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STABILITY AND MORREY SPACES RELATED TO MULTIPLIERS

Yueping Zhu, Qixiang Yang* and Pengtao Li*

Abstract. We apply wavelets to study the generalized local Morrey-Campanato
spaces Mφ,p(Rn) and their preduals. As applications, we characterize the mul-
tipliers on Mφ,p(Rn) and the stability of these spaces under the perturbation of
Calderón-Zygmund operators. Our results indicate that there exist someMφ,p(Rn)
without unconditional basis. This fact shows that Mφ,p(Rn) have some different
characteristics unlike the classical Morrey spaces.

1. INTRODUCTION

Morrey spaces Mα,p(Rn) were introduced by Morrey [19] in 1938 when solving
PDE problems. In the last decades, Morrey spaces and their generalization have been
studied extensively and play an important role in the study of harmonic analysis and
PDE. We refer the reader to Lin-Yang [11], Essen-Janson-Peng-Xiao [3], Yang-Yuan
[30, 31, 32], Yuan-Sickel-Yang [35, 36], Xiao [29] and Yang-Zhu [34] for further
information.

A cube Q centered at x and with radius r is defined as

Q =
{
y ∈ Rn : |yi − xi| < r

2
, i = 1, · · · , n

}
.

Denote by fQ the mean value of f on Q:

fQ = |Q|−1

∫
Q
f(x)dx.

The generalized local Morrey-Campanato spaces Mφ,p(Rn) are defined as follows.
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Definition 1.1. For 1 ≤ p <∞, we say f ∈Mφ,p(Rn) if

(1.1) sup
y∈Rn,r≤ 1

2

(
1

rnφp(r)

∫
Q(y,r)

|f(x)−fQ(y,r)|pdx
) 1

p

+ sup
y∈Rn, 1

2
≤r≤1

|fQ(y,r)|<∞.

Remark 1.2. The spaces Mφ,p(Rn) are generalizations of many classical function
spaces.

(i) When φ(r) = r−α, 0 ≤ α < n
p , Mφ,p(Rn) = Mα,p(Rn), the local Morrey-

Campanato spaces.
(ii) For 1 ≤ p < ∞, M0,p(Rn) = bmo(Rn), the space of functions with local

bounded mean oscillations.

Our aim is to characterize Mφ,p(Rn) and its predual via the orthogonal regular
wavelet basis. Wavelet characterizations of classical Morrey spaces are studied by
many authors. See Rosenthal [21], Sawano [22] and Yuan-Sickel-Yang [36] for details.
Liang et al. [10] considered the generalized Morrey spaces associated with increasing
functions φ satisfying ∫ ∞

r

1
φ(t)

dt

t
� 1
φ(r)

, r > 0.

In this paper, we assume that the function φ satisfies the following conditions. Let
φ be a function defined on the interval (0, 1] and satisfy the following conditions.

(1) Suppose that

(1.2) 0 < φ(x) <∞, x ∈ (0, 1].

(2) There exists a positive constant C0 such that

(1.3) sup
1≤s≤2

φ(sr) ≤ C0φ(r), 0 < r ≤ 1
2
.

(3) For s ∈ N,

(1.4)
∑

1≤j≤s
2jφ(2−j) ≤ C2sφ(2−s).

Let f =
∑

(ε,j,k)∈Λn

fεj,kΦ
ε
j,k and φ satisfy (1.2), (1.3) and (1.4). In Theorem 3.1, we

prove that f ∈Mφ,p(Rn) if and only if for any dyadic cube Q with volume |Q| ≤ 1,

(1.5) |Q|− 1
pφ−1(|Q| 1

n )
∥∥∥( ∑

(ε,j,k):Qj,k⊂Q
2jn|f εj,k|2χ(2jx− k)

) 1
2
∥∥∥
Lp

≤ Cf <∞.
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Remark 1.3. Let k +Q denote the cube{
(x1, · · · , xn) : ki ≤ xi < 1 + ki, ki ∈ Z, i = 1, · · · , n

}
.

If rnφp(r) ≥ C > 0, r ∈ (0, 1], then Mφ,p = {f : supk ‖f‖Lp(k+Q) < ∞}. If
lim
r→0

r−1φ(r) = 0, then Mφ,p(Rn) consists of all constants. Hence, in this paper, we
always assume that there exist two positive constants C1 and C2 such that C1r ≤
φ(r) ≤ C2r

−n
p .

In Section 3.2, we study the predual of Mφ,p(Rn). Fefferman [4] proved that the
predual of BMO(Rn) is the Hardy space H1(Rn). Kalita [8] used a group of Borel
measures to characterize the predual of Mα,2(Rn). We introduce two classes of Hardy
spaces Hφ,p(Rn) and Hφ,p

w (Rn). For 1 < p < ∞, we prove that Hφ,p(Rn) and
Hφ,p
w (Rn) are equivalent. In Theorem 3.8, we obtain the following duality relations.{

(Hφ,∞(Rn))′ = Mφ,1(Rn);

(Hφ,p(Rn))′ = Mφ,p′(Rn), 1 < p <∞.

In Section 4, we devote to the applications of the results obtained above. The first
one is the multipliers on Mφ,p(Rn). The multiplier spaces are defined as follows.

Definition 1.4. For two spaces X and Y , f ∈ M(X, Y ) means sup
‖g‖X≤1

‖fg‖Y <

∞. Specially, we write M(X,X) as M(X).

Multiplier spaces were introduced in 1950s and studied extensively since then. See
Maz’ya-Shaposhnikova [12, 13] for details. Janson [6] and Stegenga [23] studied the
multipliers on Mφ,1(Rn) and the predual Hφ,∞(Rn). They obtained

Proposition 1.5. ([6, Theorem 2]). Let φ(r)r−1 be ‘almost decreasing’ in the
sense that

(1.6) φ(ρ)ρ−1 ≤ Cφ(r)r−1, ρ ≥ r.

Then M(Mφ,1(Rn)) = Mψ,1(Rn)
⋂
L∞(Rn), where ψ(r) = φ(r)/(

∫ 1
r φ(t)t−1dt).

For any f ∈Mφ,1(Rn), Janson [6] constructed a special function h to characterize
M(Mφ,1(Rn)). In this paper, we apply a different method to study the multipliers on
Mφ,p(Rn), p > 1. Define

ψ(r) =
φ(r){ 1+[| log2 r|]∑

j=1
φ(2−j)

} .
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Let f ∈ Mψ,1(Rn) and a be a wavelet atom of Hφ,p(Rn). We use multi-resolution
analysis to decompose the product of f · a as

f(x)a(x) = I(x) + II(x) + III(x) + IV (x) + V (x) + V I(x) + V II(x).

Thus, the estimates of fa can be converted to the computations of the wavelet coeffi-
cients {fεj,k} and {aεj,k}. By Theorem 3.5, we obtain a characterization ofM(Hφ,p(Rn)),
1 < p ≤ ∞. See Section 4.1. The characterization of M(Mφ,p(Rn)), 1 ≤ p <∞, can
be deduced from Theorem 4.4 and the duality between Hφ,p(Rn) and Mφ,p′(Rn). See
Theorem 4.8.

Remark 1.6.
(i) For Mφ,1(Rn), we only assume that φ satisfies (1.2) and (1.3). Hence the function

φ used here is more general than that in (1.6). Our result is slightly stronger than
that of [6].

(ii) One usual tool to characterize M(X, Y ) is the capacity on arbitrary compact
set. Sometimes, it is difficult to compute the capacity on arbitrary compact set.
Recently, wavelets have been used to characterize the multipliers on Sobolev
spaces. We refer the reader to Yang-Zhu [34] for details.

The second application is the stability under the action of Calderón- Zygmund
operator. The stability of function spaces under the perturbation of operators plays
an important role in many problems. See Maz’ya-Verbitsky [14] and Alvarez [1]. In
Sections 4.2 and 4.3, under the perturbation of T , we discuss the stability of Mφ,p(Rn),
M(Hφ,p) and M(Mφ,p), respectively. Unlike the case of Mα,p(Rn), Theorems 4.6 and
4.9 imply that Mφ,1(Rn) and M(Mφ,p) may be unstable.

Remark 1.7. It is well-known that BMO space can be characterized via Carleson
measure. See Stein [24]. The Carleson measure characterization of Mα,2(Rn) was
obtained by Essen-Janson-Peng-Xiao [3]. For the spaces Mφ,p(Rn), we could introduce
a class of Carleson measures related to the function φ. By a similar method, we could
characterize Mφ,p(Rn) via Carleson measure related to the function φ. We will discuss
this problem in another paper.

The rest of this paper is organized as follows. In Section 2, we state some prelim-
inary notations and lemmas which will be used in the sequel. In Section 3, we give a
wavelet characterization of Mφ,p(Rn) and obtain the predual of Mφ,p(Rn). In Section
3.2, we consider the multipliers and stabilities of Mφ,p(Rn) and Hφ,p(Rn). Section 4
is devoted to the stability of M(Hφ,p), Mφ,p(Rn) and M(Mφ,p), respectively.

2. WAVELETS, FUNCTIONS AND OPERATORS

We state some notations related to wavelets. The wavelets used in this paper are
tensorial wavelets and real valued. Let En = {0, 1}n and Ėn = {0, 1}n\{0}. For
ε = 0 (respectively, ε ∈ Ėn), let
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(2.1) Φε ∈ Cm0 ([−2M , 2M ]n)

be Daubechies’ scale function (respectively, wavelet), cf [15]. We suppose that
Daubechies wavelets are sufficient smooth and have sufficient vanishing moments to
adapt our needs.

For j ∈ Z, k = (k1, k2, · · · , kn) ∈ Zn and ε ∈ En, we write⎧⎪⎪⎨
⎪⎪⎩
Q = Qj,k =

n∏
s=1

[2−jks, 2−j(ks + 1)],

Φε
Q(x) = Φε

j,k(x) = 2
jn
2 Φε(2jx− k).

For any function f and (ε, j, k) ∈ En×Z×Zn , we define f εj,k = 〈f,Φε
j,k〉. For j ≥ 0,

let ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Pjf(x) =

∑
k∈Zn

f0
j,kΦ

0
j,k(x),

Qjf(x) =
∑

ε∈Ėn,k∈Zn

f εj,kΦ
ε
j,k(x).

In the sequel, we always write
{

Ω ={Qj,k, j ∈ N, k ∈ Zn},
Λn ={(ε, j, k), ε ∈ En, j ≥ 0, k ∈ Zn, and if j 	= 0, then ε 	= 0}.

Let M be the constant in (2.1). Let χ and χ̃ be the characteristic functions of the cubes
[0, 1]n and [−2M+2, 2M+2]n, respectively.

Now we present some wavelet characterization of function spaces. Let g(x) =∑
(ε,j,k)∈Λn

gεj,kΦ
ε
j,k(x). Denote

⎧⎪⎨
⎪⎩
Srgj(x) =

∑
ε,k: (ε,j,k)∈Λn

2j(r+
n
2
)|gεj,k|χ̃(2jx− k), j ∈ N and r ∈ R;

Sgj(x) = S0gj(x), j ∈ N.

For 1 ≤ p ≤ ∞, we denote by p′ the conjugate number of p, i.e., 1
p + 1

p′ = 1. Let
1 ≤ p, q < ∞ and r ∈ R. It is well-known that (F r,qp (Rn))′ = F−r,q′

p′ (Rn). Triebel-
Lizorkin spaces can be characterized via Daubechies wavelets and M , see [26, Section
1.2.3] for details.

Proposition 2.1. Let g(x) =
∑

(ε,j,k)∈Λn

gεj,kΦ
ε
j,k(x).
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(i) Let 1 ≤ p, q <∞ and r ∈ R and M be the Hardy-Littlewood maximal operator.

g ∈ F r,qp (Rn) ⇔
∑
ε

∥∥∥(∑
j∈Z

(MSrg
ε
j(x))

q
) 1
q
∥∥∥
Lp
<∞

⇔
∥∥∥( ∑

(ε,j,k)∈Λn

2jq(r+
n
2
)|gεj,k|qχ(2j · −k)

) 1
q
∥∥∥
Lp
<∞.

(ii) g ∈ F 0,∞∞ (Rn) = B0,∞∞ (Rn) if and only if

|gεj,k| ≤ C2−
n
2
j, ∀(ε, j, k) ∈ Λn.

Calderón-Zygmund operators play an important role in harmonic analysis. For
N > 0, we say T belongs to non-homogeneous Calderón-Zygmund operator class
CZO(N ) if

(i) T is continuous from C1(Rn) to (C1(Rn))′ such that

Tf(x) =
∫
K(x, y)f(y)dy;

(ii) For any α ∈ Nn with |α| ≤ N − 1, T and its dual operator T ∗ satisfy

(2.2) Txα = T ∗xα = 0;

(iii) The kernel K satisfies

(2.3) sup
x

∫
|x−y|≥1

[
|K(x, y)|+ |K(y, x)|

]
dy <∞.

For x 	= y and |α| + |β| ≤ N , we have

(2.4) |∂αx∂βyK(x, y)| ≤ C|x − y|−(n+|α|+|β|).

For simplicity, we suppose that N is big enough such that N > n + 1 + | log2 C0| to
satisfy the needs of Lemma 2.3 and Theorem 3.9. For any (ε, j, k), (ε′, j ′, k′) ∈ Λn
and a distribution K(·, ·) in S ′(Rn × Rn), let

aε,ε
′

j,k,j′,k′ = 〈K(·, ·), Φε
j,kΦ

ε′
j′,k′〉.

If T ∈ CZO(N ), then its distribution-kernelK(·, ·) and the corresponding coefficients
aε,ε

′
j,k,j′,k′ have the following relations.
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Proposition 2.2. ([16, Section 8.3, Proposition 1]). Let T ∈ CZO(N ). Then

(2.5) sup
k∈Zn

∑
k′∈Zn

(
|a0,0

0,k,0,k′ |+ |a0,0
0,k′,0,k|

)
≤ C,

(2.6)
|aε,ε′j,k,j′,k′ | ≤ C2−|j−j′ |(n

2
+N)

( 2−j + 2−j′

2−j + 2−j′ + |k2−j − k′2−j′ |
)n+N

,

∀|ε| + |ε′| 	= 0.

At the end of this section, we give some Lp-estimates of Calderón-Zygmund opera-
tors which are useful in the sequel. For s, j0 ∈ Z, k0 ∈ Zn and 0 ≤ s ≤ j0, there exists
a ls ∈ Zn such that the dyadic cube Qj0,k0 is contained in the dyadic cube Qj0−s,ls .
Let

a(x) =
∑

ε�=0,Qj,k⊂Qj0,k0
aεj,kΦ

ε
j,k(x) ∈ Lp.

For any l ∈ Zn, we define

(2.7) al,j0,k0(x) =
∑

Qj,k⊂Qj0,l+l0

∑
Qj′,k′⊂Qj0,k0

aε,ε
′

j,k,j′,k′a
ε′
j′,k′Φ

ε
j,k(x).

For any 0 ≤ j < j0 and (ε, j, l+ lj0−j) ∈ Λn, we define

(2.8) aε,j,lj0,k0
=

∑
Qj′,k′⊂Qj0,k0

aε,ε
′

j,l+lj0−j ,j
′,k′a

ε′
j′,k′ .

Lemma 2.3. Let 1 < p <∞. If {aε,ε′j,k,j′,k′} satisfy (2.6), then we have

(i) ‖al,j0,k0‖Lp ≤ C(1 + |l|)−N‖a‖Lp;

(ii) |aε,j,lj0,k0
| ≤ C(1 + |l|)−n−N2(n

2
+N)j2−(N+n−n

p
)j0‖a‖Lp .

Proof. We first prove (i). Notice that for 1 < p < ∞, Lp(Rn) = Ḟ 0,2
p (Rn). By

Theorem 2.1, we have

‖al,j0,k0‖Lp =
∥∥∥( ∑

Qj,k⊂Qj0,l+k0
2jn
∣∣∣ ∑
Qj′,k′⊂Qj0,k0

aε,ε
′

j,k,j′,k′a
ε′
j′,k′

∣∣∣2χ(2jx− k)
) 1

2
∥∥∥
Lp
.

We divide the estimate of | ∑
Qj′,k′⊂Qj0,k0

aε,ε
′

j,k,j′,k′a
ε′
j′,k′ | into two cases:
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Case 1. x ∈ Qj,k and j0 ≤ j ′ ≤ j. We have

|
∑

Qj′,k′⊂Qj0,k0
aε,ε

′
j,k,j′,k′a

ε′
j′,k′ |

≤ 2−|j−j′|(n
2
+N)−n

2
j′Saj′(x)

∑
k′

(1 + 2j
′−j0 max(|l| − 2n, 0) + |2j′x− k′|)−n−N

≤ 2−|j−j′|(n
2
+N)−n

2
j′(1 + 2j

′−j0 max(|l| − 2n, 0))−NSaj′(x).

Case 2. x ∈ Qj,k and j0 ≤ j < j ′. We denote k′ = 2j
′−jm + τ , where

τ ∈ {0, · · · , 2j′−j − 1}n. We have∣∣∣ ∑
Qj′,k′⊂Qj0,k0

aε,ε
′

j,k,j′,k′a
ε′
j′,k′

∣∣∣
≤ 2−|j−j′|(n

2
+N)+n

2
j′−nj∑

m

Maj′(2−jm)
(1 + 2j−j0 max(|l| − 2n, 0) + |2jx−m|)n+N

≤ 2−|j−j′|(n
2
+N)−n

2
j MMSaj′(x)
(1 + 2j−j0 max(|l| − 2n, 0) + |2jx−m|)n+N

.

Hence ∑
Qj,k⊂Qj0,l+l0

2jn
∣∣∣ ∑
Qj′,k′⊂Qj0,k0

aε,ε
′

j,k,j′,k′a
ε′
j′,k′

∣∣∣2χ(2jx − k)

≤ 1
(1 + |l|)2N

{∑
j≥j0

[ ∑
j0≤j′≤j

2−N |j−j′|Saj′(x)
]2

+
∑
j≥j0

[ ∑
j0≤j≤j′

2−N |j−j′|MMSaj′(x)
]2}

≤ 1
(1 + |l|)2N

{ ∑
j′≥j0

[Saj′(x)]2 +
∑
j′≥j0

[MMSaj′(x)]2
}
.

Applying Theorem 2.1, we get ‖al,j0,k0‖Lp ≤ C(1 + |l|)−N‖a‖Lp.
Then we prove (ii). Fix j ′ ≥ j0 > j. We have∣∣∣ ∑

Qj′,k′⊂Qj0,k0
aε,ε

′
j,l+lj0−j ,j

′,k′a
ε′
j′,k′

∣∣∣
≤
∫ ∑

Qj′,k′⊂Qj0,k0
2
n
2
j′ |aε,ε′j,l+lj0−j ,j′,k′

|2n2 j′ |aε′j′,k′ |χ(2j
′
x− k′)dx

≤
∫ ∑

Qj′,k′⊂Qj0,k0

2
n
2
j′−|j−j′ |(n

2
+N)2

n
2
j′

(1 + |l+ lj0−j − 2j−j′k′|)n+N
|aε′j′,k′ |χ(2j

′
x− k′)dx

≤ C(1 + |l|)−n−N2(n
2
+N)j

∫
2−Nj

′
Saj′(x)dx.
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We can obtain∣∣∣ ∑
Qj′ ,k′⊂Qj0,k0

aε,ε
′

j,l+lj0−j ,j′,k′
aε

′
j′,k′

∣∣∣
≤ C(1 + |l|)−n−N2(n

2
+N)j

∫ ∑
j′≥j0

2−Nj
′
Saj′(x)dx

≤ C(1 + |l|)−n−N2(n
2
+N)j2−Nj0

∫ ( ∑
j′≥j0

|Saj′(x)|2
) 1

2
dx

≤ C(1 + |l|)−n−N2(n
2
+N)j2−(N+n−n

p
)j0
∥∥∥( ∑

j′≥j0
|Saj′(x)|2

) 1
2
∥∥∥
Lp
.

3. GENERALIZED MORREY SPACES Mφ,p(Rn)

3.1. Wavelet characterization

In this section, we use wavelets to characterize Mφ,p(Rn). Let χS be the charac-
teristic function of a set S. We can obtain the following wavelet characterization of
Mφ,p(Rn).

Theorem 3.1. Let 1 < p < ∞ and φ satisfy (1.2), (1.3) and (1.4). Then the
following two statements are equivalent:

(3.1) f =
∑

(ε,j,k)∈Λn

f εj,kΦ
ε
j,k ∈Mφ,p(Rn).

There exists a constant Cf such that for all dyadic cube Q with volume |Q| ≤ 1,

1

|Q|1/pφ(|Q| 1
n )

∥∥∥( ∑
(ε,j,k):Qj,k⊂Q

2jn|f εj,k|2χ(2jx− k)
) 1

2
∥∥∥
Lp

≤ Cf <∞.(3.2)

Proof. At first we prove that if f ∈ Mφ,p, f satisfies (3.2) for any dyadic cube
Q. We divide the proof into two cases.

Case 1. 2(M+3)n|Q| ≤ 1. Because the support of Daubechies wavelets is bounded,
there exists a cube QM such that{

|QM | ≤ 2(M+2)n|Q|,
supp Φε

j,k ⊂ QM , ∀(ε, j, k) ∈ Λn, Qj,k ⊂ Q.

For any (ε, j, k) ∈ Λn and Qj,k ⊂ Q, we have

f εj,k =
〈( ∑

(ε′,j′,k′)∈Λn

f ε
′
j′,k′Φ

ε′
j′,k′ − fQM

)
χQM , Φε

j,k

〉
.
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We can deduce from Proposition 2.1 that
∥∥∥( ∑

(ε,j,k):Qj,k⊂Q
2jn|f εj,k|2χ(2jx− k)

) 1
2
∥∥∥
Lp

≤
∥∥∥( ∑

(ε,j,k)∈Λn

f εj,kΦ
ε
j,k(x) − fQM

)
χQM (x)

∥∥∥
Lp

≤ ‖f‖Mφ,p
|QM | 1pφ(|QM | 1

n ).

By (1.3), there exists a constant C depending only on M and C0, such that
∥∥∥( ∑

Qj,k⊂Q
2jn|f εj,k|2χ(2jx− k)

) 1
2
∥∥∥
Lp

≤ C‖f‖Mφ,p
r
n
pφ(r).

Case 2. |Q|≤1 and 2(M+3)n|Q|>1. Let j0, jQ∈N such that 1
2 < 2(M+3−j0)n|Q|≤

1, 2n(j0−jQ) = |Q| and let En,j0 = {m : m = 0, · · · , 2nj0−1}. There exist 2nj0 dyadic
cubes Qj0,m, m ∈ En,j0 , such that |Qj0,m| = 2−njQ and Q =

⋃
m∈En,j0

Qj0,m. Thus we

have∥∥∥( ∑
Qj,k⊂Q

2jn|f εj,k|2χ(2jx− k)
)1

2
∥∥∥
Lp

≤
∥∥∥( ∑

Qj,k⊂Q,j≤jQ
2jn|f εj,k|2χ(2jx− k)

) 1
2
∥∥∥
Lp

+
∑

m∈Zn,Qj0,m⊂Q

∥∥∥( ∑
Qj,k⊂Qj0,m

2jn|f εj,k|2χ(2jx− k)
) 1

2
∥∥∥
Lp
.

It is easy to see that

∑
Qj0,m⊂Q

∥∥∥( ∑
Qj,k⊂Qj0,m

2jn|f εj,k|2χ(2jx− k)
) 1

2
∥∥∥
Lp

≤ C‖f‖Mφ,p
φ( 1

2 )

and∥∥∥( ∑
Qj,k⊂Q,j≤jQ

2jn|f εj,k|2χ(2jx− k)
) 1

2
∥∥∥
Lp

≤ C‖f‖Mφ,p

[
1 +

∑
1≤j≤jQ

φ(2−j)
]
.

By (1.3) again, there exists C, depending on M and C0, such that
∥∥∥( ∑

Qj,k⊂Q
2jn|f εj,k|2χ(2jx − k)

) 1
2
∥∥∥
Lp

≤ C‖f‖Mφ,p
φ(|Q| 1

n ).

Conversely, we assume that f satisfies (3.2). It is easy to see that

sup
y∈Rn, 1

2
≤r≤1

|fQ(y,r)| <∞.
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For any cube Q(y, r) with r ≤ 1
2 , take jQ(y,r) ∈ N such that 2−njQ(y,r) ≤ |Q(y, r)| <

2n(1−jQ(y,r)). We decompose f into the following two parts:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f1(x) =

∑
(ε,j,k)∈Λn,j≥jQ(y,r)

f εj,kΦ
ε
j,k(x),

f2(x) =
∑

(ε,j,k)∈Λn,j<jQ(y,r)

f εj,kΦ
ε
j,k(x).

Denote by f1,Q(y,r) and f2,Q(y,r) the means of f1 and f2 on the cube Q(y, r), respec-
tively. It is easy to see that

|f1,Q(y,r)| ≤ |Q(y, r)|− 1
p ‖f1‖Lp(Q(y,r)).

Hence there exists a constant C depending on C0,M and Cf such that

φ(r)−1
(
r−n

∫
Q(y,r)

|f1(x)− f1,Q(y,r)|pdx
) 1
p ≤ C.

For any j with 0 ≤ j < jQ(y,r), there exists xεj,k ∈ Q(y, r) such that
∫
Q(y,r)

Φε(2jx− k)dx =
∫
Q(y,r)

Φε(2jxεj,k − k)dx.

Let
Qε,y,r =

{
(ε, j, k) : (ε, j, k) ∈ Λn, Q(y, r)

⋂
supp Φε

j,k 	= ∅
}
.

We have ∫
Q(y,r)

|f2(x)− f2,Q(y,r)|pdx

≤
∫
Q(y,r)

∣∣∣ ∑
(ε,j,k)∈Qε,y,r,j<jQ(y,r)

f εj,k

[
Φε
j,k(x)− Φε

j,k(x
ε
j,k)
]∣∣∣pdx

≤ C

∫
Q(y,r)

( ∑
(ε,j,k)∈Qε,y,r,j<jQ(y,r)

|f εj,k|2(n
2
+1)j|Q(y, r)| 1

n

)p
dx.

By (3.2), we have∫
Q(y,r)

|f2(x)− f2,Q(y,r)|pdx ≤ C

∫
Q(y,r)

( ∑
0≤j<jQ(y,r)

φ(2−j)2j|Q(y, r)| 1
n

)p
dx

≤ C

∫
Q(y,r)

φ(r)pdx ≤ Cφ(r)prn,
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where in the last inequality we have used (1.3) and (1.4). This completes the proof of
Theorem 3.1.

3.2. Duality between Mφ,p(Rn) and Hφ,p′(Rn)

Fefferman-Stein [5] proved that BMO(Rn) is the dual of Hardy space H1(Rn).
Kalita [8] characterized the predual of Mα,2(Rn) by the method of functional analysis.
The predual of Q spaces is obtained by Dafni-Xiao [2] via Hausdorff capacities. In this
section, we adopt Fefferman-Stein’s ideas and use wavelet atoms to study the predual
of Mφ,p(Rn).

At first, we introduce two classes of Hardy spaces associated with φ.

Definition 3.2. Let 1 < p <∞.
(i) A distribution g =

∑
ε,j,k

gεj,kΦ
ε
j,k is called a (φ, p)−wavelet atom on dyadic cube

Q(y, r), if the support of
∑
ε,j,k

2jn|gεj,k|2χ(2jx− k) is contained in Q(y, r) and

∥∥∥(∑
ε,j,k

2jn|gεj,k|2χ(2jx− k)
) 1

2
∥∥∥
Lp

≤ r
n
p
−n
φ−1(r).

(ii) We call a distribution f ∈ Hφ,p
w (Rn) if there exist a sequence {λu} ∈ l1 and

a sequence of (φ, p)−wavelet atoms {gu} such that f(x) =
∑
u
λugu(x). The

norm of Hφ,p
w (Rn) is defined as

‖f‖
H
φ,p
w

= inf
∑
u

|λu|,

where the infimum is take over all the possible decompositions.

Another class of atoms are introduced without using wavelets.

Definition 3.3. Fix 1 < p ≤ ∞.
(i) A distribution g is said to be a (φ, p)−atom on cubeQ(y, r), if supp g ⊂ Q(y, r),

‖g‖Lp ≤ r
n
p
−n
φ−1(r) and for r ≤ 1

2 ,
∫
g(x)dx = 0 is true in the sense of

distributions.
(ii) We call a distribution f ∈ Hφ,p(Rn) if there exist a sequence {λu} ∈ l1 and a

sequence of (φ, p)−atoms {gu(x)} such that f(x) =
∑
u
λugu(x). The norm of

Hφ,p(Rn) is defined as

‖f‖Hφ,p = inf
∑
u

|λu|,

where the infimum is take over all the possible decompositions.

For φ(r) = 1, we denote Hφ,p(Rn) = H1(Rn). Then we have
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Lemma 3.4. (i) If there exists c > 0 such that φ(r) > c, then

Hφ,∞(Rn) ⊂ H1(Rn) ⊂ L1(Rn).

(ii) If lim
r→0

φ(r) = 0, then H1(Rn) ⊂ Hφ,∞(Rn).

Now we prove that Hφ,p
w (Rn) and Hφ,p(Rn) are equivalent.

Theorem 3.5. Let 1 < p < ∞ and φ satisfy (1.2), (1.3) and (1.4). Then
Hφ,p(Rn) = Hφ,p

w (Rn).

Proof. Let a be a wavelet atom on dyadic cube Q(y, r). The support of a is
contained in Q(y, 2M+2r), ‖a‖Lp ≤ r

n
p
−n
φ−1(r) and

∫
a(x)dx = 0 for r ≤ 1

2 . We
can get ‖a‖Hφ,p ≤ C. This gives Hφ,p

w (Rn) ⊆ Hφ,p(Rn).
Conversely, for a (φ, p)−atom a, we can write

a(x) =
∑

ε�=0,j≥jQ ,k∈Zn

aεj,kΦ
ε
j,k(x) +

∑
(ε,j,k)∈Λn,0≤j<jQ

aεj,kΦ
ε
j,k(x) =: I + II.

There exists a constant C such that ‖I‖
Hφ,p
w

≤ C. For II , we have

|aεj,k| ≤ C2
nj
2 2j−jQφ−1(2−jQ).

By (1.4), we can obtain

‖II‖
H
φ,p
w

≤ C
∑

0≤j<jQ
2j−jQφ(2−j)φ−1(2−jQ) ≤ C.

This implies that Hφ,p(Rn) ⊆ Hφ,p
w (Rn).

For any k ∈ Zn, we call u ∈ k +Q if ki ≤ ui < 1 + ki. We have the following
relations among Hφ,p(Rn).

Theorem 3.6. Suppose that φ satisfies (1.2) and (1.3).
(i) If φ is unbounded, then Hφ,q(Rn) � Hφ,p(Rn), 1 < p < q ≤ ∞.
(ii) If

∑
j≥1

φ−1(2−j) <∞, then Hφ,∞(Rn) = l1(L∞(k +Q)).

(iii) r
n
pφ(r) ≥ C > 0, then Hφ,p(Rn) = l1(Lp(k +Q)).

Proof. (ii) and (iii) are obvious. We only prove (i). By Hölder’s inequality, we
know that Hφ,q(Rn) ⊆ Hφ,p(Rn). Now we prove that Hφ,q(Rn) 	= Hφ,p(Rn). For
any integer j ≥ 1, let Qj = [0, 2−j)n and

aj(x) = 2njφ−1(2−j)2
nj
p Φ(1,0,··· ,0)(22jx).
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Then ‖aj‖Hφ,p = 1. But we know that

‖aj‖Hφ,q = 2
nj
p − 2

nj
q → ∞.

This implies that Hφ,q(Rn) � Hφ,p(Rn), 1 < p < q ≤ ∞.

When φ is bounded, we have

Theorem 3.7. If φ is bounded and satisfies (1.2) and (1.3), then for 1 < p 	= q ≤
∞, we have Hφ,p(Rn) = Hφ,q(Rn).

Proof. We know that a (φ,∞)−atom is a (φ, p)−atom for 1 < p <∞. Further,
if φ(r) = 1, we decompose each (1, p)−atom into a group of (1,∞)−atoms, see Stein
[24, Section 3.2]. Hence by the definition of (φ, p)−atom, if φ is bounded, we can
decompose each (φ, p)−atom into a group of (φ,∞)−atoms.

Next we prove that the dual of Hφ,p(Rn) is Mφ,p(Rn).

Theorem 3.8. (i) If φ satisfies (1.2) and (1.3), then the dual Hφ,∞(Rn) is
Mφ,1(Rn).

(ii) If 1 < p < ∞ and φ satisfies (1.2), (1.3) and (1.4), then the dual of Hφ,p(Rn)
is Mφ,p′(Rn).

Proof. It is easy to see that Mφ,p′(Rn) ⊆ (Hφ,p(Rn))′. Hence it is enough to
prove the reverse inclusion (Hφ,p(Rn))′ ⊆Mφ,p′(Rn).

If p′ = 1 and f /∈ Mφ,1(Rn), then for any positive integer u, there exists a cube
Qu such that ∫

Qu

|f(x)− fQu |pdx ≥ u|Qu|φp(|Qu| 1
n ).

Denote ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
fu(x) = (f(x) − fQu)χQu(x),

Eu,+ =
{
x ∈ Qu : f − fQu > 0

}
,

Eu,− =
{
x ∈ Qu : f − fQu < 0

}
.

Now we construct a (φ,∞)−atom gu on cube Qu. Since
∫
Qu

(f − fQu)dx = 0, we
have |Eu,+| > |Eu,−| or |Eu,−| ≥ |Eu,+|. Without loss of generality, we assume that
|Eu,+| > |Eu,−|. We decompose Eu,+ into two sets by choosing a measurable subset
Fu ⊂ Eu,+ such that |Fu| = |Eu,−|. Then we define a (φ,∞)−atom by

gu = |Qu|−1φ−1(|Qu| 1
n )(χFu − χEu,−).

We have
∫
fugudx ≥ u

2 . Let u → ∞. We know that f /∈ (Hφ,∞(Rn))′, that is,
(Hφ,∞(Rn))′ ⊂Mφ,1(Rn).
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Now we consider the case 1 < p < ∞. If f /∈ Mφ,p′(Rn), by Theorem 3.1, for
any u > 0, there exists a cube Qu such that |Qu| ≤ 1 and

∫
Qu

⎛
⎝ ∑
Qj,k⊂Qu

2jn|f εj,k|2χ(2jx− k)

⎞
⎠

p′
2

dx ≥ up
′ |Qu|φp′(|Qu| 1

n ).

Let fu(x) =
∑

Qj,k⊂Qu
f εj,kΦ

ε
j,k(x). We can choose a (φ, p)− wavelet atom gu on Qu

such that
∫
fu(x)gu(x)dx ≥ 1

8u. Because {Φε
j,k} are a regular Daubechies’ wavelet

basis, ∫
f(x)gu(x)dx =

∫
fu(x)gu(x)dx ≥ 1

8
u.

This implies that f /∈ (Hφ,p(Rn))′.

3.3. Calderón-Zygmund operators on Hφ,p(Rn)

Alvarez [1] proved the Calderón-Zygmund operators are bounded on the predual
of Mα,p(Rn). In this section, we consider the boundedness of Calderón-Zygmund
operators on Hφ,p(Rn).

Theorem 3.9. Suppose that φ satisfies (1.2), (1.3) and (1.4). If 1 < p < ∞ or φ
is bounded and p = ∞, Calderón-Zygmund operators are bounded on Hφ,p(Rn).

Proof. By Theorem 3.7, we only consider the case 1 < p <∞. We know that if
f ∈ Hφ,p(Rn), then

f(x) =
∑
m

λmajm,km(x) +
∑
k∈Zn

ρkΦ0(x− k),

where {λm}, {ρk} ∈ l1 and am(x) =
∑

ε�=0,Qj,k⊂Qjm,km
aεj,kΦ

ε
j,k(x) are (φ, p)−wavelet

atoms on dyadic cube Qjm,km . It follows that

TΦ0(x− k) =
∑
k′∈Zn

a0,0
0,k′,0,kΦ

0(x− k′) +
∑
l∈Zn

∑
ε′ �=0,Qj′,k′⊂Q0,l+k

aε
′,0
j′,k′,0,kΦ

ε′
j′,k′(x).

Similar to the proof of Lemma 2.2, we have∥∥∥ ∑
ε′ �=0,Qj′,k′⊂Q0,l+k

aε
′,0
j′,k′,0,kΦ

ε′
j′,k′

∥∥∥
Hφ,p

≤ C(1 + |l|)−N .

Hence ‖TΦ0(x− k)‖Hφ,p ≤ C.
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We write

Tam(x) =
∑
l∈Zn

al,jm,km(x) +
∑
l∈Zn

∑
0≤j<jm

a
ε,j,l
jm,km

Φε′
j′,k′(x),

where {al,jm,km(x)} and {aε,j,ljm,km
} are defined in (2.7) and (2.7), respectively. By

Lemma 2.3,

‖Tam‖Hφ,p ≤ C
∑
l∈Zn

(1 + |l|)−N

+ C
∑
l∈Zn

∑
0≤j<jm

(1 + |l|)−n−N2N(j−jm)φ(2−j)φ−1(2−jm).

Applying (1.3), we get

‖Tam‖Hφ,p ≤ C
∑
l∈Zn

(1 + |l|)−N + C
∑
l∈Zn

∑
0≤j<jm

(1 + |l|)−n−N2N(j−jm)Cjm−j
0 ≤ C,

which gives Tf ∈ Hφ,p(Rn). This completes the proof of Theorem 3.9.

4. STABILITY OF MORREY SPACES

In this section, we discuss stabilities of Mφ,p(Rn), Hφ,p(Rn) and M(Mφ,p(Rn))
under the perturbation of Calderón-Zygmund operators.

4.1. Multiplier on Hφ,p(Rn)

In this section, we consider multipliers on Hφ,p(Rn). Let f and g be two func-
tions. Before considering the multiplier spacesM(Hφ,p(Rn)), we first give three useful
lemmas.

Lemma 4.1. (i) If 1 < p ≤ ∞, then there exists a positive constant C depend-
ing on φ and M such that

C−1
j0∑
j=1

φ(2−j) ≤ ‖2nj0Φ0(2j0x)‖Hφ,p ≤ C

j0∑
j=1

φ(2−j).

(ii) There exists a positive constant C depending on φ such that

C

j0∑
j=1

φ(2−j) ≤ ‖2nj0χ(2j0x)‖Hφ,∞ ≤ C−1
j0∑
j=1

φ(2−j).
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Proof. We only prove (i). The proof of (ii) is similar. Since

2nj0Φ0(2j0x) =
{
2nj0Φ0(2j0x) − 2n(j0−1)Φ0(2(j0−1)x)

}
· · ·+

{
2Φ0(2x)− Φ0(x)

}
+ Φ0(x),

we have ‖2nj0Φ0(2j0x)‖Hφ,p ≤ C
j0∑
j=1

φ(2−j).

To get the another inequality, we construct a special non-negative function f . Taking
the smallest positive number r0 ∼ 2−j0 such that suppΦ0(2j0x) ⊂ B(0, r0), we know
that r0 ∼ 2−j0 . Let g be a linear non-increasing Lipschitz function on [0,∞) such that

(1) if x ∈ [0, r0], then g(x) =
j0∑
j=1

φ(2−j);

(2) if x ∈ [ 12 ,∞), then g(x) = 0;

(3) if x ∈ [r0, 1
4 ], then g(x) ∼

[− log2 x]∑
j=1

φ(2−j).

Let f(x) = g(|x|). Then

sup
y∈Rn, 1

2
≤r≤1

|fQ(y,r)| ≤ C

j0∑
s=1

2−ns
s∑
j=1

φ(2−j).

Since g(|x|) is a linear non-increasing Lipschitz function, by a similar procedure, we
have

sup
y∈Rn,r≤ 1

2

φ(r)−1(r−n
∫
Q(y,r)

|f(x) − fQ(y,r)|p
′
dx)

1
p′ ≤ C.

This gives f ∈Mφ,p′(Rn). Further,

∫
f(x)2nj0Φ0(2j0x)dx ≥ C

j0∑
j=1

φ(2−j).

Lemma 4.2. For any j ≥ 0, Pjf ∈ L∞(Rn) if and only if f ∈ L∞(Rn).

Proof. For any j ≥ 0, it is obvious that f ∈ L∞(Rn) implies Pjf ∈ L∞(Rn).
Further, if Pjf ∈ L∞(Rn), j ≥ 0, then f ∈ B0,∞∞ (Rn). Let f̃0

j,k = 〈f, 2nj2 χ(2jx− k)〉
and P̃jf =

∑
k

f̃0
j,k2

nj
2 χ(2jx− k). Since f ∈ B0,∞∞ (Rn), we know that

|〈f,Φ0
j,k − 2

nj
2 χ(2jx− k)〉| ≤ C2−

nj
2 .
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Hence for any j ≥ 0, Pjf ∈ L∞(Rn) implies P̃jf ∈ L∞(Rn). Now we prove that if
j ≥ 0, P̃jf ∈ L∞(Rn), j ≥ 0, then f ∈ L∞(Rn).

For ‖g(x)‖L1 ≤ 1 and s, s′ ∈ IN, there exists gs,s′(x) =
∑
Q

gQχQ(x), where

{Q} are dyadic cubes whose interiors are mutually disjoint, |Q| ≥ 2−s′n and ‖g(x)−
gs,s′(x)‖L1 ≤ 2−s. Hence∣∣∣ ∫ f(x)gs,s′(x)dx

∣∣∣ = ∣∣∣ ∫ P̃s′f(x)gs,s′(x)dx
∣∣∣ ≤ C.

We can see that |
∫
f(x)g(x)dx| ≤ C and f ∈ L∞.

Assume that φ satisfies (1.2) and (1.3). We define

(4.1) ψ(r) =
φ(r){ 1+[| log2 r|]∑

j=1
φ(2−j)

} .

The following result can be obtained immediately.

Lemma 4.3. Let ψ be the function defined in (4.1). Mψ,1(Rn) ⊂ bmo(Rn).

Proof. If f ∈Mψ,1(Rn), then

sup
1
2
≤r≤1

|fQr | + sup
r≤ 1

2

ψ(r)−1
(
r−n

∫
Qr

|f(x)− fQr |pdx
) 1
p
<∞.

According to the definition of ψ, we know that ψ is bounded. Hence

sup
1
2
≤r≤1

|fQr | + sup
r≤ 1

2

{
r−n

∫
Qr

|f(x) − fQr |pdx
} 1
p
<∞.

It follows that f ∈ bmo(Rn).
Now we give the characterization of the multiplier spaces M(Hφ,p).

Theorem 4.4. Suppose that φ satisfies (1.2) and (1.3). If φ also satisfies (1.4) for
1 < p <∞, we have

(i) If
∞∑
j=1

ψ(2−j) ≤ Cψ, then M(Hφ,p(Rn)) = Mψ,1(Rn);

(ii) If ψ ≥ Cψ > 0, then M(Hφ,p(Rn)) = L∞(Rn);

(iii) If lim
r→0

ψ(r) = 0 and
∞∑
j=1

ψ(2−j) = ∞, then

M(Hφ,p(Rn)) = Mψ,1(Rn)
⋂
L∞(Rn).
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Proof. We divide the proof of this theorem into eight steps. In the first six steps,
the constant C depends on ‖f‖Mψ,1

, ‖f‖L∞ , Cψ , the constants in (1.2), (1.3), (1.4)
and M . In the proof of Steps 7 and 8, the constant C depends on M , ‖f‖M (Hφ,p), the
constant in (1.4) (if 1 < p <∞), the constants in (1.2) and (1.3).

Step 1. We first prove that if
∞∑
j=1

ψ(2−j) ≤ Cψ , 1 < p < ∞ and f ∈ Mψ,1(Rn),

then f ∈M(Hφ,p(Rn)). By Theorem 3.8 and Lemma 4.1, ‖Pjf‖L∞ ≤ C
∞∑
s=1

ψ(2−s).

Hence, if f ∈Mψ,1(Rn) and
∞∑
j=1

ψ(2−j) ≤ Cψ, then Pjf ∈ L∞(Rn), j ≥ 0. We have

f ∈ L∞(Rn). For each (φ, p)-wavelet atom a on dyadic cube Qj0,k0 , we have

‖fa‖Lp ≤ C2(n−n
p
)j0φ−1(2−j0).

Let ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A(x) =

∑
ε,Qj,k⊂Qj0,k0

f εj,ka
ε
j,k2

jnχ(2jx− k),

B(x) =
{ ∑
ε,Qj,k⊂Qj0,k0

f εj,ka
ε
j,k

}
2j0nΦ0(2j0x− k0).

We know that∣∣∣ ∑
ε,Qj,k⊂Qj0,k0

f εj,ka
ε
j,k

∣∣∣ ≤ ∑
ε,Qj,k⊂Qj0,k0

∫
|f εj,kaεj,k2jnχ(2jx− k)dx|

≤
∫ { ∑

ε,Qj,k⊂Qj0,k0
2jn|f εj,k|2χ(2jx− k)

} 1
2
{ ∑
ε,Qj,k⊂Qj0,k0

2jn|aεj,k|2χ(2jx− k)
} 1

2
dx

≤
∥∥∥{ ∑

ε,Qj,k⊂Qj0,k0
2jn|f εj,k|2χ(2jx−k)

} 1
2
∥∥∥
Lp′

∥∥∥{ ∑
ε,Qj,k⊂Qj0,k0

2jn|aεj,k|2χ(2jx−k)
}1

2
∥∥∥
Lp

and ∣∣∣ ∑
ε,Qj,k⊂Qj0,k0

f εj,ka
ε
j,k2

jnχ(2jx− k)
∣∣∣

≤
{ ∑
ε,Qj,k⊂Qj0,k0

2jn|f εj,k|2χ(2jx− k)
} 1

2
{ ∑
ε,Qj,k⊂Qj0,k0

2jn|aεj,k|2χ(2jx− k)
} 1

2
.

Hence, if f ∈Mψ,1(Rn), by Lemma 4.3, f ∈ BMO(Rn). So

‖A‖Lp + ‖B‖Lp ≤ C2(n−n
p
)j0φ−1(2−j0).



838 Yueping Zhu, Qixiang Yang and Pengtao Li

Now we prove that fa ∈ Hφ,p(Rn). By multi-resolution analysis, for j0 ∈ N, the
product f · g can be decomposed into the following parts.

(4.2)

f(x)g(x) = Pj0f(x)Pj0g(x) +
∑
j≥j0

Pjf(x)Qjg(x)

+
∑
j≥j0

Qjf(x)Pjg(x) +
∑
j≥j0

Qjf(x)Qjg(x).

According to (4.2), we can write

(4.3)

f(x)a(x) = Pj0f(x)Pj0a(x) +
∑
j≥j0

PjfQja +
∑
j≥j0

QjfPja

+
∑

j≥j0,(ε,k) �=(ε′,l)

f εj,ka
ε′
j,lΦ

ε
j,k(x)Φ

ε′
j,l(x)

+
∑

ε,Qj,k⊂Qj0,k0
f εj,ka

ε
j,k[(Φ

ε
j,k(x))

2 − 2jnχ(2jx− k)]

+(A(x)− B(x)) +B(x)

≡
7∑
i=1

Mi(x).

It is easy to see that the supports of Mi(x), i = 1, 2, . . . , 7, are contained in
the multiple cube Q̃j0,k0 of dyadic cube Qj0,k0 . If j0 > 0, then Pj0a(x) = 0 and
M1(x) = 0. If j0 = 0, then ‖P0f(x)P0a(x)‖Lp ≤ C and M1(x) ∈ Hφ,p(Rn). By
Lemma 4.1, we have

‖2j0nΦ0(2j0x− k0)‖Hφ,p ≤ C

j0∑
j=1

φ(2−j).

Hence, M7(x) ∈ Hφ,p(Rn).
For any ε, ε′ 	= 0, k, k′ ∈ Zn, by wavelet property,⎧⎪⎪⎨

⎪⎪⎩

∫
Φ0
j,k(x)Φ

ε
j,k′(x)dx = 0,∫

Φε
j,k(x)Φ

ε′
j,k′(x)dx = δε,ε′δk.k′ .

So we have ∫
M2(x)dx =

∫
M3(x)dx =

∫
M4(x)dx = 0.

Further ∫
(Φε

j,k(x))
2dx =

∫
2jnχ(2jx− k)dx =

∫
2jnΦ0(2jx− k)dx = 1,

which implies
∫
M5(x)dx =

∫
M6(x)dx = 0.
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(1) According to the property of Daubechies wavelets, we have

‖M2‖pLp ≤ C

∫ (∑
j

|Pjf(x)Qja(x)|2
) p

2
dx.

For any j ≥ 0, Pjf ∈ L∞(Rn), hence ‖M2(x)‖Lp ≤ C2(n−n
p
)j0φ−1(2−j0).

(2) Similarly, we have {
‖M4(x)‖Lp ≤ C2(n−n

p
)j0φ−1(2−j0),

‖M5(x)‖Lp ≤ C2(n−n
p
)j0φ−1(2−j0).

(3) ‖M6(x)‖Lp ≤ ‖A(x)‖Lp + ‖B(x)‖Lp ≤ C2(n−n
p
)j0φ−1(2−j0).

(4) M3(x) = f(x)a(x)−M1(x)−M2(x)−M6(x)−M5(x)−A(x). By the above
estimates, we get ‖M3(x)‖Lp ≤ C2(n−n

p
)j0φ−1(2−j0).

That is to say, all terms Mi(x), i = 2, 3, . . . , 6, are bounded in Hφ,p(Rn).

Step 2. We prove that if ψ ≥ Cψ > 0 and f ∈ L∞(Rn), then f ∈ M(Hφ,p(Rn))
for 1 < p <∞. For each (φ, p)−atom a on cubeQ = Q(y, r), the support of f(x)a(x)
belongs to Q(y, r). If f ∈ L∞, then ‖f(x)a(x)‖Lp ≤ Cr

n
p
−n
φ−1(r) and

|(fa)Q| = |Q(y, r)|−1|
∫
Q(y,r)

f(x)a(x)dx|

≤ |Q(y, r)|−1

∫
Q(y,r)

|a(x)|dx

≤ |Q(y, r)|− 1
p ‖a(x)‖Lp ≤ Cr−nφ−1(r).

Hence

‖f(x)a(x)− (fa)Q‖Lp(Q(y,r)) ≤ ‖f(x)a(x)− (fa)Q‖Lp(Q(y,r))

+ ‖(fa)QχQ(y,r)(x)‖Lp(Q(y,r))

≤ Cr
n
p
−n
φ−1(r),

that is, ‖f(x)a(x) − (fa)QχQ(x)‖Hφ,p ≤ C. Furthermore, if ψ ≥ Cψ > 0, then
‖(fa)QχQ(x)‖Hφ,p ≤ C. Thus, ‖fa‖Hφ,p ≤ C.

Step 3. We prove that if f ∈ Mψ,1(Rn)
⋂
L∞(Rn), then f ∈ M(Hφ,p(Rn)),

1 < p <∞. For each (φ, p)−atom a on cube Q = Q(y, r), the support of fa belongs
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to Q(y, r). If f ∈ L∞(Rn), then ‖fa‖Lp ≤ Cr
n
p
−n
φ−1(r) and

(fa)Q = |Q(y, r)|−1

∫
Q(y,r)

f(x)a(x)dx

≤ |Q(y, r)|−1

∫
Q(y,r)

|a(x)|dx

≤ |Q(y, r)|− 1
p ‖a(x)‖Lp ≤ Cr−nφ−1(r).

For each cube Q = Q(y, r), there exists a biggest dyadic cube Qj,k such that
suppΦ0(2jx− k) ⊂ Q(y, r). Hence

‖f(x)a(x)− (fa)Q2njΦ0(2jx− k)‖Lp(Q(y,r))

≤ ‖f(x)a(x)− (fa)Q‖Lp(Q(y,r)) + ‖(fa)QχQ(y,r)(x)‖Lp(Q(y,r))

≤ Cr
n
p
−nφ−1(r).

Furthermore, if f ∈Mψ,1, then ‖(fa)Q2njΦ0(2jx− k)‖Hφ,p ≤ C.

Step 4. We prove that, if
∞∑
j=1

ψ(2−j) ≤ Cψ and f ∈ Mψ,1(Rn), then f ∈

M(Hφ,∞(Rn)). By Theorem 3.8 and Lemma 4.1, ‖Pjf‖L∞ ≤ C
∞∑
s=1

ψ(2−s). Hence,

if f ∈Mψ,1, and
∞∑
j=1

ψ(2−j) ≤ Cψ, then Pjf ∈ L∞, ∀j ≥ 0. And f ∈ L∞ by Lemma

4.2, . For each (φ,∞)− atom a(x) on cube Q = Q(y, r), ‖fa‖L∞ ≤ r−nφ−1(r) and

|(fa)Q| = |Q(y, r)|−1|
∫
Q(y,r)

(f(x)− fQ)a(x)dx|

≤ Crnψ(r)r−nφ−1(r)

≤ C(
[| log2 r|]∑
j=1

φ(2−j))−1.

By Lemma 4.1, we have

‖(fa)QχQ(x)‖Hφ,∞ ≤ C
( [| log2 r|]∑

j=1

φ(2−j)
)−1

[| log2 r|]∑
j=1

φ(2−j) ≤ C.

Step 5. We prove that, if ψ ≥ Cψ > 0 and f ∈ L∞(Rn), then f ∈M(Hφ,∞(Rn)).
For each (φ,∞)− atom a(x) on cube Q = Q(y, r), the support of f(x)a(x) belongs
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to Q(y, r). If f ∈ L∞(Rn), then ‖f(x)a(x)‖L∞ ≤ Cr−nφ−1(r) and

(fa)Q = |Q(y, r)|−1

∫
Q(y,r)

f(x)a(x)dx ≤ |Q(y, r)|−1

∫
Q(y,r)

|a(x)|dx

≤ ‖a(x)‖L∞ ≤ Cr−nφ−1(r).

Hence

‖f(x)a(x)− (fa)Q‖L∞(Q(y,r))

≤ ‖f(x)a(x)− (fa)Q‖L∞(Q(y,r)) + ‖(fa)QχQ(y,r)(x)‖L∞(Q(y,r))

≤ Cr−nφ−1(r).

Step 6. We prove that, if f ∈ Mψ,1(Rn)
⋂
L∞(Rn), then f ∈ M(Hφ,∞(Rn)).

For each (φ,∞)−atom a on cube Q = Q(y, r), the support of fa belongs to Q(y, r).
If f ∈ L∞(Rn), then ‖fa‖L∞ ≤ Cr−nφ−1(r) and

(fa)Q = |Q(y, r)|−1

∫
Q(y,r)

f(x)a(x)dx ≤ |Q(y, r)|−1

∫
Q(y,r)

|a(x)|dx

≤ ‖a‖L∞ ≤ Cr−nφ−1(r).

For each cube Q = Q(y, r), there exists a biggest dyadic cube Qj,k such that
supp Φ0(2jx− k) ⊂ Q(y, r). Hence

‖f(x)a(x)− (fa)Q2njΦ0(2jx− k)‖L∞(Q(y,r))

≤ ‖f(x)a(x)− (fa)Q‖L∞(Q(y,r)) + ‖(fa)QχQ(y,r)(x)‖L∞(Q(y,r))

≤ Cr−nφ−1(r).

Furthermore, if f ∈Mψ,1(Rn), then ‖(fa)Q2njΦ0(2jx− k)‖Hφ,∞ ≤ C.

Step 7. We prove that, if 1 < p ≤ ∞ and f ∈ M(Hφ,p(Rn)), then f ∈ L∞(Rn).
In fact, we choose a(x) = Φε

j,k(x) and b(x) = τj,k(x) − τj,k+2M+4(x), where k +
2M+4 = (k1 + 2M+4, · · · , kn + 2M+4), τ(x) ∈ C2

0 (B(0, 2M+3)) and τ(x) = 1 if
x ∈ ⋃

ε∈{0,1}n
suppΦε. Then ‖a‖Hφ,p ≤ φ(2−j), ‖a‖Mφ,p′ ≤ φ−1(2−j) and ‖b‖Mφ,p′ ≤

φ−1(2−j). Furthermore, | ∫ faadx| ≤ C and∫
f2jnΦ0(2jx− k)dx =

∫
faadx−

∫
f(aa− 2jnΦ0(2jx− k))dx.

So we have Pjf ∈ L∞(Rn), j ≥ 0. It follows that f ∈ L∞(Rn).
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Step 8. We prove that if f ∈ M(Hφ,p(Rn)), 1 < p ≤ ∞, then f ∈ Mψ,1(Rn).
For each cube Q = Q(y, r), denote

a(x) =
f(x)− fQ
|f(x)− fQ|χQ(x)r−nφ−1(r).

Then ‖a‖Hφ,p ≤ 1. Let jQ = 1 + [− log2 r] and let b be a function such that b(x) =
jQ∑
j=1

φ(2−j) for x ∈ Q(y, r), b(x) = 0 for x /∈ Q(y, 2jQr) and

b(x) =
jQ−s∑
j=1

φ(2−j) + (s− log2 t)φ(2s−jQ)

for 0 ≤ s ≤ jQ − 1, 2s ≤ t ≤ 2s+1 and x ∈ ∂Q(y, tr). Then according to (1.3),
‖b‖Mφ,p′ ≤ C and b(x) ≥ ∑

1≤j≤jQ
φ(2−j) on cube Q(y, r). So | ∫ f(x)a(x)b(x)dx| ≤

C. According to Step 7, fQ ∈ l∞ and we can get | ∫ fQa(x)b(x)dx| ≤ C. Then∣∣∣ ∫ (f(x) − fQ)a(x)b(x)dx
∣∣∣≤ ∣∣∣ ∫ f(x)a(x)b(x)dx

∣∣∣+ ∣∣∣ ∫ fQa(x)b(x)dx
∣∣∣ ≤ C.

It follows that ∫
Q
|f(x)− fQ|dx

∑
1≤j≤jQ

φ(2−j)r−nφ−1(r) ≤ C.

Hence ∫
Q
|f(x) − fQ|dx ≤ Crn(

∑
1≤j≤jQ

φ(2−j))−1φ(r).

We get f ∈Mψ,1(Rn).

4.2. Stability of Morrey spaces

In this section, we establish a stability condition for Mφ,p(Rn). Given a function
space A and an operator space B. If the facts that f ∈ A and T ∈ B always imply
Tf ∈ A, one calls the space A is stable under the perturbation of operators in B. We
will see that there exist some Mφ,p(Rn) which are unstable under the perturbation of
Calderón-Zygmund operators. Compared with the classical Morrey spaces, Mφ,p(Rn)
have a distinctive characteristic.

For Mφ,p(Rn), the assumption whether φ is bounded makes a great difference. In
fact, by Theorems 3.6, 3.7 and 3.8, we have

Theorem 4.5. Let 1 ≤ p 	= q <∞.
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(i) If φ is bounded, then Mφ,p(Rn) = Mφ,q(Rn).
(ii) If φ is unbounded, then Mφ,p(Rn) 	= Mφ,q(Rn).

We denote byB(0, r) the ball centered at the origin and with radius r. Let B(0, Ñ)
be the smallest ball containing supp Φ0. We choose τ ∈ C∞

0 (B(0, 4Ñ)) such that
τ(x) = 1 if x ∈ B(0, 2Ñ). Let Φ be a positive function in Cn+2

0 (B(0, 2n+2)) with
Φ(x) = 1 in B(0, 2n+1). Take

K(x, y) = Φ(|x− y|)(x1 − y1)|x− y|−n−1.

Then Tf(x) =
∫
K(x, y)f(y)dy is a Calderón-Zygmund operator.

The following theorem tells us that Mφ,1(Rn) is unstable under the perturbation of
Calderón-Zygmund operators if φ(r) is unbounded.

Theorem 4.6. If φ is unbounded, then there exist a Calderón-Zygmund operator
T and a function f ∈Mφ,1(Rn) such that Tf /∈Mφ,1(Rn).

Proof. Based on the convergence of
∑
j≥1

φ−1(2−j), we divide the proof into two

cases.

Case 1.
∑
j≥1

φ−1(2−j) < ∞. Then Mφ,1(Rn) = l∞(L1(k + Q)). This space is

unstable under the perturbation of Calderón-Zygmund operators. In fact, for any j ≥ 2,
let fj(x) = 2njΦ0(2jx). We can get ‖fj‖l∞(L1(k+Q)) ≤ C and

Tfj(x) = τ(2−jx)Tfj(x) + (1− τ(2−jx))
∫

(K(x, y)−K(x, 0))fj(x)

+ (1 − τ(2−jx))K(x, 0).

It is easy to see that the first two terms are bounded in l∞(L1(k +Q)) for all j ≥ 2.
Denote by g the third term. We have ‖g‖l∞(L1(k+Q)) ≥ Cj.

Case 2.
∑
j≥1

φ−1(2−j) = ∞ and φ(2−j) is unbounded. For any j ≥ 2, let

fj(x) = φ(2−j)Φ0(2jx). We have ‖fj‖Mφ,1
≤ C and

Tfj(x) = τ(2−jx)Tfj(x) + (1− τ(2−jx))
∫

(K(x, y)−K(x, 0))fj(x)

+ (1 − τ(2−jx))K(x, 0)φ(2−j)2−jn.

It is easy to see that the first two terms are bounded on Mφ,1(Rn) for all j ≥ 2. Denote
the third term by h(x). We have

hB(0,r) = r−n
∫
B(0,r)

(1− τ(2−jx))K(x, 0)φ(2−j)2−jndx = 0, ∀r > 0
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and

Ir =
∫
B(0,r)

|h− hB(0,r)|dx =
∫
B(0,r)

|(1 − τ(2−jx))||K(x, 0)|φ(2−j)2−jndx.

If r ∼ 2−j , then I−j ∼ jφ(2−j)2−jn. It follows that ‖h‖Mφ,1
≥ Cj.

At last, we establish the stability condition.

Theorem 4.7. Suppose that φ satisfies (1.2), (1.3) and (1.4). Let T be a Calderón-
Zygmund operator.

(i) If φ is bounded, then T is bounded on Mφ,∞(Rn).
(ii) If 1 < p <∞, then T is bounded on Mφ,p(Rn).

Proof. By the duality between Hφ,p′(Rn) and Mφ,p(Rn), it is enough to prove
the continuity of Calderón-Zygmund operators on Hφ,p′(Rn). The desired conclusion
follows from Theorem 3.9.

4.3. Multipler spaces on Morrey spaces and stability

Janson [6] and Stegenga [23] studied the multipliers on Mφ,1(Rn). Xiao [29]
considered the multipliers on complex Q-spaces. However, the skills of [6] and [23]
can not be extended to p 	= 1. Also it is very difficult to apply the method of Xiao
[29] to deal with M(Mφ,p(Rn)). In this section, we will use wavelets to characterize
the multipliers on Hφ,p(Rn) and Mφ,p(Rn). Further, we consider the stability of these
spaces.

By the theorems in Sections 3.1 and 4.1, we have

Theorem 4.8. Let ψ be defined by (4.1). Suppose that φ satisfies (1.2) and (1.3);
and additionally, if 1 < p <∞, φ also satisfies (1.4). For 1 ≤ p <∞, we have

(i) If
∞∑
j=1

ψ(2−j) ≤ C, then M(Mφ,p(Rn)) = Mψ,1(Rn).

(ii) If ψ ≥ C > 0, then M(Mφ,p(Rn)) = L∞(Rn).

(iii) If lim
r→0

ψ(r) = 0 and
∞∑
j=1

ψ(2−j) = ∞, then

M(Mφ,p(Rn)) = Mψ,1(Rn)
⋂
L∞(Rn).

Proof. By duality of Hφ,p′(Rn) and Mφ,p(Rn) and Theorem 4.4, we get the
desired conclusion.

We consider the stability of M(Mφ,p(Rn)) under the perturbation of Calderón-
Zygmund operators.



Morrey Spaces Related to Multipliers 845

Theorem 4.9. Suppose that φ(x) satisfies (1.2), (1.3) and (1.4). ψ is defined by
(4.1). For 1 ≤ p <∞, we have

(i) If
∞∑
j=1

ψ(2−j) ≤ C, then M(Mφ,p(Rn)) is stable under the perturbation of

Calderón-Zygmund operators.
(ii) Otherwise, M(Mφ,p(Rn)) is unstable under the perturbation of Calderón-

Zygmund operators.

Proof. By Theorem 5.1 and Theorem 5.4 (i), if
∞∑
j=1

ψ(2−j) ≤ C, then

M(Mφ,p(Rn)) = Mψ,q(Rn), 1 ≤ q <∞.

Using wavelet characterization of Mψ,q(Rn), we know these multiplier spaces are stable
under the perturbation of Calderón-Zygmund operators.

By Theorems 5.4 (ii), if ψ(r) ≥ C > 0, then the related multiplier space is L∞(Rn),
so it is unstable under the perturbation of Calderón-Zygmund operators.

We will construct some special multiplier to show that the rest multiplier spaces
under these conditions are not stable. Denote (1) = (1, 0, · · · , 0). We know that
Φ(1)(0) is not zero. There exists a ball B(0, r0) such that |Φ(1)(x)| ≥ C > 0, ∀x ∈
B(0, r0). On the other hand, because the Daubechies wavelets are real valued, we
can suppose that Φ(1)(x) ≥ C > 0 for all x ∈ B(0, r0). By (1.3), if Ñ is large
enough, then {ψ(2−jÑ)} is a decreasing sequence, ψ(2−Ñr) ≤ ψ(r), ∀0< r < 1

2 and
∞∑
j=1

ψ(2−jÑ) = ∞. Let Ñ be the smallest positive integer which satisfies the above

requirements and suppΦ(1)(2Ñx) ⊂ B(0, r0).
Let Φ(x) ∈ C∞

0 (B(0, 2)),Φ(x)≥ 0 and Φ(x) = 1 if |x| ≤ 1. Let⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f(x) =

∑
j∈N

(−1)jψ(2−jÑ)Φ(1)(2jÑx),

g(x) =
∑
j∈N

ψ(2−jÑ)Φ(2jÑx).

Then f(x) ∈ Mψ,1(Rn)
⋂
L∞(Rn), f(x) ∈ M(Mφ,p(Rn)) and g(x) /∈ L∞(Rn). Let

T be the operator defined by Th(x) =
∫
K(x, y)h(y)dy, where

K(x, y) =
∑
j∈N

(−1)j2njÑΦ(2jÑx)Φ(1)(2jÑy).

Then T is a Calderón-Zygmund operator and g(x) = Tf(x). If
∞∑
j=1

ψ(2−j) = ∞, then

by Theorem 4.8, M(Mφ,p(Rn)) ⊂ L∞(Rn). Hence g(x) /∈M(Mφ,p(Rn)).
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2008.

27. H. Triebel, Local Function Spaces, Heat and Navier-Stokes Equations, 3 EMS Tracts
in Mathematics 20, European Mathematical Society (EMS), Zürich, 2013.
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