TAIWANESE JOURNAL OF MATHEMATICS Vol. 19, No. 4, pp. 1085-1096, August 2015 DOI: 10.11650/tjm.19.2015.4816 This paper is available online at http://journal.taiwanmathsoc.org.tw

AUTOMORPHISMS OF NEIGHBORHOOD SEQUENCE OF A GRAPH

Li-Da Tong

Abstract. Let G be a graph, u be a vertex of G, and B(u)(or $B_G(u)$) be the set of u with all its neighbors in G. A sequence $(B_1, B_2, ..., B_n)$ of subsets of an n-set S is a neighborhood sequence if there exists a graph G with a vertex set S and a permutation $(v_1, v_2, ..., v_n)$ of S such that $B(v_i) = B_i$ for i = 1, 2, ..., n. Define $Aut(B_1, B_2, ..., B_n)$ as the set $\{f : f \text{ is a permu$ tation of <math>V(G) and $(f(B_1), f(B_2), ..., f(B_n))$ is a permutation of $B_1, B_2, ..., B_n\}$. In this paper, we first prove that, for every finite group Γ , there exists a neighborhood sequence $(B_1, B_2, ..., B_n)$ such that Γ is group isomorphic to $Aut(B_1, B_2, ..., B_n)$. Second, we show that, for each finite group Γ , there exists a neighborhood sequence $(B_1, B_2, ..., B_n)$ such that, for each subgroup H of Γ , H is group isomorphic to $Aut(E_1, E_2, ..., E_t)$ for some neighborhood sequence $(E_1, E_2, ..., E_t)$ where $E_i \subseteq B_{j_i}$ and $j_1 < j_2 < \cdots < j_t$. Finally, we give some classes of graphs G with neighborhood sequence $(B_1, B_2, ..., B_n)$ are different.

1. INTRODUCTION

The identifying codes were first introduced by Karpovsky, Chakrabarty, and Levitin in [4]. Furthermore, they have formed a fundamental basis for a wide variety of theoretical work and practical applications. If we settle that every vertex v of a graph G only exhibits the messages from some neighbors of v in G, then we can get a code with size $\leq M(G)$. We call such code an *identifying set* of a graph G. If two graphs have the same neighborhood sequence, then they have the same minimum cardinality of an identifying code [4] and the choice identification number [1].

Here we introduce some definitions used in the paper. Let G be a graph, u be a vertex of G, and B(u) (or $B_G(u)$) be the set of u with all its neighbors in G. And N(u) (or $N_G(u)$) is the set of all neighbors of u in G. Then $B(u) = N(u) \cup \{u\}$. A

Received May 14, 2014, accepted October 24, 2014.

Communicated by Gerard Jennhwa Chang.

²⁰¹⁰ Mathematics Subject Classification: 05C25.

Key words and phrases: Automorphism, Graph, Neighborhood sequence.

This research was partially supported by the National Science 102-2115-M-110-008-MY2, National Center of Theoretical Sciences.

sequence $(B_1, B_2, ..., B_n)$ of subsets of an *n*-set *S* is a *neighborhood sequence* if there exist a graph *G* with a vertex set *S* and a permutation $(v_1, v_2, ..., v_n)$ of *S* such that $B(v_i) = B_i$ for i = 1, 2, ..., n.

An automorphism f of a graph G is a permutation of vertex set V(G) such that $xy \in E(G)$ if and only if $f(x)f(y) \in E(G)$. The collection Aut(G) of all automorphisms of G is a group by a composition operator. Define $Aut(B_1, B_2, ..., B_n)$ as the set $\{f : f$ is a permutation of V(G) and $(f(B_1), f(B_2), ..., f(B_n))$ is a permutation of $B_1, B_2, ..., B_n\}$ where $f(S) = \{f(x) : x \in S\}$ for $S \subseteq V(G)$. Such permutation is called a $(B_1, B_2, ..., B_n)$ -automorphism. It is immediate that every automorphism f of G is also an element of $Aut(B_1, B_2, ..., B_n)$ where $(B_1, B_2, ..., B_n)$ is the neighborhood sequence of a graph G.

In this paper, we first prove that, for every finite group Γ , there exists a neighborhood sequence $(B_1, B_2, ..., B_n)$ such that Γ is isomorphic to $Aut(B_1, B_2, ..., B_n)$. We also get that, for each finite group Γ , there exists a neighborhood sequence $(B_1, B_2, ..., B_n)$ such that, for each subgroup H of Γ , H is group isomorphic to $Aut(E_1, E_2, ..., E_t)$ for some neighborhood sequence $(E_1, E_2, ..., E_t)$ where $E_i \subseteq B_{j_i}$ and $j_1 < j_2 < \cdots < j_t$. In the last section, we give some classes of graphs G with neighborhood sequence $(B_1, B_2, ..., B_n)$ satisfying Aut(G) and $Aut(B_1, B_2, ..., B_n)$ are different, and construct non-isomorphic graphs with the same neighborhood sequence having different automorphism groups.

2.
$$Aut(B_1, B_2, ..., B_n)$$

Let [n] be the set $\{1, 2, ..., n\}$ and $B_1, B_2, ..., B_n$ be subsets of an *n*-set *S*. Then we say $(B_1, B_2, ..., B_n)$ has an *adjacent SDR* if there exist $v_i \in B_i$ for i = 1, 2, ..., nsuch that $v_1, v_2, ..., v_n$ are distinct and $v_j \in B_i$ if and only if $v_i \in B_j$.

Theorem 1. Let $B_1, B_2, ..., B_n$ be subsets of an n-set S. Then $(B_1, B_2, ..., B_n)$ is a neighborhood sequence if and only if $(B_1, B_2, ..., B_n)$ has an adjacent SDR.

Proof. Let $(B_1, B_2, ..., B_n)$ be a neighborhood sequence of a graph G. Then there exists a permutation $(v_1, v_2, ..., v_n)$ of V(G) such that $B(v_i) = B_i$ for all i; that is, $v_i \in B_i\{v_i\}$ if and only if $v_iv_j \in E(G)$. Thus we have an adjacent SDR.

Conversely, let $(v_1, v_2, ..., v_n)$ be an an adjacent SDR of $(B_1, B_2, ..., B_n)$. Define G as a graph with a vertex set $\{v_1, v_2, ..., v_n\}$ and an edge set $\{v_iv_j : v_i \in B_j\}$. It is easy to check that G is a graph.

The girth of a graph G is the length of a shortest cycle in G.

Proposition 2. If the girth of a connected graph G is greater than or equal to 5, then the neighborhood sequence of G has a uniquely adjacent SDR.

Proof. Since the girth of G is greater than or equal to 5, we have that $n \ge 5$. Let $(B_1, B_2, ..., B_n)$ be the neighbor sequence of a graph G and $(v_1, v_2, ..., v_n)$ be an adjacent SDR of $(B_1, B_2, ..., B_n)$. If $|B_i| = 2$, then it is easy to see that $B_i = B_H(v_i)$ for each graph H with the neighbor sequence $(B_1, B_2, ..., B_n)$. If $|B_j| \ge 3$, then take any pair of two distinct vertices x and y in $B_j - \{v_j\}$. Since the girth of G is greater than or equal to 5, $\{x, y\}$ is not contained in B_k for all $k \ne j$. This implies that $B_j = B_H(v_j)$ for each graph H with the neighbor sequence $(B_1, B_2, ..., B_n)$.

Corollary 3. Let G be a connected graph with a neighborhood sequence $(B_1, B_2, ..., B_n)$. If the girth of G is greater than or equal to 5, then G is the unique graph with neighborhood sequence $(B_1, B_2, ..., B_n)$.

Proposition 4. Let G be a connected graph with a neighborhood sequence $(B_1, B_2, ..., B_n)$. Then Aut(G) is a subset of $Aut(B_1, B_2, ..., B_n)$.

Proof. It is immediate by definition.

Proposition 5. Let G be a graph with a neighborhood sequence $(B_1, B_2, ..., B_n)$ and $(v_1, v_2, ..., v_n)$ be an adjacent SDR of $(B_1, B_2, ..., B_n)$. If $f \in Aut(B_1, B_2, ..., B_n)$, then $(f(v_1), f(v_2), ..., f(v_n))$ is an adjacent SDR of $(f(B_1), f(B_2), ..., f(B_n))$.

Proof. If $f(v_j)f(v_i) \in f(B_i)$, then $v_jv_i \in B_i$. By the definition of neighborhood sequences, $v_iv_j \in B_j$. This implies that $f(v_i)f(v_j) \in f(B_j)$. That is, $(f(v_1), f(v_2), ..., f(v_n))$ is an adjacent SDR of $(f(B_1), f(B_2), ..., f(B_n))$.

Proposition 6. Let G be a graph with neighborhood sequence $(B_1, B_2, ..., B_n)$. If the sequence $(B_1, B_2, ..., B_n)$ has the unique adjacent SDR, then $Aut(G) = Aut(B_1, B_2, ..., B_n)$.

Proof. By Proposition 4, we have that $Aut(G) \subseteq Aut(B_1, B_2, ..., B_n)$. Let $f \in Aut(B_1, B_2, ..., B_n)$. Since $(f(B_1), f(B_2), ..., f(B_n))$ is a permutation of B_1 , B_2 , ..., B_n and Proposition 5, if $f(B_i) = B_j$ then $f(v_i) = v_j$; that is, f is an automorphism of G.

A graph G is called *vertex transitive* if for each pair (x, y) of vertices in G there exists $f \in Aut(G)$ such that f(x) = y. Similarly, we say that a neighborhood sequence $(B_1, B_2, ..., B_n)$ is *vertex transitive* if for each pair (x, y) of elements in $\bigcup_{i=1}^n B_i$ there exists $f \in Aut(B_1, B_2, ..., B_n)$ such that f(x) = y. In the following proposition, some graphs are not vertex transitive, but their neighborhood sequences are vertex transitive. Let both G and H be graphs and the join of G and H be the graph G+H with a vertex set $V(G) \cup V(H)$ and an edge set $E(G) \cup E(H) \cup \{uv : u \in V(H) \text{ and } v \in V(H)\}$.

Proposition 7. Let n be a positive integer with $n \ge 3$, G be $K_{n,n}$ with two partite sets $\{a_1, a_2, ..., a_n\}$ and $\{b_1, b_2, ..., b_n\}$, H_1 be $K_{n,n}$ with two partite sets $\{u_1, u_2, ..., u_n\}$ and $\{v_1, v_2, ..., v_n\}$, and H_2 be a graph with a vertex set $\{u_1, u_2, ..., u_n\}$ $\cup \{v_1, v_2, ..., v_n\}$ and an edge set $\{v_iv_j, u_iu_j : i \ne j\} \cup \{u_iv_i : i = 1, 2, ..., n\}$, $G_1 = G + H_1$, and $G_2 = G + H_2$. Then G_1 and G_2 have the same vertex transitive neighborhood sequence; but G_2 is not vertex transitive.

Proof. Let $(B_1, B_2, ..., B_{2n})$ be the neighborhood sequence of G_1 . By Proposition 4, we have that $Aut(G_1) \subseteq Aut(B_1, B_2, ..., B_{2n})$. Since G_1 is vertex transitive, $Aut(B_1, B_2, ..., B_{2n})$ is vertex transitive. If G_2 is vertex transitive, then there is an automorphism f on G_2 such that $f(a_1) = u_1$. Since $f(a_1) = u_1$ and $dist_{G_2}(a_1, a_i) = 2$ for i = 2, 3, ..., n, we have that $f(\{a_1, a_2, ..., a_n\}) = \{u_1, v_2, ..., v_n\}$. Since $dist_{G_2}(a_i, a_j) = 2$ for $i \neq j$ and v_2v_3 is an edge of G_2 , we have that f is not an automorphism, a contradiction. Thus G_2 is not vertex transitive.

Frucht [2] proved that, for every finite group Γ , there exists a simple graph G such that Γ is group isomorphic to Aut(G). In the following, we show that, for every finite group Γ , there exists a neighborhood sequence $(B_1, B_2, ..., B_n)$ such that Γ is isomorphic to $Aut(B_1, B_2, ..., B_n)$. Frucht defined a useful colored digraph from a group in [2]. We can use a subdigraph of the colored digraph in [2] to get the same results. Let Γ be a group and $S = \{g_1, g_2, ..., g_t\}$ be a generator of Γ . Define $D_S(\Gamma)$ as a digraph with a vertex set Γ and (x, y) with $x \neq y$ is an arc with color k if and only if $xy^{-1} = g_k$ for some k. Let $Aut^*(D_S(\Gamma)) = \{f : f \text{ is a permutation of } \Gamma$, and both (u, v) and (f(u), f(v)) have the same color}. Then it is easy to check that $Aut^*(D_S(\Gamma))$ is a group with a composition operator. We have the following theorem.

Theorem 8. For each finite group Γ , Γ and $Aut^*(D_S(\Gamma))$ are group isomorphic.

Proof. Let $g \in \Gamma$ and p_g be a permutation on Γ by $p_g(x) = xg$ for all $x \in \Gamma$. If $xy^{-1} = g_k$, then $p_g(x)p_g(y)^{-1} = xg(yg)^{-1} = xy^{-1} = g_k$; that is, p_g is in $Aut^*(D_S(\Gamma))$. Let $f \in Aut^*(D_S(\Gamma))$ and f(1) = g where 1 is the identity of Γ . Claim that $f = p_g$. Take $g_i \in S$. We have that $(1, g_i^{-1})$ and $(g, g_i^{-1}g)$ are arcs in $D_S(\Gamma)$ with the same color *i*. Since f(1) = g, $f(g_i^{-1}) = g_i^{-1}g$. Take $g_j \in S$, Since $(g_i^{-1}, g_j^{-1}g_i^{-1})$ and $(g_i^{-1}g, g_j^{-1}g_i^{-1}g)$ are arcs in $D_S(\Gamma)$ with color *j* and $f(g_i^{-1}) = g_i^{-1}g$, we have that $f(g_j^{-1}g_i^{-1}) = g_j^{-1}g_i^{-1}g$. By *S* being a generator of Γ , we have that $f(x) = p_g(x)$ for all $x \in \Gamma$. We can conclude that there is a group isomorphism from Γ to $Aut^*(D_S(\Gamma))$.

Define P(x, y, k) as a graph with a vertex set $\{x = v_0(x, y), v_1(x, y), v_2(x, y), ..., v_{k+2}(x, y), y = v_{k+3}(x, y), u(x, y)\}$ and an edge set $\{v_i(x, y), v_{i+1}(x, y) : i = 0, 1, ..., k+2\} \cup \{v_k(x, y)u(x, y), u(x, y)v_{k+3}(x, y)\}.$

Theorem 9. For each finite group Γ , there exists a 2-connected graph with its neighborhood sequence $(B_1, B_2, ..., B_n)$ such that Γ is group isomorphic $Aut(B_1, B_2, ..., B_n)$.

Proof. For the order of Γ being 2, we have the graph K_2 with $Aut(\{1,2\},\{1,2\})$ being group isomorphic to Γ . Assume that the order of $\Gamma \geq 3$. Let 1 be the identity element of Γ , S be a generator of Γ with $|S| \geq 2$ and $1 \notin S$, and $G_S(\Gamma)$ be a graph obtained from $D_S(\Gamma)$ by P(x, y, k) instead of (x, y) with color k in $D_S(\Gamma)$. It is easy to see that $G_S(\Gamma)$ is a 2-connected graph with girth 5. Since Corollary 3 and Proposition 6, we have that $Aut(G_S(\Gamma)) = Aut(B_1, B_2, ..., B_n)$ where $B_1, B_2, ..., B_n$ is a neighborhood sequence of $G_S(\Gamma)$.

Claim that $Aut^*(D_S(\Gamma))$ is group isomorphic to $Aut(G_S(\Gamma))$. Define a function g from $Aut^*(D_S(\Gamma))$ to $Aut(G_S(\Gamma))$ by g(f(x)) = f(x) for all $x \in \Gamma$. For each $f \in Aut^*(D_S(\Gamma))$, define an automorphism h of $G_S(\Gamma)$ by h(x) = f(x) for all $x \in \Gamma$ and if (x, y) is color k in $D_S(\Gamma)$ then h(u(x, y)) = u(f(x), f(y)) and $h(v_i(x, y)) = v_i(f(x), f(y))$ for k = 0, 1, 2..., k + 3. Then h is the unique automorphism of $G_S(\Gamma)$ with h(x) = f(x) for all $x \in \Gamma$. Then g is well defined and one to one.

On the other hand, let h be an automorphism of $G_S(\Gamma)$. By $|S| = t \ge 2$, the degree of v in $G_S(\Gamma)$ is 3t for $v \in \Gamma$ and the degree of u is less than or equals to 3. Then for each vertex $x \in \Gamma$, h(x) must be in Γ . Then we have that there exists P(x, y, k)between x and y in $G_S(\Gamma)$ if and only there exists P(h(x), h(x), k) between h(x) and h(y) in $G(\Gamma)$. This implies that there exists $f \in Aut^*(D_S(\Gamma))$ with f(x) = h(x) such that $g \circ f = h$. By this relation, we have a group isomorphism from $Aut^*(D_S(\Gamma))$ to $Aut(G_S(\Gamma))$. The proof is complete.

If S is a minimum generator of Γ and $|S| \geq 2$, then we can reduce the number of edges of graphs in Theorem 9. For cyclic groups, every minimum generator has only one element. Define $P^*(x, y)$ as a graph with a vertex set $\{x = v_0(x, y), v_1(x, y), v_2(x, y), v_3(x, y), y = v_4(x, y), u_1, u_2, u_3\}$ and an edge set $\{v_i(x, y), v_{i+1}(x, y) : i = 0, 1, 2, 3\} \cup \{v_1(x, y)u_1, v_4(x, y)u_1, v_2(x, y)u_2, u_2u_3, v_4(x, y)u_3\}$. In the proof of Theorem 9, $P^*(x, y)$ is instead of P(x, y, 1) for |S| = 1. Then we can get a 2-connected graph with its neighborhood sequence $(B_1, B_2, ..., B_n)$ for a cyclic group Γ such that Γ is group isomorphic $Aut(B_1, B_2, ..., B_n)$.

If we take $S = \Gamma - \{1\}$ with 1 being the identity element of Γ , then for every subgroup H of Γ , there exists an induced subgraph F of $G_S(\Gamma)$ such that H and Aut(F) are group isomorphic.

Proposition 10. Let Γ be a finite group, 1 be the identity element of Γ , and $S = \Gamma - \{1\}$. Then there exists a 2-connected graph G with its girth ≥ 5 such that for each subgroup H of Γ , H is group isomorphic to Aut(F) for some induced subgraph F of G.

Proof. Let G be $G_{\Gamma}(\Gamma)$ in the proof of Theorem 9, $H = \{h_1, h_2, ..., h_t\}$, and

 $U = \bigcup_{i \neq j} V(P(h_i, h_j, k)) \cup H$ where $V(P(h_i, h_j, k))$ is the set of all vertices in $P(h_i, h_j, k)$. It is immediate that H is group isomorphic to the automorphism group of the induced subgraph of U in G.

Corollary 11. Let Γ be a finite group, 1 be the identity element of Γ , and $S = \Gamma - \{1\}$. Then there exists a neighborhood sequence $(B_1, B_2, ..., B_n)$ such that, for each subgroup H of Γ , H is group isomorphic to $Aut(E_1, E_2, ..., E_t)$ for some neighborhood sequence $(E_1, E_2, ..., E_t)$ where $E_i \subseteq B_{j_i}$ and $j_1 < j_2 < \cdots < j_t$.

Let $n_1, n_2, ..., n_t$ be positive integers. Define $T_{n_1, n_2, ..., n_t}$ as a tree with a vertex set $\{v\} \cup \{(i, j) : 1 \le i \le t \text{ and } 1 \le j \le n_i\}$ and an edge set $\{v(i, 1) : i = 1, 2, ..., t\} \cup \{(i, j)(i.j + 1) : 1 \le i \le t \text{ and } 1 \le j \le n_i - 1\}.$

Proposition 12. Let $t \ge 2$, $n_1, n_2, ..., n_{2t}$ be positive integers with $n_i = n_{i+t}$ for i = 1, 2, ..., t and $n_1 < n_2 < \cdots < n_t$, and $\Gamma = Aut(T_{n_1,n_2,...,n_{2t}})$. If Γ' is a subgroup of Γ , then there exists a subgraph H of $T_{n_1,n_2,...,n_{2t}}$ such that Aut(H) is group isomorphic to Γ' .

Proof. Let p be an automorphism of $T_{n_1,n_2,...,n_{2t}}$. Since $\deg(v) \ge 4$, p satisfies p(v) = v. We can observe that $p(i, n_i), p(i + t, n_{i+t}) \in \{(i, n_i), (i + t, n_{i+t})\}$ for i = 1, 2, ..., t. This implies that $Aut(T_{n_1,n_2,...,n_{2t}})$ is group isomorphic to the cartesian product of $t Z_2$ s' where Z_2 is a group of order 2. Since every subgroup Γ' of $Aut(T_{n_1,n_2,...,n_{2t}})$ is isomorphic to the cartesian product of $s Z_2$ s' for some $s \le t$, we have that $Aut(T_{n_1,n_2,...,n_{2s}})$ is isomorphic to Γ' . The proof is complete.

But not all graphs G (neighborhood sequences $(B_1, B_2, ..., B_n)$) satisfy that, for each subgroup Γ of $Aut(G)(Aut(B_1, B_2, ..., B_n))$, resp.), there exists a subgraph H (a neighborhood sequence $(E_1, E_2, ..., E_t)$, resp.) of G $((B_1, B_2, ..., B_n))$ with $E_i \subseteq B_{j_i}$ for some $j_1 < j_2 < \cdots < j_t$, resp.) such that Γ is group isomorphic Aut(H) $(Aut(E_1, E_2, ..., E_t))$, resp.).

For example, let G be a graph of order n with its edge set being empty, the automorphism group is the symmetric group of order n and each automorphism group of a subgraph of G is also a symmetric group. If $n \ge 3$, then G has no subgraph H such that Aut(H) is group isomorphic to a cyclic group of order n. For the automorphism groups of neighborhood sequences, we give an example C_4 . Let C_4 be a cycle of order 4 and (B_1, B_2, B_3, B_4) be the neighborhood sequence of C_4 . Then $Aut(B_1, B_2, B_3, B_4)$ is group isomorphic to the symmetric group of order 4 and has a cyclic subgroup with 3 elements. But there is no subgraph H or neighborhood sequence $(E_1, E_2, ..., E_t)$ with $t \le 4$ and $E_i \subseteq B_{j_i}$ for some $j_1 < j_2 < \cdots < j_t$ such that Aut(H) or $Aut(E_1, E_2, ..., E_t)$ is isomorphic a cyclic group with 3 elements.

Proposition 13. Let C_n be a cycle of order n. If $n \ge 3$, then $Aut(C_n)$ has a cyclic subgroup C' of order n; but, C_n has no subgraph H with Aut(H) group isomorphic to C'.

Proof. It is easy to see that a cyclic subgroup C' of order n in $Aut(C_n)$ is a proper subgroup. If there is a subgraph H of C_n such that Aut(H) is group isomorphic to C', then H is a proper subgraph of C_n . Since automorphism groups of a path or a null graph is not group isomorphic C', H is neither a path nor a null graph. This implies that H contains a component which is a path of order greater than or equal to 2. If H has at least two disjoint paths of order greater than or equal to 2, then Aut(H) contains at least two elements of order 2; but every cycle contains at most one element of order 2. Thus H has only one component which is a path $(v_0, v_1, ..., v_{t-1})$ with $n-1 \ge t \ge 2$. If t = n-1, then Aut(H) is group isomorphic to a cyclic subgroup of order 2, a contradiction. If $t \le n-2$, then Aut(H) is group isomorphic to $S_{n-t} \times Z_2$ where S_{n-t} is a symmetric group of order n - t and Z_2 is a cyclic group of order 2. For each $n-1 \ge t \ge 2$, $S_{n-t} \times Z_2$ and C' are not group isomorphic. Therefore C_n has no subgraph H with Aut(H) group isomorphic to C'.

Corollary 14. Let $n \ge 5$ and $(B_1, B_2, ..., B_n)$ be the neighborhood sequence of a cycle C_n . Then $Aut(B_1, B_2, ..., B_n)$ has a cyclic subgroup C' of order n; but, there is no neighborhood sequence $(E_1, E_2, ..., E_t)$ with $E_i \subseteq B_{j_i}$ for some $j_1 < j_2 < \cdots < j_t$ such that $Aut(E_1, E_2, ..., E_t)$ group isomorphic to C'.

In the following we prove that for $n \ge 3$, there exists a subgroup G' of $Aut(K_n)$ such that G' is not group isomorphic to Aut(H) for all subgraph H of K_n .

Theorem 15. (Bertrand's postulate). For each integer n with $n \ge 2$, there exists a prime number p with n .

Proposition 16. Let K_n be a complete graph of order n. If $n \ge 3$, then there exists an integer p with $n such that <math>Aut(K_n)$ has a cyclic subgroup C' of order p; but there is no subgraph H of K_n such that Aut(H) group isomorphic to C'.

Proof. Let $V(K_n) = \{0, 1, 2, ..., n-1\}$. By Bertrand's postulate, we have a prime number p with n/2 (if <math>n = 3, then let p = 3). Then it is trivial that $Aut(K_n)$ has a cyclic subgroup C' of order p. If there is a subgraph H of K_n such that Aut(H) group isomorphic to a cyclic group of order p; that is, Aut(H) has a generator $\{f\}$ for some permutation f on V(H). Since p is a prime number and $p \ge n/2$, without loss of generality, f(i) = i+1 for i = 0, 1, 2, ..., p-2, f(p-1) = 0, and f(j) = j for $j \notin \{0, 1, 2, ..., p-1\}$. Then we have that if $ij \in E(H)$ with $i, j \in \{0, 1, 2, ..., p-1\}$ then $kl \in E(H)$ for each pair of $i, j \in \{1, 2, ..., p-1\}$ with $k - l \equiv i - j \pmod{p}$. (In fact, the induced subgraph of $\{0, 1, 2, ..., p-1\}$ in H is a circulant graph.) For each j with $j \notin \{0, 1, 2, ..., p-1\}$, if $jk \in E(H)$ for some $1 \le k \le p$ then $ji \in E(H)$ for all $1 \le i \le p$. Let g be a permutation on V(H) with g(0) = 0, g(1) = p - 1, g(p - 1) = 1, ..., g((p - 1)/2) = (p + 1)/2, g((p + 1)/2) = (p - 1)/2 and g(j) = j for $j \notin \{0, 1, 2, ..., p - 1\}$. Then g is an

automorphism of H, but g can not be generated by f, a contradiction. Thus there is no subgraph H of K_n such that Aut(H) group isomorphic to a cyclic group of order p.

Proposition 17. Let n be an integer with $n \ge 3$ and $(B_1, B_2, ..., B_n)$ be the neighborhood sequence of a complete graph K_n . Then there exists an integer p with $p \le n$ such that $Aut(B_1, B_2, ..., B_n)$ has a cyclic subgroup C' of order n, but there is no neighborhood sequence $(E_1, E_2, ..., E_t)$ with $E_i \subseteq B_{j_i}$ for some $j_1 < j_2 < \cdots < j_t$ such that $Aut(E_1, E_2, ..., E_t)$ group isomorphic to C'.

Proof. Let $V(K_n) = \{0, 1, 2, ..., n-1\}$ and $(B_1, B_2, ..., B_n)$ be the neighborhood sequence of a complete graph K_n . By Bertrand's postulate, we have a prime number p with $n/2 . Then it is trivial that <math>Aut(B_1, B_2, ..., B_n)$ has a cyclic subgroup C' of order p. If there is a neighborhood sequence $(E_1, E_2, ..., E_t)$ with $E_i \subseteq B_{j_i}$ for some $j_1 < j_2 < \cdots < j_t$ such that $Aut(E_1, E_2, ..., E_t)$ group isomorphic to C'; that is, $Aut(E_1, E_2, ..., E_t)$ has a generator $\{f\}$ for some permutation f on $\cup_{i=1}^t E_i$. Since p is a prime number, without loss of generality, f(i) = i + 1 for i = 0, 1, 2, ..., p - 2 and f(p-1) = 0. If $f(E_i) = E_i$ for all i, then $Aut(E_1, E_2, ..., E_t)$ is not a cyclic group, a contradiction. If $f(E_i) \neq E_i$ for some i then $E_i, f(E_i), ..., f^{n-1}(E_i)$ are different. Since p is prime, without loss of generality, we say $f^{i-1}(E_1) = E_i$ for i = 1, 2, ..., p. If there exist $a \neq b$ with $f^i(E_1) = E_a = E_b$ for some i or $f(E_k) \notin \{E_k, E_1, E_2, ..., E_{p-1}\}$, then $t \geq 2p$, a contradiction. Thus $f(E_k) = E_k$ for $k \geq p$. We can conclude that

- (a) $E_i \cap \{p, ..., n-1\} = E_j \cap \{p, ..., n-1\}$ for $0 \le i, j \le p-1$.
- (b) $E_k \cap \{0, 1, ..., p-1\}$ is either $\{0, 1, ..., p-1\}$ or empty set for $k \ge p$.

Let $(v_1, v_2, ..., v_t)$ be an adjacent SDR of $(E_1, E_2, ..., E_t)$.

If $\{v_1, v_2, ..., v_p\} = \{0, 1, ..., p-1\}$ then we have that $v_l \in E_k$ for each v_l with $|v_k - v_l| \equiv |v_i - v_j| \pmod{p}$. Let g be a permutation on $V(K_n)$ with g(0) = 0, g(1) = p-1,...,g((n-1)/2) = (n+1)/2. Then g is an automorphism of $Aut(E_1, E_2, ..., E_n)$, but g can not be generated by f, a contradiction.

If there exists $v \in \{0, 1, ..., p-1\} - \{v_1, v_2, ..., v_p\}$, then $v = v_k$ and $v_i \ge p$ for some $k \ge p$ and $1 \le i \le p-1$. By (b), we have that $v_k \in E_j$ for $j \le p$ and $v_j \le p-1$; that is, $v_j \in E_k$. By (a), $v_i \in E_r$ for $r \in \{1, 2, ..., p\}$ and $v_r \le p-1$. By above, we have that B_j contains 0, 2, ..., p-1 for $j \le p$. Then $Aut(E_1, E_2, ..., E_t)$ is not a cyclic group. The proof is complete.

A permutation p on $\{1, 2, ..., n\}$ is a *transposition* if there exist $i \neq j \in \{1, 2, ..., n\}$ such that p(i) = j, p(j) = i, and p(x) = x for $x \notin \{i, j\}$. A permutation p on $\{1, 2, ..., n\}$ is is even if it can be written as the composition of even number of transpositions. The set of all even permutations on $\{1, 2, ..., n\}$ is called the *alternating group* A_n of order n. Then A_n is a subgroup of the symmetric group on $\{1, 2, ..., n\}$ (the set of all permutations with the composition operator).

Proposition 18. Let K_n be a complete graph of order n. If $n \ge 3$, then there is no subgraph H of K_n such that Aut(H) group isomorphic to A_n .

Proof. Assume that there exists a subgroup of K_n such that Aut(H) group isomorphic to A_n . Then H is regular and nontrivial. If $xy \in E(G)$ and $z \in \{1, 2, ..., n\}$ then by $(x, y, z) \in A_n$, we have that $yz \in E(H)$; that is, H is K_n , a contradiction.

Proposition 19. Let n be an integer with $n \ge 3$. Then there is no neighborhood sequence $(B_1, B_2, ..., B_n)$ such that $Aut(B_1, B_2, ..., B_n)$ group isomorphic to A_n .

Proof. Assume that there exists a neighborhood sequence $(B_1, B_2, ..., B_n)$ such that $Aut(B_1, B_2, ..., B_n)$ group isomorphic to A_n . Then $|B_i|$ is a constant k. If k is either 1 or greater than or equal n - 1, then $Aut(B_1, B_2, ..., B_n)$ is symmetric group of order n, a contradiction. If $n \leq 4$, then n = 4 and k = 2. Without loss of generality, let $(B_1, B_2, B_3, B_4) = (\{1, 2\}, \{1, 2\}, \{3, 4\}, \{3, 4\})$. Then $Aut(\{1, 2\}, \{1, 2\}, \{3, 4\}, \{3, 4\})$ is not group isomorphic to A_4 . Suppose that $n \geq 5$ and $2 \leq k \leq n - 2$. Let $B_1 = \{x_1, x_2, ..., x_k\}$. Let a, b, c be distinct in $\bigcup_{i=1}^n B_i$ and g be a permutation g by g(a) = b, g(b) = c, g(c) = a, and g(x) = x for $x \notin \{a, b, c\}$. Since g is in A_n and $g(B_1) = B_j$ for some j, $k(n - k) \leq n$. It contradicts that $2 \leq k \leq n - 2$.

Corollary 20. Let n be an integer with $n \ge 3$ and $(B_1, B_2, ..., B_n)$ be the neighborhood sequence of a complete graph K_n . Then A_n is group isomorphic to some subgroup of $Aut(B_1, B_2, ..., B_n)$, but there is no neighborhood sequence $(E_1, E_2, ..., E_t)$ with $E_i \subseteq B_{j_i}$ for some $j_1 < j_2 < \cdots < j_t$ such that $Aut(E_1, E_2, ..., E_t)$ group isomorphic to A_n .

Proof. It is easy to see that A_n is group isomorphic to some subgroup of $Aut(B_1, B_2, ..., B_n)$. Since $|Aut(B_1, B_2, ..., B_n)|/|A_n| = 2$, t = 2. By Proposition 19, we have that there is no neighborhood sequence $(E_1, E_2, ..., E_t)$ with $E_i \subseteq B_{j_i}$ for some $j_1 < j_2 < \cdots < j_t$ such that $Aut(E_1, E_2, ..., E_t)$ group isomorphic to A_n .

3. Aut(G) and $Aut(B_1, B_2, ..., B_n)$

Sometimes, in a graph G with a neighborhood sequence $(B_1, B_2, ..., B_n)$, Aut(G) and $Aut(B_1, B_2, ..., B_n)$ are different. Let $[n] = \{1, 2, ..., n\}$ and Q_n be the *n*-cube. Q_n is a graph with its vertex set being the power set of [n] and AB being an edge of Q_n if and only if the symmetric difference of A and B having only one element.

Proposition 21. Let n be an integer with $n \ge 2$ and $(B_1, B_2, ..., B_m)$ be the neighborhood sequence of Q_n . Then $Aut(Q_n)$ is not equals to $Aut(B_1, B_2, ..., B_m)$.

Proof. Let $S = \{A : A \subseteq [n-1] \text{ and } |A| \text{ is even}\}$ and $S^* = \{A \cup \{n\} : A \in S\}$. Define a permutation f on $V(Q_n)$ by $f(A) = A \cup \{n\}$ for $A \in S$, $f(C) = C - \{n\}$ for $C \in S^*$, and f(D) = D for $D \in V(Q_n) - (S \cup S^*)$. It is easy to see that f is not an automorphism of Q_n . Let A be a subset of [n]. If $A \in S \cup S^*$, then f(B(A)) = B(A). If $A \in V(Q_n) - (S \cup S^*)$ with $n \notin A$, then $f(B(A)) = B(A \cup \{n\})$. These imply that $(f(B_1), f(B_2), ..., f(B_m))$ is a permutation of $(B_1, B_2, ..., B_m)$; that is, $f \in Aut(B_1, B_2, ..., B_m)$.

Proposition 22. Let f be the permutation in the proof of Proposition 21. Then $Aut(B_1, B_2, ..., B_m)$ is generated by $Aut(Q_n) \cup \{f\}$.

Proof. Let $p \in Aut(B_1, B_2, ..., B_m)$. If p(B(x)) = B(y) with p(x) = y, then we have that $N(x) = \{x_1, x_2, ..., x_n\}$ and $N(y) = \{y_1, y_2, ..., y_n\}$ such that $p(x_i) = y_i$ for all *i*. Since every pair of adjacent vertices are contained in exactly two B_i s', $p(B(x_i)) = B(y_i)$ for i = 1, 2, ..., n. By the similar arguments, we have that p(B(u)) = B(p(u)) for all $u \in V(Q_n)$. This implies that $p \in Aut(Q_n)$.

If p(B(x)) = B(y) with p(x) = w for some $w \in N(y)$, then there exists a vertex $z \in N(x)$ such that p(z) = y. Let a, b be different elements in [n], and f_a and g_{ab} be permutations of $V(Q_n)$ with $f_a(A) = A - \{a\}$ for $a \in A$, $f_a(B) = B \cup \{a\}$ for $a \notin B$, $g_{ab}(A) = (A - \{a\}) \cup \{b\}$ for $a \in A$ and $b \notin A$, $g_{ab}(B) = (B - a)$ $\{b\}) \cup \{a\}$ for $a \notin B$ and $b \in B$, and $g_{ab}(C) = C$ for $a, b \in C$ or $a, b \notin C$. It is easy to see that f_a and g_{ab} are in $Aut(B_1, B_2, ..., B_m)$. Since the composition of two automorphisms in $Aut(B_1, B_2, ..., B_m)$, f_a , and g_{ab} are in $Aut(B_1, B_2, ..., B_m)$, without loss of generality, we can assume that x and y are empty sets, and z and w are $\{n\}$. Since p(B(x)) = B(y), let $N(x) = \{z_1, z_2, ..., z_n = z\}$ and $N(y) = \{z_1, z_2, ..., z_n = z\}$ $\{w_1, w_2, ..., w_n = w\}$ with $p(z_i) = w_i$ for i = 1, 2, ..., n - 1. Since every pair of adjacent vertices are contained in exactly two B_i s', p(B(z)) = B(w). We observe that $N(z) \cap N(z_i) = \{x, z'_i\}$ and $N(w) \cap N(w_i) = \{y, w'_i\}$ for i = 1, 2, ..., n - 11. Since $p(z_i) = w_i$ for i = 1, 2, ..., n - 1, we have that $p(B(z_i)) = B(w'_i)$ and $p(B(z'_i)) = B(w_i)$ for i = 1, 2, ..., n-1. By $B(z_i) \cap B(z) = \{x, z'_i\}, p(B(z_i)) \cap B(z) = \{y, z'_i\}, p(B(z_i)) \cap B(z) = \{y, z'_i\}, p(B(z_i)) \in B(z_i)\}$ $p(B(z)) = \{p(x), p(z'_i)\}$. Then $\{w, w'_i\} = \{w, p(z'_i)\}$. Thus we have that $p(z'_i) = w'_i$ for i = 1, 2, ..., n - 1. Let $N(z_j) = \{u_1, u_2, ..., u_{n-1} = x, u_n = z'_j\}$ and $N(z'_j) = \{u_1, u_2, ..., u_{n-1} = x, u_n = z'_j\}$ $\{v_1, v_2, ..., v_{n-1} = z, v_n = z_j\}$ with $u_t v_t \in E(Q_n)$ for all t. Since $p(B(z_j)) = (v_1, v_2, ..., v_{n-1} = z, v_n = z_j)$ $B(w'_j)$ and $p(B(z'_j)) = B(w_j)$, let $N(w_j) = \{r_1, r_2, ..., r_{n-1} = y, u_n = w'_j\}$ and $N(w'_{j}) = \{s_{1}, s_{2}, ..., s_{n-1} = w, v_{n} = w_{j}\}$ with $r_{t}s_{t} \in E(Q_{n})$ for all t and $p(u_{i}) = s_{i}$ for i = 1, 2, ..., n - 1. Since $p(v_i) \in \{r_1, r_2, ..., r_{n-2}\}$ and $s_i \in p(B(v_i)), p(v_i) =$ r_i for i = 1, 2, ..., n-2. By the similar discussion, we have that p = f where f is the permutation in the proof of Proposition 21. Therefore, every element of $Aut(B_1, B_2, ..., B_m)$ can be generated by $Aut(Q_n) \cup \{f\}$.

Let K_{2n}^m be a graph obtained from the complete graph K_{2n} deleting a perfect matching.

Proposition 23. For each positive integer $n \ge 2$, $Aut(K_{2n}^m)$ is not equals to $Aut(B_1, B_2, ..., B_{2n})$ where $(B_1, B_2, ..., B_{2n})$ is a neighborhood sequence of K_{2n}^m .

Proof. Let $V(K_{2n}^m)$ be $\{1, 2, ..., 2n\}$ and $i(i + 1) \notin E(K_{2n}^m)$ for all odd number i. Since $B_1, B_2, ..., B_{2n}$ is all (2n - 1)-subsets of $\{1, 2, ..., 2n\}$, every permutation of $\{1, 2, ..., 2n\}$ is in $Aut(B_1, B_2, ..., B_{2n})$; that is, $Aut(B_1, B_2, ..., B_{2n})$ is isomorphic to the symmetric group S_{2n} . But, let p be a permutation on $\{1, 2, ..., 2n\}$ with p(1) = 3, p(3) = 1, and p(x) = x for $x \in \{2, 4, 5, ..., 2n\}$, it is not an automorphism of K_{2n}^m .

Remark. By the definitions of Proposition 23, $Aut(B_1, B_2, ..., B_{2n}) = S_{2n}$ is the symmetric group of order 2n and $Aut(K_{2n}^m) = \{p \in S_{2n} : p(\{i, i+1\}) = \{j, j+1\}$ for all odd integer $i\}$.

The following proposition shows that there are two non-isomorphic graph G and H with the same neighborhood sequence $(B_1, B_2, ..., B_n)$, but $Aut(G) = Aut(B_1, B_2, ..., B_n)$ is not group isomorphic to Aut(H).

Proposition 24. Let G be the graph with a vertex set $\{1, 2, ..., 2n\}$ and an edge set $\{i(i+n) : i = 1, 2, ..., n\} \cup \{ij : \{i, j\} \subseteq \{1, 2, ..., n\} \text{ or } \{i, j\} \subseteq \{n+1, n+2, ..., 2n\}\}$ and $H = K_{n,n}$ with two partite sets $\{1, 2, ..., n\}$ and $\{n + 1, n + 2, ..., 2n\}$. Then

- (1) G and H have the same neighborhood sequence $(B_1, B_2, ..., B_{2n})$,
- (2) Aut(G) is not group isomorphic to Aut(H), and
- (3) $Aut(H) = Aut(B_1, B_2, ..., B_{2n}).$

Proof. Let $B_i = \{i, n+1, n+2, ..., 2n\}$ for i = 1, 2, ..., n and $B_j = \{j, 1, 2, ..., n\}$ for j = n + 1, n + 2, ..., 2n. Then it is easy to check that $(B_1, B_2, ..., B_{2n})$ is a neighborhood sequence of G and H.

We have that f is an automorphism of G if and only if $\{f(1), f(2), ..., f(n)\}$ is either $\{1, 2, ..., n\}$ or $\{n + 1, n + 2, ..., 2n\}$. Let g be a permutation on $\{1, 2, ..., 2n\}$ with p(1) = 2, p(2) = 1, and p(x) = x for $x \notin \{1, 2\}$. Then $p \in Aut(H)$, but $p \notin Aut(G)$. (In fact, Aut(G) is a proper subgroup of Aut(H).)

It is trivial that $Aut(H) \subseteq Aut(B_1, B_2, ..., B_{2n})$. Take $f \in Aut(B_1, B_2, ..., B_{2n})$.

- (a) Assume that f(i) = j for some $i, j \in \{1, 2, ..., n\}$. If $f(\{n + 1, ..., 2n\}) = \{n+1, ..., 2n\}$, then $f(\{1, ..., n\}) = \{1, ..., n\}$; that is, $f \in Aut(H)$. If f(x) = y for some $x \in \{n + 1, n + 2, ..., 2n\}$ and $y \in \{1, 2, ..., n\}$, then $f(B_i) = B_t$ for some $t \in \{n + 1, ..., 2n\}$. This implies that there is a $u \in \{n + 1, ..., 2n\} \{x\}$ and $v \in \{1, ..., n\} \{y\}$ such that, f(u) = v. Then we have that, for each $a \in \{1, ..., n\}$, there exists $b \in \{n + 1, ..., 2n\}$ such that $f(B_a) = B_b$. Since $f(B_i) = B_t$ and f(i) = j, there exists $w \in \{n + 1, ..., 2n\}$ such that f(w) = t. By above, we conclude that $f(B_c) = B_t$ for all $c \in \{1, 2, ..., n\}$, a contradiction.
- (b) Assume that f(i) = j for some $i \in \{1, 2, ..., n\}$ and $j \in \{n + 1, n + 2, ..., 2n\}$. If $f(\{n + 1, ..., 2n\}) = \{1, ..., n\}$, then $f(\{1, ..., n\}) = \{n + 1, ..., 2n\}$; that

is, $f \in Aut(H)$. If f(x) = y for some $x \in \{n + 1, n + 2, ..., 2n\}$ and $y \in \{n + 1, n + 2, ..., 2n\}$, then $f(B_i) = B_t$ for some $t \in \{1, ..., n\}$. This implies that there is a $u \in \{n + 1, ..., 2n\} - \{x\}$ and $v \in \{n + 1, ..., 2n\} - \{y\}$ such that, f(u) = v. Then we have that, for each $a \in \{1, ..., n\}$, there exists $b \in \{1, ..., n\}$ such that $f(B_a) = B_b$. Since $f(B_i) = B_t$ and f(i) = j, there exists $w \in \{n + 1, ..., 2n\}$ such that f(w) = t. By above, we conclude that $f(B_c) = B_t$ for all $c \in \{1, 2, ..., n\}$, it is also a contradiction. Therefore, every automorphism in $Aut(B_1, B_2, ..., B_{2n})$ must be an automorphism of G. Hence $Aut(H) = Aut(B_1, B_2, ..., B_{2n})$.

Remark. In the proposition 24, $Aut(G) = \{p : p \text{ is a permutation of } \{1, 2, ..., 2n\}$ and $p(\{1, 2, ..., n\})$ is either $\{1, 2, ..., n\}$ or $\{n + 1, n + 2, ..., 2n\}$ and $Aut(H) = \{p \in Aut(G) : p(\{i, n + i\}) = \{j, j + n\}$ for $i = 1, 2, ..., n\}$.

ACKNOWLEDGMENTS

The author thanks the referee for many valuable and constructive suggestions.

References

- 1. D.-B. Chang and L.-D. Tong, Choice identification of a graph, *Discrete Applied Mathematics*, accepted 2013.
- 2. R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, *Compositio Mathematica* (in German), **6** (1939), 239-250.
- 3. S. Gravier, J. Moncel and A. Semri, Identifying codes of cycles, *European J. of Combin.*, **27** (2006), 767-776.
- 4. M. G. Karpovsky, K. Chakrabarty and L. B. Levitin, On a new class of codes for identifying vertices in graphs, *IEEE Transactions on Information Theory*, **44(2)** (1998), 599-611.
- 5. M. G. Karpovsky, K. Chakrabarty, L. B. Levitin and D. R. Avreky, On the covering of vertices for fault diagnosis in hypercubes, *Inform. Process. Lett.*, **69** (1999), 99-103.
- A. Raspaud and L.-D. Tong, Minimum identifying code graphs, *Discrete Applied Mathematics*, 160(9) (2012), 1385-1389.
- 7. M. Xu, K. Thulasiramanb and X. Hu, Identifying codes of cycles with odd orders, *European J. of Combin.*, **29** (2008), 1717-1720.

Li-Da Tong Department of Applied Mathematics National Sun Yat-sen University Kaohsiung 804 Taiwan E-mail: ldtong@math.nsysu.edu.tw