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GENERALIZED DERIVATIONS WITH ANNIHILATOR CONDITIONS
IN PRIME RINGS

Basudeb Dhara*, Vincenzo De Filippis and Krishna Gopal Pradhan

Abstract. Let R be a noncommutative prime ring with its Utumi ring of quotients
U , C = Z(U) the extended centroid of R, F a generalized derivation of R
and I a nonzero ideal of R. Suppose that there exists 0 �= a ∈ R such that
a(F ([x, y])n − [x, y]) = 0 for all x, y ∈ I, where n ≥ 2 is a fixed integer. Then
one of the following holds:

1. char (R) �= 2, R ⊆ M2(C), F (x) = bx for all x ∈ R with a(b − 1) = 0
(In this case n is an odd integer);

2. char (R) = 2, R ⊆ M2(C) and F (x) = bx + [c, x] for all x ∈ R with
a(bn − 1) = 0.

1. INTRODUCTION

Let R be an associative prime ring with center Z(R). Let U be the Utumi quotient
ring of R. Then C = Z(U) is called the extended centroid of R. Recall that a ring R

is prime, if for any a, b ∈ R, aRb = 0 implies either a = 0 or b = 0. For x, y ∈ R, the
commutator of x, y is denoted by [x, y] and defined by [x, y] = xy−yx. By a derivation
of R, we mean an additive mapping d : R → R such that d(xy) = d(x)y + xd(y)
holds for all x, y ∈ R. An additive mapping F : R → R is called a generalized
derivation, if there exists a derivation d of R such that F (xy) = F (x)y + xd(y) holds
for all x, y ∈ R. Basic examples for generalized derivation are the mappings of the
type x → ax + xb for some a, b ∈ R, which are called inner generalized derivations.

In [4], Daif and Bell proved that in a semiprime ring R if d([x, y])± [x, y] = 0
holds for all x, y ∈ K, where d is a derivation of R and K is a nonzero ideal of R,
then K ⊆ Z(R).
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After that in [16], Quadri et al. studied the situation replacing derivations d by
generalized derivations F . They proved that a prime ring R will be commutative if
F ([x, y]) ± [x, y] = 0 holds for x, y ∈ I , where I is a nonzero ideal of R and F is
generalized derivation of R.

More recently in [5], De Filippis and Huang investigated the situation F ([x, y])n =
[x, y] for all x, y ∈ I , where n ≥ 1 is a fixed integer. They proved the following:

Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer.
If R admits a generalized derivation F associated with a derivation d such
that F ([x, y])n = [x, y] for all x, y ∈ I , then either R is commutative or
n = 1, d = 0 and F is the identity map on R.

In the present paper, we consider the situation taking annihilating condition that is
a(F ([x, y])n − [x, y]) = 0 for all x, y ∈ I , where n ≥ 1 is a fixed integer.

For n = 1, above situation becomes aG([x, y]) = 0 for all x, y ∈ R, where
G(x) = F (x) − x for all x ∈ R is a generalized derivation of R. Then by [6], we
conclude that G(x) = qx for some q ∈ U with aq = 0, that is F (x) = (q + 1)x for
all x ∈ R, with aq = 0.

Therefore, we study the above situation when n ≥ 2.

2. MAIN RESULTS

First we fix a remark.

Remark. Let R be a prime ring and U be the Utumi quotient ring of R and
C = Z(U), the center of U (see [2] for more details). It is well known that any
derivation of R can be uniquely extended to a derivation of U . In [13, Theorem 3],
T.K. Lee proved that every generalized derivation g on a dense right ideal of R can
be uniquely extended to a generalized derivation of U . Furthermore, the extended
generalized derivation g has the form g(x) = ax + d(x) for all x ∈ U , where a ∈ U
and d is a derivation of U .

Lemma 2.1. Let R = M2(K) be the set of all 2 × 2 matrices over a field K and
a, b, p ∈ R. If p �= 0 such that p((a[x, y] + [x, y]b)n − [x, y]) = 0 for all x, y ∈ R,
where n ≥ 2 a fixed integer, then one of the following holds:

(1) char (R) �= 2, b ∈ Z(R) and p(a + b − 1) = 0 (In this case n is odd integer);
(2) char (R) = 2 and p((a + b)n − 1) = 0.

Proof. By hypothesis, we have

p((a[x, y] + [x, y]b)n − [x, y]) = 0(1)

for all x, y ∈ R.
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Case-I: Let char (R) = 2.

In this case assuming x = e12, y = e21, we have 0 = p((a[x, y] + [x, y]b)n −
[x, y]) = p((aI2 + I2b)n − I2) = p((a + b)n − 1).

Case-II: Let char (R) �= 2.

If n is even integer, replacing y with −y in (1) and then subtracting from (1), we
have 2p[x, y] = 0, that is p[x, y] = 0 for all x, y ∈ R. Now assuming x = e12 and
y = e22, we have 0 = pe12 which implies p11 = p21 = 0. Similarly, assuming x = e21

and y = e11, we can prove that p22 = p12 = 0, that is p = 0, contradiction. Hence n

must be odd integer.
We may assume p is not invertible, since if p is invertible, by (1) we get

(a[x, y] + [x, y]b)n = [x, y]

for all x, y ∈ R. Then a contradiction follows by [5, Theorem 1]. Note that

Rp((a[x, y] + [x, y]b)n − [x, y]) = 0

for all x, y ∈ R. Since R is von Neumann regular, there exists an idempotent element
e ∈ R such that Rp = Re. Hence we may assume that p is an idempotent element of R.
As p is not invertible, Rp is a proper left ideal of R. Since any two proper left ideals are
conjugate, there exists an invertible element t ∈ R such that Re11 = tRpt−1 = Rtpt−1,
and so replacing p by tpt−1, a by tat−1 and b by tbt−1, our identity becomes

e11((a′[x, y] + [x, y]b′)n − [x, y]) = 0(2)

for all x, y ∈ R, where a′ = tat−1 and b′ = tbt−1. Write b′ =
2∑

i,j=1
b′ijeij . Let [x, y] =

e12 in (2) and multiply right by e12. Then we get 0 = e11((a′e12 +e12b
′)n−e12)e12 =

e11(e12b
′)ne12 = b

′n
21e12. Thus b′21 = 0. Let ϕ and χ be two inner automorphism

defined by ϕ(x) = (1+e21)x(1−e21) and χ(x) = (1−e21)x(1+e21). Then we have

ϕ(e11)((ϕ(a′)[x, y] + [x, y]ϕ(b′))n − [x, y]) = 0(3)

for all x, y ∈ R and

χ(e11)((χ(a′)[x, y] + [x, y]χ(b′))n − [x, y]) = 0(4)

for all x, y ∈ R. Notice that ϕ(e11) = e11 + e21 and χ(e11) = e11 − e21. Hence left
multiplying in the relations (3) and (4) by e11, we get

e11((ϕ(a′)[x, y] + [x, y]ϕ(b′))n − [x, y]) = 0(5)
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for all x, y ∈ R and

e11((χ(a′)[x, y] + [x, y]χ(b′))n − [x, y]) = 0(6)

for all x, y ∈ R.
Then, by the same argument as above, we have ϕ(b′)21 = 0 = χ(b′)21. This gives

b′11 − b′22 − b′12 = 0 and −b′11 + b′22 − b′12 = 0. Both of these imply b′12 = 0 and
b′11 = b′22, that is b′ = tbt−1 is central. Hence b must be central. Therefore, (1)
reduces to

p((c[x, y])n − [x, y]) = 0(7)

for all x, y ∈ R, where c = a + b. Moreover, R is a dense ring of K-linear transfor-
mations over a vector space K2.

Assume there exists v �= 0, such that {v, cv} is linear K-independent. By the
density of R, there exist r1, r2 ∈ R such that

r1v = 0; r1(cv) = v; r2v = −v; r2cv = 0.

Hence
[r1, r2]v = 0; [r1, r2]cv = v;

(
c[r1, r2]

)n

cv = cv.

Thus we have
0 = {p((c[r1, r2])n − [r1, r2])c}v = p(c− 1)v.

Of course for any u ∈ V , {u, v} linearly K-dependent implies p(c − 1)u = 0. If
p(c − 1) = 0, conclusion is obtained. Suppose p(c − 1) �= 0. Then there exists
w ∈ V such that p(c − 1)w �= 0 and so {w, v} are linearly K-independent. Also
p(c−1)(w +v) = p(c−1)w �= 0 and p(c−1)(w−v) = p(c−1)w �= 0. By the above
argument, it follows that w and cw are linearly K-dependent, as are {w+ v, c(w+ v)}
and {w − v, c(w − v)}. Therefore there exist αw, αw+v, αw−v ∈ K such that

cw = αww, c(w + v) = αw+v(w + v), c(w − v) = αw−v(w − v).

In other words we have

(8) αww + cv = αw+vw + αw+vv

and

(9) αww − cv = αw−vw − αw−vv.

By comparing (8) with (9) we get both

(10) (2αw − αw+v − αw−v)w + (αw−v − αw+v)v = 0
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and

(11) 2cv = (αw+v − αw−v)w + (αw+v + αw−v)v.

By (10), and since {w, v} are K-independent and char(K) �= 2, we have αw =
αw+v = αw−v . Thus by (11) it follows 2cv = 2αwv. This leads a contradiction with
the fact that {v, cv} is linear K-independent.

In light of this, we may assume that for any v ∈ V there exists a suitable αv ∈ K
such that cv = αvv, and standard argument shows that there is α ∈ K such that
cv = αv for all v ∈ V . Hence (c − α)V = 0. Therefore, c = α ∈ Z(R).

Thus our identity (7) reduces to

p(cn[x, y]n − [x, y]) = 0(12)

for all x, y ∈ R. Now assuming x = e12 and y = e22, we have 0 = pe12 which
implies p11 = p21 = 0. Similarly assuming x = e21 and y = e11, we can prove that
p22 = p12 = 0, that is p = 0, contradiction.

Lemma 2.2. Let R be a prime ring with extended centroid C and a, b, p ∈ R. If
p �= 0 such that p((a[x, y] + [x, y]b)n − [x, y]) = 0 for all x, y ∈ R, where n ≥ 2 a
fixed integer, then R satisfies a nontrivial generalized polynomial identity (GPI).

Proof. Assume that R does not satisfy any nontrivial GPI. Let T = U ∗C C{X, Y },
the free product of U and C{X, Y }, the free C-algebra in noncommuting indetermi-
nates X and Y . If R is commutative, then R satisfies trivially a nontrivial GPI, a
contradiction. So, R must be noncommutative.

Then, since p((a[x, y] + [x, y]b)n − [x, y]) = 0 is a GPI for R, we see that

p((a[X, Y ] + [X, Y ]b)n − [X, Y ]) = 0(13)

in T = U ∗C C{X, Y }. If b /∈ C, then b and 1 are linearly independent over C. Thus,
(13) implies

p(a[X, Y ] + [X, Y ]b)n−1([X, Y ]b) = 0(14)

in T and then by the same argument, p([X, Y ]b)n = 0 in T , implying b = 0, since
p �= 0, a contradiction. Therefore, we conclude that b ∈ C and hence (13) reduces to

p(((a + b)[X, Y ])n − [X, Y ]) = 0(15)

that is

p(((a + b)[X, Y ])n−1(a + b) − 1)[X, Y ] = 0(16)
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in T . If a + b /∈ C, then (16) reduces to

p((a + b)[X, Y ])n−1(a + b)[X, Y ] = 0(17)

that is p((a + b)[X, Y ])n = 0 in T . Since n ≥ 2, this implies that a + b = 0, a
contradiction. Hence we have a + b ∈ C. Thus the identity (13) becomes that

p((a + b)n[X, Y ]n − [X, Y ]) = 0(18)

in T . Since p �= 0, we have that (a+ b)n[X, Y ]n − [X, Y ] = 0 in T that is R satisfies
a nontrivial GPI, a contradiction.

Lemma 2.3. Let R be a prime ring with extended centroid C and a, b, p ∈ R.
Suppose that p �= 0 such that p((a[x, y] + [x, y]b)n − [x, y]) = 0 for all x, y ∈ R,
where n ≥ 2 is a fixed integer. Then one of the following holds:

(1) R is commutative;
(2) char (R) �= 2, R ⊆ M2(C), b ∈ Z(R) with p(a + b − 1) = 0 (In this case n is

odd integer);
(3) char (R) = 2, R ⊆ M2(C) and p((a + b)n − 1) = 0.

Proof. We have that R satisfies generalized polynomial identity

f(x, y) = p((a[x, y] + [x, y]b)n − [x, y]) = 0.(19)

By Lemma 2.2, we obtain that R satisfies a nontrivial GPI. Since R and U satisfy
the same generalized polynomial identities (see [3]), U satisfies f(x, y). In case C
is infinite, we have f(x1, x2) = 0 for all x, y ∈ U ⊗C C , where C is the algebraic
closure of C. Moreover, both U and U ⊗C C are prime and centrally closed algebras
[8]. Hence, replacing R by U or U ⊗C C according to C finite or infinite, without loss
of generality we may assume that C = Z(R) and R is a centrally closed C-algebra.
By Martindale’s theorem [15], R is then a primitive ring having nonzero socle soc(R)
with C as the associated division ring. Hence, by Jacobson’s theorem [11, p.75], R is
isomorphic to a dense ring of linear transformations of a vector space V over C. If
dimCV = 1, then R is commutative, as desired. If dimCV = 2, then R ⊆ M2(C).
This case gives conclusion (2) and (3) by Lemma 2.1. Thus we consider the case
dimCV ≥ 3, and we show that this leads a number of contradictions.

Suppose that there exists some v ∈ V such that v and bv are linearly C-independent.
Since dimCV ≥ 3, we choose another w′ ∈ V such that {v, bv, w′} is a linearly C-
independent set of vectors. By density, there exist x, y ∈ R such that

xv = 0, xbv = v, xw′ = (b − a)v, yv = bv, ybv = w′, yw′ = 0.

Then 0 = p((a[x, y] + [x, y]b)n − [x, y])v = −pv.
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This implies that if pv �= 0, then by contradiction we may conclude that v and
bv are linearly C-dependent. Now choose v ∈ V such that v and bv are linearly C-
independent. Set W = SpanC{v, bv}. Then pv = 0. Since p �= 0, there exists w ∈ V

such that pw �= 0 and then p(v − w) = −pw �= 0. By the previous argument we
have that w, bw are linearly C-dependent and (v − w), b(v − w) too. Thus there exist
α, β ∈ C such that bw = αw and b(v−w) = β(v−w). Then bv = β(v−w)+ bw =
β(v − w) + αw i.e., (α − β)w = bv − βv ∈ W . Now α = β implies that bv = βv,
a contradiction. Hence α �= β and so w ∈ W . Again, if u ∈ V with pu = 0 then
p(w + u) �= 0. So, w + u ∈ W forcing u ∈ W . Thus it is observed that w ∈ V with
pw �= 0 implies w ∈ W and u ∈ V with pu = 0 implies u ∈ W . This implies that
V = W i.e., dimCV = 2, a contradiction.

Hence, in any case, v and bv are linearly C-dependent for all v ∈ V . Then by
standard arguments, it follows that b ∈ C.

Therefore, from (19) we have that R satisfies generalized polynomial identity

f(x1, x2) = p((a′[x, y])n − [x, y]),(20)

where a′ = a + b. Now if v and a′v are linearly C-independent for some v ∈ V , then
there exists w ∈ V such that {v, a′v, w} forms a set of linearly C-independent set of
vectors, since dimCV ≥ 3. Then again by density, there exist x, y ∈ R such that

xv = 0, xa′v = v, xw = a′v; yv = a′v, ya′v = w, yw = 0.

In this case we get 0 = p((a′[x, y])n − [x, y])v = −pv. Since p �= 0, by the same
argument as above, this leads a contradiction. Hence, by above argument we conclude
a′ ∈ C. Therefore, the identity (20) reduces to

p(a′n[x, y]n − [x, y]) = 0(21)

for all x, y ∈ R.
Now let dimCV = k. Then k ≥ 3 and R ∼= Mk(C). Replacing x = eii and

y = eij in (21), we get that −peij = 0. This implies p = 0, a contradiction.

Theorem 2.4. Let R be a noncommutative prime ring with its Utumi ring of
quotients U , C = Z(U) the extended centroid of R, F a generalized derivation of
R and I a nonzero ideal of R. Suppose that there exists 0 �= a ∈ R such that
a(F ([x, y])n − [x, y]) = 0 for all x, y ∈ I , where n ≥ 2 is a fixed integer. Then one
of the following holds:

(1) char (R) �= 2, R ⊆ M2(C), F (x) = bx for all x ∈ R with a(b−1) = 0 (In this
case n is an odd integer);

(2) char (R) = 2, R ⊆ M2(C) and F (x) = bx + [c, x] for all x ∈ R with
a(bn − 1) = 0.
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Proof. By our assumption we have,

a(F ([x, y])n − [x, y]) = 0

for all x, y ∈ I .
Since I , R and U satisfy the same generalized polynomial identities (see [3]) as

well as the same differential identities (see [14]), they also satisfy the same generalized
differential identities by Remark. Hence,

a(F ([x, y])n − [x, y]) = 0

for all x, y ∈ U , where F (x) = bx + d(x), for some b ∈ U and derivations d of U .
Hence, U satisfies

a((b[x, y] + d([x, y]))n − [x, y]) = 0.(22)

Now we divide the proof into two cases:
Let d(x) = [c, x] for all x ∈ U i.e., d is an inner derivation of U . Then from (22),

we obtain that U satisfies

a(((b + c)[x, y]− [x, y]c)n − [x, y]) = 0.(23)

By Lemma 2.3, since a �= 0 and R is noncommutative, one of the following holds:
(1) char (R) �= 2, R ⊆ M2(C), c ∈ Z(R) with a(b − 1) = 0. In this case n is odd

integer and F (x) = bx for all x ∈ R.
(2) char (R) = 2, R ⊆ M2(C) and a(bn − 1) = 0. In this case F (x) = bx + [c, x]

for all x ∈ R.

Next assume that d is not an inner derivation of U . Then by Kharchenko’s theorem
[12], we have that U satisfies

a((b[x, y] + [s, y] + [x, t])n − [x, y]) = 0.(24)

In particular, for y = 0, we have that U satisfies

a[x, t]n = 0.(25)

Let w = [x, y]n. Then aw = 0. From (25), we can write a[p, wqa]n = 0 for all
p, q ∈ U . Since aw = 0, it reduces to a(pwqa)n = 0. This can be written as
(wqap)n+1 = 0 for all p, q ∈ R. By Levitzki’s lemma [10, Lemma 1.1], wqa = 0 for
all q ∈ U . Since U is prime and a �= 0, we have w = 0. Thus w = [x, y]n = 0 for all
x, y ∈ U . Then by Herstein [9, Theorem 2], U and so R is commutative, contradicting.

Corollary 2.5. Let R be a prime ring with C the extended centroid of R, d a
derivation of R and I a nonzero ideal of R. Suppose that there exists 0 �= a ∈ R such
that a(d([x, y])n− [x, y]) = 0 for all x, y ∈ I , where n ≥ 1 is a fixed integer. Then R

must be commutative.
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