notation uηi = ui, u̇ηi = u̇i, βθi = βi, ϕηi = ϕi , g∗

ηi
= gi and σηi,gi = σi, for

i = 1, 2. From the notation used in (4.20) and (4.23), we deduce that vi = gi , Using
(3.18), (3.22), (3.23) and (3.26) we obtain

(4.34)

‖Λ(η1, θ1) (t) − Λ(η2, θ2) (t) ‖2
H×L2(Ω)

� C
(
‖u1 (t) − u2 (t)‖2

V + ‖β1 (t) − β2 (t)‖2
L2(Ω)

+
∫ t

0
‖σ1 (s) − σ2 (s)‖2

H ds +
∫ t

0
‖u1 (s) − u2 (s)‖2

V ds

+ ‖ϕ1 (t) − ϕ2 (t)‖2
W

)
.

Since
ui (t) =

∫ t

0
vi (s) ds+ u0, ∀t ∈ [0, T ] ,

we have

(4.35) ‖u1(t) − u2(t)‖2
V �

∫ t

0
‖v1(s) − v2(s)‖2

V ds.

It follows now from PVη,g for η = ηi, i = 1, 2, that

(4.36) σi(t) = A(ε(vi(t))) + ηi (t) , ∀t ∈ [0, T ] ,

(4.37) (σi(t), ε(v− vi(t)))H + j(gi(t), v)− j(gi(t), vi(t)) � (f(t), v− vi(t))V

for all v ∈ V, and all t ∈ [0, T ] .
Using the relation (4.37) we obtain that

(σ1(t) − σ2(t), ε (v1(t)− v2(t)))H
� j(g1(t), v2(t)) + j(g2(t), v1(t))− j(g1(t), v1(t)) − j(g2(t), v2(t))
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for all t ∈ [0, T ] . and similar arguments to those used in (4.16) on the functional j
yield

(σ1(t) − σ2(t), ε (v1(t) − v2(t)))H

� C2
0 ‖α‖L∞(Γ3)

(
‖μ‖L∞(Γ3)+1

)
‖g1 (t) − g2 (t)‖V ‖v1(t)−v2(t)‖V , ∀t ∈ [0, T ] .

Keeping in mind that vi = gi for i = 1, 2, it follows that

(σ1(t) − σ2(t), ε (v1(t) − v2(t)))H

� C2
0 ‖α‖L∞(Γ3)

(
‖μ‖L∞(Γ3)

+ 1
)
‖v1(t) − v2(t)‖2

V , ∀t ∈ [0, T ] .

We substitute (4.36) into the previous inequality and use (3.18) and (3.21) to deduce
that (

mA − C2
0 ‖α‖L∞(Γ3)

(
‖μ‖L∞(Γ3)

+ 1
))

‖v1(t) − v2(t)‖V

� ‖η1(t) − η2(t)‖H ,∀t ∈ [0, T ] .

It follows from (4.1) that

(4.38) ‖v1(t) − v2(t)‖2
V � C‖η1(t) − η2(t)‖2

H, ∀t ∈ [0, T ] .

For the electric potential field, we use (4.25), (4.20), (3.25), and (3.26) to obtain

‖ϕ1 (t) − ϕ2 (t)‖2
W � C‖u1(t) − u2(t)‖2

H, ∀t ∈ [0, T ] .

From (4.28) we deduce that

(β̇1−β̇2, β1−β2)L2(Ω)+a(β1−β2, β1−β2) � (θ1−θ2, β1−β2)L2(Ω), a.e t ∈ (0, T ) .

Integrating the previous inequality with respect to time, using the initial conditions
β1(0) = β2(0) = β0 and inequality a(β1 − β2, β1 − β2) � 0 to find

(4.39)
1
2
‖β1(t) − β2(t)‖2

L2(Ω) �
∫ t

0

(θ1(s) − θ2(s), β1(s)− β2(s))L2(Ω)ds,

which implies

‖β1(t) − β2(t)‖2
L2(Ω) �

∫ t

0
‖θ1(s)− θ2(s)‖2

L2(Ω)ds+
∫ t

0
‖β1(s) − β2(s)‖2

L2(Ω)ds.

This inequality, combined with Gronwall’s inequality, leads to

(4.40) ‖β1(t) − β2(t)‖2
L2(Ω) � C

∫ t

0
‖θ1(s) − θ2(s)‖2

L2(Ω)ds, ∀t ∈ [0, T ].
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We substitute (4.39) into (4.34) and use (4.35) to obtain

‖Λ(η1, θ1)(t) − Λ(η2, θ2)(t)‖2
H×L2(Ω)

� C

(∫ t

0
‖v1(s)− v2(s)‖2

V ds+ ‖β1(t) − β2(t)‖2
L2(Ω)

)
.

It follows now from the previous inequality, the estimates (4.38) and (4.40) that

‖Λ(η1, θ1)(t)−Λ(η2, θ2)(t)‖2
H×L2(Ω) �C

∫ t

0
‖(η1, θ1)(s)−(η2, θ2)(s)‖2

H×L2(Ω)ds.

Reiterating this inequality n times leads to

‖Λn(η1, θ1) − Λn(η2, θ2)‖2
W 1,p(0,T ;H×L2(Ω))

� CnT n

n!
‖(η1, θ1) − (η2, θ2)‖2

W 1,p(0,T ;H×L2(Ω)).

Thus, for n sufficiently large, Λn is a contraction on C(0, T ;H× L2(Ω)), and so Λ
has a unique fixed point in this Banach space.

Now, we have all the ingredients to prove Theorem 4.1.

Proof of Theorem 4.1.
Existence
Let (η∗, θ∗) ∈ C(0, T ;H×L2(Ω)) be the fixed point of Λ defined by (4.31)-(4.33)

and and let (v,σ) be the solution of PVη,g for η = η∗, g = g∗
η∗ obtained in Lemma

4.1.denote u = uη∗ . Let now ϕη∗ = ϕ and βθ∗ = β be the solutions of PV2
η

and PVθ for η = η∗ and θ = θ∗ obtained in Lemmas 4.3 and 4.4. The equalities
Λ1(η∗, θ∗) = η∗ and Λ2(η∗, θ∗) = θ∗ combined with (4.32), (4.33) show that (3.39)-
(3.43) are satisfied. Next, (3.44) and the regularity (4.2)-(4.6) follow from Lemmas
4.1, 4.3, 4.4, and (3.43).

Uniqueness
The uniqueness part of solution is a consequence of the uniqueness of the fixed point

of the operator Λ defined by (4.31)-(4.33) and the unique solvability of the Problems
PVη,g, PV2

η and PVθ which completes the proof.
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15. J. Nečas and I. Hlaváček, Mathematical Theory of Elastic and Elasto-plastic Bodies, An
Introduction, Elsevier, Amsterdam, 1981.
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