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SPECIAL LAGRANGIAN 4-FOLDS WITH SO(2) � S3-SYMMETRY
IN COMPLEX SPACE FORMS

Franki Dillen, Christine Scharlach, Kristof Schoels and Luc Vrancken

Abstract. In this article we obtain a classification of special Lagrangian subman-
ifolds in complex space forms subject to a pointwise SO(2) � S3-symmetry on
the second fundamental form. The algebraic structure of this form has been ob-
tained by Marianty Ionel in [8]. However, the classification of special Lagrangian
submanifolds in C4 having this SO(2) � S3 symmetry in [8] is incomplete. In
this paper we give a complete classification of such submanifolds, and extend
the classification to special Lagrangian submanifolds of arbitrary complex space
forms with a pointwise SO(2) � S3-symmetry in the second fundamental form.

1. INTRODUCTION

A space (N, J, g) is called a Hermitian manifold with complex structure J and
Riemannian metric g, if g(JX, JY ) = g(X, Y ) for all X and Y . The (0, 2)-tensor
ω(X, Y ) = g(X, JY ) is its symplectic form. If ω is closed, then (N, J, g) is said to
be a Kähler manifold. In this case the Levi-Civita connection D of g satisfies Dω = 0
as well, see [12]. A complex space form is a Kähler manifold for which the curvature
tensor is given by

(1) R(X, Y )Z = ε (X ∧ Y + JX ∧ JY + 2g(X, JY )J)Z,

where ε is a real constant and X ∧ Y is defined as

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y.

Every complete, simply connected complex space form of dimension n with constant
holomorphic sectional curvature 4ε is isometric to one of the following manifolds:
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(1) the standard complex space Cn when ε = 0,
(2) the complex projective space CPn(4ε) when ε > 0,
(3) the complex hyperbolic space CHn(4ε) when ε < 0.

Because we consider submanifolds of a complex space form locally, we can restrict
ourselves to those ambient spaces. By rescaling, we can even assume that ε = 0, 1,−1.

A Lagrangian submanifoldM of a Kähler manifold (N, J, g) is a submanifold such
that ω vanishes identically on M and the (real) dimension of M is half the (complex)
dimension of N , see [1]. This implies that J induces an orthogonal isomorphism
between the tangent and the normal bundle on the submanifold. The Gauss formula is
given by

DXY = ∇XY + h(X, Y ) = ∇XY + JA(X, Y ),

where A = −Jh defines a symmetric (1, 2)-tensor on the submanifold, and the Wein-
garten formula is given by

DX(JY ) = J(∇XY ) −A(X, Y ).

It is easy to see that the cubic form C, defined by

C(X, Y, Z) = g(A(X, Y ), Z)

is totally symmetric. We say that A is g-symmetric. For Lagrangian submanifolds of
complex space forms, the equations of Gauss and Codazzi simplify to

(2) R(X, Y )Z = ε (X ∧ Y )Z + [AX , AY ]Z,

(3) ∇A is symmetric.

The following theorem holds, see [4] and [6].

Theorem 1.1. Suppose (Mn, g) is a Riemannian manifold equipped with a sym-
metric and g-symmetric (1, 2)-tensor A such that (2) and (3) are satisfied for some
constant ε. Then for every point p ∈ M there exists a neighborhood U and a La-
grangian isometric immersion φ : U → N 2n(4ε) into the complex space form N 2n(4ε)
such that g and JA are induced as first and second fundamental form. Such an im-
mersion is unique up to isometries of the ambient space.

We focus on a particular form of A assuming that there is a pointwise G-symmetry
of A (or equivalently of the cubic form C), where G is a subgroup of the special
orthogonal group SO(n). We say that A has pointwise G-symmetry at p if for all
tangent vectors X, Y in p, and all O ∈ G the relation A(OX,OY ) = OA(X, Y )
holds (or equivalently C(OX,OY, OZ) = C(X, Y, Z) for all X, Y, Z). Furthermore,
we impose a minimality condition on A at p, so for every X at p, we assume that
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Tr(AX) = 0. Here, AX is the linear map which maps Y to A(X, Y ). These manifolds
are interesting, since in Cn the minimal Lagrangian submanifolds are locally precisely
the special Lagrangian submanifolds of Cn as introduced by Harvey and Lawson [7].
If a special Lagrangian submanifold of C3 has G-symmetry at every point, for the
same group G, then a classification result for the dimension equal to 3 has been
obtained by Bryant [2]. An explicit classification for special (we also use the word
“special” for “minimal” in case ε �= 0) Lagrangian 3-folds of complex space forms
with pointwise symmetric cubic form is not yet done, but can be easily obtained from
a similar classification for affine spheres in [14].

In the present paper we consider the 4-dimensional case. In particular we con-
sider special Lagrangian 4-folds in complex space forms with pointwise symmetry
on the cubic form. The shape of the (1, 2)-tensor A, invariant under subgroups of
SO(4), has been described by M. Ionel in [8]. In the same article, the author classifies
special Lagrangian 4-folds of C4 according to their symmetry groups. However, the
classification in case the symmetry group is given by SO(2) � S3 in that article is
incomplete; several possible subcases including the most general one is omitted. In the
present article, we give a complete classification of all special Lagrangian 4-folds in
any complex space form having this particular symmetry. This settles the problem for
SO(2) � S3-symmetry for all ε. The classification for other symmetry groups remains
open if ε �= 0.

The SO(2) � S3-symmetry implies that A can be expressed as

(4)

A(X1, X1) = rX1, A(X1, X2) = −rX2,A(X1, X3) = 0, A(X1, X4) = 0,
A(X2, X1) = −rX2, A(X2, X2) = −rX1,A(X2, X3) = 0, A(X2, X4) = 0,
A(X3, X1) = 0, A(X3, X2) = 0, A(X3, X3) = 0, A(X3, X4) = 0,
A(X4, X1) = 0, A(X4, X2) = 0, A(X4, X3) = 0, A(X4, X4) = 0,

in a well-chosen local orthonormal frame {X1, X2, X3, X4}. In this expression r is
a strictly positive function. The SO(2)-symmetry is given by the free rotation in the
{X3, X4} plane and the S3-symmetry is essentially obtained by rotations over an angle
2π/3 in the {X1, X2} plane and reflections in the {X1, X4} plane. We can remark that
the form of A is exactly that of Lagrangian submanifolds attaining equality in Chen’s
inequality, see [5] and [6].

In order to list the different possible subcases, we introduce distributions

N1 = span{X1, X2}, N+ = span{X1, X2, [X1, X2]}, N2 = span{X3, X4}.

We will see that N2 is always integrable. We obtain:

(1) If N1 = N+, then the submanifold is a double warped product R ×f R ×g N
2

where N 2 is a minimal Lagrangian submanifold in an appropriate space form.
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(2) If N1 � N+ and N+ is integrable, then the submanifold is a single warped
product R ×f N

3 where N 3 is a special Lagrangian 3-fold with a pointwise
S3-symmetry of the second fundamental form in an appropriate space form.

(3) If the smallest integrable distribution containing N1 is TM , then for this final
case, we do not obtain an explicit expression for the immersion, but we will
rewrite the equations (7) as derivatives of certain complex functions using a
complex coordinate on the submanifold. Equations similar to (10) in [3], but
with a modified term, appear. Here, techniques will be used similar to those in
[9].

When we consider the different cases, we will assume the defining conditions hold
on an open neighborhood of the considered point.

2. PRELIMINARIES

2.1. Complex space forms.

We briefly recall the basic properties of Cn and show how Lagrangian submanifolds
of CPn and CHn can be lifted to subsets of Cn+1.

Consider the complex vector space Cn. Its elements can be written as n-tuples of
complex numbers, so they are given as

�z = (z1, · · · , zn) , zj = xj + iyj, xj , yj ∈ R.

Through the map

φ : Cn → R2n : (z1, · · · , zn) → (x1, y1, · · · , xn, yn)

the space Cn is a real 2n-dimensional manifold. The multiplication with the imaginary
unit i translates to a linear map on R2n given as

i (x1, y1, · · · , xn, yn) = (−y1, x1, · · · ,−yn, xn) .

and its derivative J is given as

J∂xk
= ∂yk

,

J∂yk
= −∂xk

.

This squares to −I and thus defines a complex structure on Cn. On Cn there is also
a Hermitian form given by

s(�z, �w) =
n∑

j=1

zjw̄j =
n∑

j=1

(xjuj + yjvj)− i

n∑
j=1

(xjvj − yjuj).

The real part, which can be denoted as 〈�z, �w〉 defines the Euclidean scalar product
on R2n and induces a natural Riemannian metric on Cn. We can see that J is an
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isometry and the induced Kähler form, which also coincides with the imaginary part of
the Hermitian form, is closed. These structures make Cn into a flat Kähler manifold.

The manifold CPn can be modeled as the quotient S2n+1/S1, where

S2n+1 = {(z0, · · · , zn) ∈ Cn+1|
n∑

i=0

|zi|2 = 1}.

The equivalence is given by

�z ∼ �w ⇔ ∃φ ∈ R ∀j ∈ {0, · · · , n} : zj = eiφwj.

So the unit sphere S2n+1 is the preimage of the Hopf fibration

π : S2n+1 → CPn : �z → [�z] .

On S2n+1 ⊂ Cn+1 the complex structure J induces a contact structure and the standard
metric on Cn+1 induces a Riemannian metric. The metric on CPn that makes π a
Riemannian submersion has constant holomorphic sectional curvature 4. An immersion
φ : M → S2n+1 is then said to be C-totally real or horizontal if iφ is orthogonal to
the submanifold. It can be shown that every minimal C-totally real submanifold of
S2n+1 can be projected onto a special Lagrangian submanifold of CPn through π and
conversely that a special Lagrangian submanifold in CPn has a 1-parameter family of
mutually isometric horizontal lifts as a minimal C-totally real submanifold in S2n+1. So
in order to classify special Lagrangian submanifolds in CPn, we can consider minimal
C-totally real submanifolds in S2n+1 ⊂ Cn+1, see [13]. For those submanifolds, the
Gauss identity is given as

(5) DXY = ∇XY + JA(X, Y ) − 〈X, Y 〉φ,
where D is the Levi Civita connection of Cn+1.

Similarly, the space CHn can be modeled as H2n+1/S1, where

H2n+1 = {(z0, · · · , zn) ∈ Cn+1
1 ||z0|2 −

n∑
i=1

|zi|2 = 1}.

The equivalence relationship determined by S1 is the same as the one used in the
projective space. The ambient space Cn+1

1 is essentially the space Cn+1, but equipped
with the scalar product

〈�z, �w〉1 = �
⎛
⎝ n∑

j=1

zjw̄j − z0w̄0

⎞
⎠ .

The complex structure is still obtained through multiplication with the imaginary unit
i and induces a Kähler structure on Cn+1

1 . This metric induces a Lorentzian metric on
H2n+1 and a metric of constant holomorphic sectional curvature −4 on CHn. Similar
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to the projective case C-totally real submanifolds φ : M → H2n+1 can be defined
having iφ as a normal. Each minimal C-totally real submanifold corresponds to the
horizontal lift of a special Lagrangian submanifold of CHn. The Gauss identity is
given as

(6) DXY = ∇XY + JA(X, Y ) + 〈X, Y 〉φ,
where D is the Levi Civita connection of Cn+1

1 .

2.2. Structure equations.

We can return briefly to the equations (2) and (3). We can choose an orthogo-
nal frame {X1, X2, X3, X4} corresponding to (4) and define the components Γk

ij and
Ak

ij as

∇XiXj =
4∑

k=1

Γk
ijXk,

A(Xi, Xj) =
4∑

k=1

Ak
ijXk.

Then the equations (2) and (3) can be rewritten as

(7)
Xi

(
Γl

jk

)
−Xj

(
Γl

ik

)
= ε

(
δjkδ

l
i − δikδ

l
j

)
+Ar

jkA
l
ir −Ar

ikA
l
jr

+Γr
ikΓl

jr − Γr
jkΓl

ir + Γl
rk

(
Γr

ij − Γr
ji

)
,

(8)
Xi

(
Al

jk

)
−Xj

(
Al

ik

)
=

(
Γr

ij − Γr
ji

)
Al

rk + Γr
ikA

l
jr − Γr

jkA
l
ir − Γl

irA
r
jk + Γl

jrA
r
ik,

where we have used the Einstein convention. We split the connection ∇ into its
components and write

∇X1X1 = a1X2 + a2X3 + a3X4, ∇X1X2 = −a1X1 + a4X3 + a5X4,

∇X2X1 = b1X2 + b2X3 + b3X4, ∇X2X2 = −b1X1 + b4X3 + b5X4,

∇X3X1 = c1X2 + c2X3 + c3X4, ∇X3X2 = −c1X1 + c4X3 + c5X4,

∇X4X1 = d1X2 + d2X3 + d3X4, ∇X4X2 = −d1X1 + d4X3 + d5X4,

∇X1X3 = −a2X1 − a4X2 + a6X4, ∇X1X4 = −a3X1 − a5X2 − a6X3,

∇X2X3 = −b2X1 − b4X2 + b6X4, ∇X2X4 = −b3X1 − b5X2 − b6X3,

∇X3X3 = −c2X1 − c4X2 + c6X4, ∇X3X4 = −c3X1 − c5X2 − c6X3,

∇X4X3 = −d2X1 − d4X2 + d6X4, ∇X4X4 = −d3X1 − d5X2 − d6X3.

Equation (8) induces linear relations between the components, independent of the am-
bient space. The Gauss equations give further information about ∇ but use differential
equations and depend on the ambient space form.
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Lemma 2.1. On a special Lagrangian submanifoldM having a pointwise SO(2)�
S3-symmetry on the cubic form there exists a frame corresponding to (4) such that:

(9)

∇X1X1 = a1X2 + a2X3 + a3X4, ∇X1X2 = −a1X1 − b2X3,

∇X2X1 = b1X2 + b2X3, ∇X2X2 = −b1X1 + a2X3 + a3X4,

∇X3X1 = b2
3 X2, ∇X3X2 = − b2

3 X1,

∇X4X1 = 0, ∇X4X2 = 0,
∇X1X3 = −a2X1 + b2X2 + a6X4, ∇X1X4 = −a3X1 − a6X3,

∇X2X3 = −b2X1 − a2X2 + b6X4, ∇X2X4 = −a3X2 − b6X3,

∇X3X3 = c6X4, ∇X3X4 = −c6X3,

∇X4X3 = d6X4, ∇X4X4 = −d6X3.

Furthermore, the derivatives of r are given by

(X1 + iX2)(r) = 3ir(a1 + ib1),(10)

X3(r) = ra2,(11)

X4(r) = ra3.(12)

Proof. This is just a straightforward application of equation (8). For instance

(∇X2A) (X1, X1) = X2(r)X1 + 3rb1X2 + rb2X3 + rb3X4,

(∇X1A) (X2, X1) = 3ra1X1 −X1(r)X2 − ra4X3 − ra5X4.

Then the corresponding components of both derivatives are the same. Finally we can
set b3 = 0, by rotating the distribution N2 such that X3 lies in the direction of ∇X1X2,
projected on N2.

It is interesting to note that N2 is an integrable distribution. The distribution N1

however is integrable if and only if b2 = 0. Applying (7), we obtain the following
result.

Lemma 2.2. The equations (7) on our frame of choice induce a system of differ-
ential equations given by:

(X1 + iX2)(a2 − ib2) = a3(a6 + ib6),(13)

X3(a2 + ib2) = ε+ a2
3 + (a2 + ib2)2,(14)

X4(a2 + ib2) = a3(a2 + ib2),(15)

(X1 + iX2)(a3) = −(a2 − ib2)(a6 + ib6),(16)

X3(a3) = 0,(17)



766 Franki Dillen, Christine Scharlach, Kristof Schoels and Luc Vrancken

X4(a3) = a2
3 + ε,(18)

X1(b6) −X2(a6) = −(a1a6 + b1b6),(19)

X3(a6 + ib6) =
5
3
ib2(a6 + ib6),(20)

X4(a6 + ib6) = 2a3(a6 + ib6),(21)

X1(b1) −X2(a1) = 2r2 − (ε+ a2
3)−

5
3
b22 − a2

2 − a2
1 − b21,(22)

X2(b1) +X1(a1) = −2
3
a2b2,(23)

3X3(a1)−X1(b2) = 3a1a2 − 2b1b2,(24)

3X3(b1)−X2(b2) = 2b2a1 + 3b1a2,(25)

X4(a1 + ib1) = a3(a1 + ib1) +
b2
3

(a6 + ib6).(26)

Proof. This is also a straightforward application of (7). For example:

X1

(
Γ1

23

) −X2

(
Γ1

13

)
= Γr

13Γ
1
2r − Γr

23Γ
1
1r + Γ1

r3Γ
r
12 − Γ1

r3Γ
r
21

= a3b6,

X1

(
Γ2

23

) −X2

(
Γ2

13

)
= Γr

13Γ
2
2r − Γr

23Γ
2
1r + Γ2

r3Γ
r
12 − Γ2

r3Γ
r
21

= −a3a6.

Combining both equations using the usual complex notations leads to (13). The other
equations are obtained in a similar way.

2.3. Warped Products.

In the analysis that follows, we will often encounter warped products of manifolds.
When we consider a warped product of Riemannian manifolds (M1, g1) and (M2, g2)
with warping function ef , where f : M1 → R, we get a Riemannian manifold (M1 ×
M2, gf) where M1 ×M2 as a differentiable manifold is the product of M1 and M2

and the metric gf is given as

gf(X, Y ) = g1(X1, Y1) + e2fg2(X2, Y2),

where a vector field X is uniquely decomposed into a part X1 tangent to M1 and X2

tangent to M2. We denote this warped product as M1 ×ef M2. The following result
can be obtained, see [10].
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Theorem 2.1. Consider a Riemannian manifold (M, g) with Levi-Civita connection
∇ and suppose that on a neighborhood of p ∈ M there are orthogonal distributions
D1 and D2 such that

∀X, Y ∈ D1(i.e. X and Y are sections of D1) : ∇XY ∈ D1,

∀X, Y ∈ D2 : ∇XY = ∇̃XY + g(X, Y )H,

where ∇̃ is the projection of ∇ on D2 and H ∈ D1. Then there exists a function
f : M → R such that on a neighborhood of p, M can be written as M1 ×ef M2,
where Mi is an integral manifold of Di.
If furthermore H = λH0, where ‖H0‖ = 1, and X(λ) = 0 for every X ∈ D2, then
f : M1 → R and H = −gradef .

The first part of the theorem constructs a twisted product, the second part reduces
this to a warped product. This will be useful in choosing coordinates, since the product
structures allows for coordinates to be chosen on each factor separately. In particular,
if dim (D1) = 1, then any non vanishing vector field in D1 can be fixed as a useful
coordinate vector field on M .

3. SUBMANIFOLDS IN C4

3.1. The case where b2 = 0.

The assumption that X3 lies along ∇X1X2 becomes redundant since the latter has
no N2 component. Instead, we can choose X3 in the direction of ∇X1X1, projected
on N2. Hence without loss of generality we can assume that a3 = 0. The equations
(7) show that in this case either a2 = 0 or a6 = b6 = 0. Furthermore calculating
〈R(X1, X4)X1, X4〉 and 〈R(X2, X3), X2, X4〉 in (7) yields

a2d6 = ε = 0,
a2c6 = 0.

So if a2 �= 0, then we also obtain c6 = d6 = 0.

Theorem 3.1. Consider M a special Lagrangian submanifold in C4 having a
pointwise SO(2) � S3-symmetry and an orthogonal frame corresponding to (4). Sup-
pose that N1 is an integrable distribution and ∇X1X1 is nowhere contained within
this distribution. Then M is locally the direct product of R and a Lagrangian cone
over a minimal C-totally real submanifold of the unit sphere in C3.

Proof. Taking into account every component that vanishes in (9), we find
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∇X1X1 = a1X2 + a2X3 ∇X1X2 = −a1X1,

∇X2X1 = b1X2 ∇X2X2 = −b1X1 + a2X3,

∇X3X1 = 0 ∇X3X2 = 0,
∇X4X1 = 0 ∇X4X2 = 0,

∇X1X3 = −a2X1 ∇X1X4 = 0,
∇X2X3 = −a2X2 ∇X2X4 = 0,

∇X3X3 = 0 ∇X3X4 = 0,
∇X4X3 = 0 ∇X4X4 = 0.

We find that the distributions span{X4} and span{X1, X2, X3} satisfy the conditions
for a warped product R×ef N 3. But X4(f) = 0, hence f is a constant. M is a standard
Riemannian product R ×N 3 and its immersion can be written, up to an isometry as

F (t, x) = (t, ψ(x)) , ψ : N 3 → C4.

The immersion ψ is contained in the subspace orthogonal to both X4 and JX4, since
they both are constant unit normals along N 3. Now it is also obvious that span{X3}
and N1 satisfy the conditions for a warped product. So N 3 can be decomposed as
R ×eg N 2 and X3(g) = −a2. Then X3 can be associated with a coordinate s on the
manifold and it follows that

DX3X3 =
∂2F

∂s2
= 0 ⇒ F = As+B.

Both A and B are independent of (s, t). Calculating (7), one has

X3(a2) =
∂a2

∂s
= a2

2.

The solution of this equation, after a translation of the s-coordinate, is given as a2 =
−1

s . The derivatives of X3 to X1 and X2 are

DXiX3 =
∂F∗Xi

∂s
= A∗Xi

=
1
s
Xi = A∗Xi +

B∗Xi

s
⇒ B∗ = 0.

So B is a constant vector along the submanifold and vanishes when applying a transla-
tion. It is easy to see that X3 = A and is orthogonal to Xi = sA∗(Xi), for i ∈ {1, 2}.
Hence everywhere along A, the position vector is orthogonal to the tangent space. Thus
A has constant length. Calculating the other covariant derivatives yields for example
for i, j ∈ {1, 2} that
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A∗Xi =
F∗Xi

s
,

DXi (A∗Xj) =
DXi (F∗Xj)

s
= A∗

(
∇̃XiXj

)
+ JA∗ (K(Xi, Xj)) − 1

s2
δijφ.

(27)

Here ∇̃ is the connection restricted to N 2. Combining this with the other equations
in (7), it follows that A is a C-totally real immersion in S5 ⊂ C3. Furthermore, the
components a1 and b1 have no other restrictions on them except satisfying the Gauss
equations for a minimal C-totally real submanifold of S5. This proves the theorem.

The case a2 = 0 was the only case that was studied in [8]. We can quote the
following result from [8].

Theorem 3.2. Consider M a special Lagrangian submanifold in C4 having a
pointwise SO(2) � S3-symmetry group on the cubic form and an orthogonal frame
corresponding to (4). Suppose that N1 is an integrable distribution and ∇X1X1 is
contained within this distribution. Then M is locally the direct product of R2 and a
holomorphic curve.

Remark 3.1. As proved in [8], a special Lagrangian surface in C2, with complex
coordinates x1+iy1 and x2+iy2 is a holomorphic curve in C2 with complex coordinates
x1 − ix2 and y1 + iy2, and conversely.

3.2. The case where b2 �= 0.

Now the distribution N1 is no longer integrable. The simplest case one can hope
for is that there is a 3-dimensional integrable distribution containing N1. Such a
distribution should contain at least X3 since

[X1, X2] mod N1 ‖ X3.

Using the fact that b2 �= 0, the equations (7) reduce (9) to

(28)

∇X1X1 = a1X2 + a2X3 + a3X4 ∇X1X2 = −a1X1 − b2X3,

∇X2X1 = b1X2 + b2X3 ∇X2X2 = −b1X1 + a2X3 + a3X4,

∇X3X1 = b2
3 X2 ∇X3X2 = − b2

3 X1,

∇X4X1 = 0 ∇X4X2 = 0,
∇X1X3 = −a2X1 + b2X2 + a6X4 ∇X1X4 = −a3X1 − a6X3,

∇X2X3 = −b2X1 − a2X2 + b6X4 ∇X2X4 = −a3X2 − b6X3,

∇X3X3 = a3X4 ∇X3X4 = −a3X3,

∇X4X3 = 0 ∇X4X4 = 0.

In this case, calculating 〈R(X1, X3)X2, X4〉 and 〈R(X1, X4), X2, X4〉 results in

b2(c6 − a3) = 0,
b2d6 = 0.
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This way, we obtain c6 = a3 and d6 = 0. It is apparent that the condition that N+ is
integrable is given by a6 + ib6 = 0. We consider this case first.

Theorem 3.3. Suppose M is a special Lagrangian submanifold in C4 with a
pointwise SO(2) � S3-symmetry, such that N1 is not an integrable distribution, but
N+ is. Then the submanifold is locally either a direct product of R and a special
Lagrangian submanifold in C3 having a pointwise S3-symmetry or a Lagrangian cone
over a minimal C-totally real submanifold of the unit sphere in C4 having a pointwise
S3-symmetry.

Proof. We find according to (28) and (7) that span{X4} and N+ satisfy the
conditions for a warped product. So M can be decomposed as R ×ef N 3, where
X4(f) = −a3. We can solve

X4(a3) =
∂a3

∂t
= a2

3.

This equation has 2 possible solutions.
First, we assume a3 = 0. In this case M is simply the manifold R ×N 3. Hence the
immersion, up to isometry, can be given as

F (t, s, u, v) = (t, φ(s, u, v)),

where φ is a 3-fold immersed in the subspace C3 orthogonal to X4 and JX4. Similar
calculations as in (27) show that this can be any special Lagrangian submanifold in
C3, given the presence of an S3-symmetry in the second fundamental form.
The second solution, after a translation of t, is given by a3 = −1

t . The calculations
are similar to the case where b2 = 0 and a2 �= 0. This gives the required result.

The last case in C4 is the one where there is no integrable distribution containingN1

other than the whole tangent bundle. In this case, we can no longer rely on an obvious
warped product structure. We can attempt to introduce a set of independent coordinates
and reduce (7) to a system of PDE’s on C4 using as little functions as possible. We
will consider a space form with arbitrary ε first and fill in ε = 0 afterwards. We now
use (13) to (26) to construct a coordinate frame from {X1, X2, X3, X4}. Since N2 is
integrable, it is a good idea to choose X4 = T and μX3 = S. Requiring that [S, T ] = 0
implies that

[μX3, X4] = μ [X3, X4] −X4(μ)X3 = − (μa3 +X4(μ))X3 = 0.

We can find such a μ by taking μ = 1√
|ε+a2

3|
. The equation a2

3 + ε = 0 implies that

a3 is a constant and hence (a2 − ib2)(a6 + ib6) = 0. This will correspond to the
integrability of either N1 or N+. Therefore μ is well defined.
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Vector fields U and V can be sought such that every couple out of {S, T, U, V}
commutes. Such an attempt can be made, writing

(29) U + iV = (ρ1 − iρ2)
(
(X1 + iX2) + (α1 + iβ1)S + (α2 + iβ2)T

)

We rename the following expressions:

ρ = ρ1 − iρ2,

γj = αj + iβj j ∈ {1, 2}.

After calculating the Lie brackets of these four vector fields, the following conditions
on the introduced functions make the vector fields commute:

(X1 − iX2)(ρ) = (b1 + ia1) ρ,(30)

X3(ρ) = −
(
a2 +

2
3
ib2

)
ρ,(31)

X4(ρ) = −a3ρ,(32)

X2(α1) −X1(β1) = a1α1 + b1β1 − 2
μ
b2,(33)

X3(γ1) =
1
μ2

(X1 + iX2)(μ) + γ1

(
a2 +

2
3
ib2

)
,(34)

X4(γ1) = −1
μ

(a6 + ib6) + a3γ1,(35)

X2(α2) −X1(β2) = a1α2 + b1β2,(36)

X3(γ2) = (a6 + ib6) +
(
a2 +

2
3
ib2

)
γ2,(37)

X4(γ2) = a3γ2.(38)

The following result can be obtained.

Lemma 3.1. Suppose f and g are real valued functions on the manifold satisfying

S(f) = 0, T (f) = −1,
S(g) = −1, T (g) = 0,

and defining
X1(f) = α2, X2(f) = β2,

X1(g) = α1, X2(g) = β1,

then the functions αi and βi obtained this way satisfy the conditions (33) to (38).
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It is interesting to see that this way the vector fields

Ũ = X1 + α1S + α2T,

Ṽ = X2 + β1S + β2T,

satisfy Ũ(f) = Ũ(g) = Ṽ (f) = Ṽ (g) = 0. Furthermore Ũ and Ṽ are independent
of one-another and they span the distribution which is the intersection of the kernel
of df and dg. Note that this distribution is indeed 2-dimensional since both forms
have a hyperplane as a kernel and these kernels do not coincide, since the 1-forms
are linearly independent. Using the dimension theorem, they have a 2-dimensional
intersection. Construction (29) is just a complex rotation of these two vector fields
in that distribution. This way, it is clear that f and g serve as coordinates s and t
conjugate to S and T .

Proof. Apply the relation

[Xi, Xj] (f) = XiXj(f) −XjXi(f) = ∇XiXj(f) −∇XjXi(f)

on both functions, using (28).

A suitable function for f is easily found, since S(a3) = 0. Let f be a function of
a3, then

X4(f) = f ′(ε+ a2
3) = −1 ⇔ f ′ = − 1

ε+ a2
3

.

Hence f can be given by

f = −
∫

1
ε+ a2

3

da3.

This also determines γ2 completely, since using (16) yields

γ2 = (X1 + iX2)(f) = f ′(X1 + iX2)(a3)

=
a2a6 + b2b6
ε+ a2

3

+ i
a2b6 − b2a6

ε+ a2
3

.

As for the function g, the complex valued function z = μ(a2 + ib2) can be considered
and calculations show

X4(z) = −μa3(a2 + ib2) + μa3(a2 + ib2) = 0,

S(z) = μ2
(
ε+ a2

3 + (a2 + ib2)2
)

= sign
(
ε+ a2

3

)
+ z2.

Rewriting ε̃ = sign(ε + a2
3), we find that z is useful as long as z2 + ε̃ �= 0. When

ε̃ = +1, we have that z2 = −ε̃ thus a2 = 0 and |b2| =
√
ε+ a2

3. When ε̃ = −1, this
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occurs when |a2| =
√|ε+ a2

3| and b2 = 0, resulting in N1 being integrable and the
immersion can be given explicitly. We’ve already considered this for ε = 0.

First we assume that z2 �= −ε̃. Then the function g can be calculated as the real
part of a function G of z given by

S(G) = (ε̃+ z2)G′ = −1 ⇔ G′ = − 1
ε̃+ z2

.

A function ρ still has to be constructed satisfying (30) to (32). Define a function H as

H = ρ3r(z2 + ε̃) |ε+ a2
3|.

Using (30) to (32) we find that X(H) = 0 for all vector fields X . We can scale such
that H = 1. This defines a function ρ satisfying the necessary conditions.

Using the Frobenius theorem in [11], a coordinate frame on the submanifold is
given by

X1 + iX2 =
U + iV

ρ
− γ1S − γ2T,

X3 =
1
μ
S,

X4 = T,

where the coordinates (s, t, u, v) correspond to their coordinate vector fields (S, T, U, V ).
Remember that we assume that ρ �= 0. We can describe the dependence of a6 + ib6 on
(s, t) by writing

a6 + ib6 =
k3 + ik4

ρ

√
|a2

3 + ε| (z̄2 + ε̃
)− 1

2 .

The functions k3 and k4 depend solely on (u, v). This expression is obtained from (20)
and (21). The rest of the equations in (7) can be rewritten and solved. Applying our
method for ε = 0, we find after a translation of the coordinates that

a3 = −1
t
,

x =
sin(2s)

cos(2s) + cosh(2k1)
⇒ a2 = − sin(2s)

t(cos(2s) + cosh(2k1))
,

y =
sinh(2k1)

cos(2s) + cosh(2k1)
⇒ b2 = − sinh(2k1)

t(cos(2s) + cosh(2k1))
,

r =
ek2

t
√

cos(2s) + cosh(2k1)
.

Here, we set z = x + iy. The functions k1 and k2 depend solely on (u, v). Then we
can use (13) to find an expression for γ1 in terms of the coordinates. Equation (10)
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can be used to find an expression for a1 and b1 in terms of the coordinates. We obtain

γ1 =
(k3 + ik4) cos(s− ik1) + t

(
∂k1
∂v − i∂k1

∂u

)
tρ

,

a1 =
2

2
3 e

2
3
k2

3t3 (cos(2s) + cosh(2k1))
2

(
t
(
(cos(2s) + cosh(2k1))(ρ1

∂k2

∂v
+ ρ2

∂k2

∂u
)

+ sin(2s)(ρ1
∂k1

∂u
− ρ2

∂k1

∂v
)− sinh(2k1)(ρ1

∂k1

∂v
+ ρ2

∂k1

∂u
)
)

+ sinh(2k1) (cos(s) cosh(k1)(k4ρ2 − k3ρ1) + sin(s) sinh(k1)(k4ρ1 + k3ρ2))
)
,

b1 =
2

2
3 e

2
3
k2

3t3 (cos(2s) + cosh(2k1))
2

(
t
(
(cos(2s) + cosh(2k1))(ρ2

∂k2

∂v
− ρ1

∂k2

∂u
)

+ sin(2s)(ρ2
∂k1

∂u
+ ρ1

∂k1

∂v
) + sinh(2k1)(ρ1

∂k1

∂u
− ρ2

∂k1

∂v
)
)

+ sinh(2k1) (sin(s) sinh(k1)(k4ρ2 − k3ρ1) − cos(s) cosh(k1)(k4ρ1 + k3ρ2))
)
.

Now every function on the submanifold is expressed in terms of (s, t, u, v), possi-
bly indirectly through {k1, k2, k3, k4}. Demanding that the other Gauss equations are
satisfied gives partial differential equations for ki, given by

Δk1 = −e− 2k2−ln(2)
3 sinh(2k1),

Δk2 = 3e−
2k2−ln(2)

3

(
−e2k2 + cosh(2k1)

)
,

∂k4

∂v
+
∂k3

∂u
= −2 coth(k1)

(
k3
∂k1

∂u
+ k4

∂k1

∂v

)
,

∂k4

∂u
− ∂k3

∂v
= 2 tanh(k1)

(
k3
∂k1

∂v
− k4

∂k1

∂u

)
.

(39)

These equations can be simplified by considering ki as functions of a complex coordi-
nate u+ iv. Let us denote

∂ =
1
2

(
∂

∂u
− i

∂

∂v

)
,

∂̄ =
1
2

(
∂

∂u
+ i

∂

∂v

)
.

We define ω = 2k2−ln(2)
3 and α = sinh(2k1)(k3−ik4)

2 . We can rewrite (39) as

∂̄α = −2ᾱ∂k1csch(2k1),

2∂∂̄k1 = −1
2
e−ω sinh(2k1),

∂∂̄ω = −e2ω +
1
2
e−ω cosh(2k1).
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A similar set of PDE can be found in [3].
Now we return to the case where −1 = z2 and ε̃ = 1. We assume first that ε is not
specified. In this case a2 = 0, b2 = ±√

ε+ a2
3 and S(z) = 0, so z is insufficient to

construct the function g. Equations (7) are reduced to

(X1 − iX2)(a6 + ib6) = −i(b1 + ia1)(a6 + ib6),(40)

X3(a6 + ib6) = ±i5
3

√
ε+ a2

3(a6 + ib6),(41)

X4(a6 + ib6) = 2a3(a6 + ib6),(42)

X1(b1) −X2(a1) = 2r2 − 8
3
(ε+ a2

3)− a2
1 − b21,(43)

X1(a1) +X2(b1) = 0,(44)

X3(a1 + ib1) =
i

3

(
a3(a6 + ib6) ± 2

√
ε+ a2

3(a1 + ib1)
)
,(45)

X4(a1 + ib1) = a3(a1 + ib1) ±
√
ε+ a2

3

(a6 + ib6)
3

.(46)

The first equation is obtained by applying integrability on a3. Now we define

w =
a6 + ib6
ε+ a2

3

,

which after derivation gives

X4(w) = −2a3
(a6 + ib6)
ε+ a2

3

+ 2a3
a6 + ib6
ε+ a2

3

= 0,

S(w) = ±i5
3
w.

The resulting differential equation for a function G of w will be

S(G) = ±G′i
5
3
w = −1 ⇔ G′ = ±i 3

5w
.

The solution is that G is a logarithm of w. We find that H defined by

H = w2(ε+ a2
3)

2ρ5r

is a constant and hence can be used to express ρ. We can thus solve w as

w = ek1±i 5
3
s = ek1

(
cos(

5
3
s) ± i sin(

5
3
s)

)
.

Applying (11), (12), (18), (41) and (42) when ε = 0 yields
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a3 = −1
t
,

a6 = ek1
cos( 5

3s)
t2

,

b6 = ±ek1
sin( 5

3s)
t2

,

r =
ek2

t
.

The equation (10) now gives a1 + ib1 immediately without going through γ1 because
of (11). The final unknown, γ1, can then be determined using (40). When we pick
b2 = a3, we obtain

γ1+ =
−5ek1+

5si
3 + e

2k1+k2
5

+ 2si
3 t

(
(∂k2

∂v − 3∂k1
∂v ) − i(∂k2

∂u − 3∂k1
∂u )

)
5t2

,

a1+ =
ek1 cos( 5s

3 ) + e
2k1+k2

5 t
(
cos( 2s

3 )∂k2
∂v + sin( 2s

3 )∂k2
∂u

)
3t2

,

b1+ =
ek1 sin( 5s

3 ) − e
2k1+k2

5 t
(
cos( 2s

3 )∂k2
∂u − sin( 2s

3 )∂k2
∂v

)
3t2

,

and for b2 = −a3 we obtain

γ1− =
−5ek1− 5si

3 + e
2k1+k2

5
− 2si

3 t
(
(3∂k1

∂v − ∂k2
∂v ) − i(3∂k1

∂u − ∂k2
∂u )

)
5t2

,

a1− =
−ek1 cos( 5s

3 ) + e
2k1+k2

5 t
(
cos( 2s

3 )∂k2
∂v − sin( 2s

3 )∂k2
∂u

)
3t2

,

b1− =
ek1 sin( 5s

3 ) − e
2k1+k2

5 t
(
cos( 2s

3 )∂k2
∂u + sin( 2s

3 )∂k2
∂v

)
3t2

.

Equations(33) and (43) result in restrictions on the functions k1 and k2 of (u, v) given
by

Δk1 = e−
2
5
(2k1+k2)(6− 2e2k2),

Δk2 = e−
2
5
(2k1+k2)(8− 6e2k2).

(47)

These equations are valid for both b2 = ±a3. Defining ω1 = 6k1−2k2
5 and ω2 =

2k1−4k2
5 , these equations become
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∂∂̄ω1 = eω2−ω1 ,

∂∂̄ω2 = e−2ω2 − eω2−ω1 .

Using the constructed functions, the rest of the Gauss equations do not impose further
conditions. We can summarize this result in the following theorem.

Theorem 3.4. Each special Lagrangian submanifold of C4 with a pointwise
SO(2) � S3-symmetry where the only integral distribution containing N1 is the tan-
gent bundle, can be constructed in the way above using either functions {k1, k2, k3, k4}
subject to (39) or functions {k1, k2} subject to (47). Conversely, each such a con-
struction results in such a submanifold, unique up to local isometry.

In the upcoming sections we will consider the construction for ε = ±1.

4. SUBMANIFOLDS IN CP 4

4.1. The case where b2 = 0.
This means that both N1 and N2 are integrable distributions. We can assume

a3 = 0. However, the Gauss equation

(48) X3(a2) = 1 + a2
2

no longer allows for a2 being a constant. The following result is obtained:

Theorem 4.1. Suppose M is a special Lagrangian submanifold in CP 4 having a
pointwise SO(2) � S3-symmetry. Suppose N1 is integrable. Then M can be lifted
horizontally to a submanifold in the unit sphere of C5 through F and this lift is
congruent to

(49) F (t, s, u, v) = (φ(u, v) cos(s), sin(s) cos(t), sin(s) sin(t)) ,

where φ is a minimal C-totally real submanifold in the unit sphere of C3.
Remark 4.1. Thus, we can take a minimal C-totally real submanifold in an S5 ⊂

C3 part and a unit circle in the complementary part. We then connect any random point
of the submanifold in S5 with any other point of the circle using a geodesic.

Proof. Equations (7) reduce ∇ to
∇X1X1 = a1X2 + a2X3 ∇X1X2 = −a1X1,

∇X2X1 = b1X2 ∇X2X2 = −b1X1 + a2X3,

∇X3X1 = 0 ∇X3X2 = 0,
∇X4X1 = 0 ∇X4X2 = 0,

∇X1X3 = −a2X1 ∇X1X4 = 0,
∇X2X3 = −a2X2 ∇X2X4 = 0,

∇X3X3 = 0 ∇X3X4 = 0,
∇X4X3 = X4

a2
∇X4X4 = −X3

a2
.



778 Franki Dillen, Christine Scharlach, Kristof Schoels and Luc Vrancken

The distributions N1 and N2 satisfy the conditions for a warped product N2 ×ef N1.
Furthermore, the distributions span{X3} and span{X4} satisfy those of a warped
product and we can write M = R×eg R×ef N1. The functions f and g depend solely
on the parameter corresponding to X3 and are given byX3(f) = −a2 and X3(g) = 1

a2
.

We can assume X3 = ∂
∂s on the submanifold. We can also find a function μ(s) such

that μX4 = ∂
∂t . To find a suitable μ, we set μ as a function of a2 and solve

[X3, μX4] =
(
X3(μ) − μ

a2

)
X4 =

(
μ′(1 + a2

2) −
μ

a2

)
X4 = 0.

The function μ = a2√
1+a2

2

satisfies this equation. We can find a2(s) by solving

∂a2

∂s
= 1 + a2

2 ⇒ a2 = tan(s).

Hence μ(s) = sin(s) and we calculate for i ∈ {1, 2} that

D ∂
∂s

∂

∂s
=
∂2F

∂s2
= −F

⇒ F = A cos(s) +B sin(s),

D ∂
∂t

∂

∂s
=
∂2F

∂t∂s
= −∂A

∂t
sin(s) +

∂B

∂t
cos(s)

= cot(s)
∂F

∂t
=

cos(s)2

sin(s)
∂A

∂t
+ cos(s)

∂B

∂t

⇒ ∂A

∂t
= 0,

DXi

∂

∂s
=
∂F∗Xi

∂s
= −A∗Xi sin(s) + B∗Xi cos(s)

= − tan(s)Xi = −A∗Xi sin(s) − sin(s)2

cos(s)
B∗Xi

⇒ B∗Xi = 0.

So A is the immersion of N1 and B is a curve tangent to X4. Because F lies in the
unit sphere, one has

〈F, F 〉 = cos(s)2〈A,A〉+ sin(s)2〈B,B〉 + sin(2s)〈A,B〉 = 1,

which implies that A and B have both unit length and are orthogonal. We can also
calculate

D ∂
∂t

∂

∂t
= − cos(s) sin(s)

∂F

∂s
− sin(s)2F = − sin(s)B

=
∂2F

∂t2
= sin(s)

∂2B

∂t2

⇒ B = B1 cos(t) + B2 sin(t).
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Vector fields B1 and B2 are constant, normalized and orthogonal. This follows from
the fact that 〈B,B〉 = 1. The fact that ∂F

∂s is orthogonal to iF implies that A is
orthogonal to both iB1 and iB2. Finally similar to (27), A can be shown to be any
special Lagrangian submanifold in CP 2 lifted to the unit sphere in C3 orthogonal to
B1 and B2 directions. Fixing B1 and B2 by an isometry leads to (49).

4.2. The case where b2 �= 0.

When N+ is integrable, so when a6 = b6 = 0, the equations for ∇ are given by
(28). We have:

Theorem 4.2. Suppose M is a special Lagrangian submanifold in CP 4 having a
pointwise SO(2) � S3 symmetry on the cubic form. Suppose N+ is integrable. Then
M can be lifted horizontally to a submanifold in the unit sphere of C5 through F and
is locally isometric to

(50) F (t, s, u, v) = (φ(s, u, v) cos(t), sin(t)) ,

where φ is a minimal C-totally real submanifold with a pointwise S3-symmetry of the
unit sphere in C4.

Remark 4.2. The construction of this submanifold is similar to the construction
of a Lagrangian cone in C4. You simply let a geodesic run through every point of the
C-totally real submanifold and the fixed point (0, 0, 0, 0, 1).

Proof. The manifold is a warped product R×ef N 3. Solving the Gauss equation

X4(a3) =
∂a3

∂t
= 1 + a2

3

yields a3 = tan(t). For i ∈ {1, 2, 3} this implies

DX4X4 =
∂2F

∂t2
= −F

⇒ F = A cos(t) +B sin(t),
DXiX4 = −A∗Xi sin(t) + B∗Xi cos(t)

= − tan(t)Xi = −A∗Xi sin(t) −B∗Xi
sin(t)2

cos(t)
⇒ B∗ = 0.

Thus B is a constant vector field along the submanifold and A is an immersion of a
3-fold N 3. Using the fact that F is of unit length, A and B are orthogonal and of unit
length. Using calculations similar to (27) A is a minimal C-totally real submanifold
in S7 having pointwise S3-symmetry on the cubic form, where S7 lies in the subspace
orthogonal to B and JB. Applying a suitable isometry results in (50).
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The method to solve the case where the only integrable distribution containing N1

is the tangent bundle has been analyzed earlier for a non-specific complex space form.
We can now fill in ε = 1 and we find for z2 �= −1 that

a3 = tan(t),

a2 =
sin(2s)

cos(t)(cos(2s) + cosh(2k1))
,

b2 =
sinh(2k1)

cos(t)(cos(2s) + cosh(2k1))
,

r =
ek2

cos(t)
√

cos(2s) + cosh(2k1)
,

a6 + ib6 =
k3 + ik4

ρ

√
1 + a2

3

(
1 + z̄2

)− 1
2 ,

where the functions ki depend only on (u, v). Solving (7), we obtain furthermore that

γ1 =
− tan(t)(k3 + ik4) cos(s− ik1) +

(
∂k1
∂v − i∂k1

∂u

)
ρ

,

a1 =
2

2
3 e

2
3
k2

3 cos(t)2 (cos(2s) + cosh(2k1))
2

(
(cos(2s) + cosh(2k1))(ρ1

∂k2

∂v
+ ρ2

∂k2

∂u
)

+ sin(2s)(ρ1
∂k1

∂u
− ρ2

∂k1

∂v
) − sinh(2k1)(ρ1

∂k1

∂v
+ ρ2

∂k1

∂u
)

− tan(t) sinh(2k1) (cos(s) cosh(k1)(k4ρ2 − k3ρ1)
+ sin(s) sinh(k1)(k4ρ1 + k3ρ2))

)
,

b1 =
2

2
3 e

2
3
k2

3 cos(t)2 (cos(2s) + cosh(2k1))
2

(
(cos(2s) + cosh(2k1))(ρ2

∂k2

∂v
− ρ1

∂k2

∂u
)

+ sin(2s)(ρ2
∂k1

∂u
+ ρ1

∂k1

∂v
) + sinh(2k1)(ρ1

∂k1

∂u
− ρ2

∂k1

∂v
)

− sinh(2k1) tan(t) (sin(s) sinh(k1)(k4ρ2 − k3ρ1)
− cos(s) cosh(k1)(k4ρ1 + k3ρ2))

)
.

The other equations in (7) impose restrictions on {k1, k2, k3, k4} given by

Δk1 =
sinh(2k1)

2

(
k2

3 + k2
4 − 2e−

2k2−ln(2)
3

)
,

Δk2 = 3e−
2k2−ln(2)

3

(
cosh(2k1)− e2k2

)
,

∂k4

∂v
+
∂k3

∂u
= −2 coth(k1)

(
k3
∂k1

∂u
+ k4

∂k1

∂v

)
,

∂k4

∂u
− ∂k3

∂v
= 2 tanh(k1)

(
k3
∂k1

∂v
− k4

∂k1

∂u

)
.

(51)
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We can simplify these equations using u+ iv as a complex coordinate as we did in the
C4 case. Defining α = sinh(2k1)(k3−ik4)

2 and ω = 2k2−ln(2)
3 , we obtain

∂̄α = −2ᾱ∂k1csch(2k1),

2∂∂̄k1 = |α|2csch(2k1) − 1
2
e−ω sinh(2k1),

∂∂̄ω = −e2ω +
1
2
e−ω cosh(2k1).

These equations can also be compared to what is obtained in [3].
When a2 = 0 and b2 = ±√

1 + a2
3, we find

a6 =
ek1 cos( 5

3s)
cos(t)2

;

b6 = ±e
k1 sin( 5

3s)
cos(t)2

;

r =
ek2

cos(t)
.

Furthermore, we obtain for b2 =
√

1 + a2
3 that

γ1+ =
−5ek1+ 5si

3 tan(t) + e
2k1+k2

5
+ 2si

3

(
(∂k2

∂v − 3∂k1
∂v )− i(∂k2

∂u − 3∂k1
∂u )

)
5 cos(t)

,

a1+ =
ek1 cos( 5s

3 ) tan(t) + e
2k1+k2

5

(
cos( 2s

3 )∂k2
∂v + sin( 2s

3 )∂k2
∂u

)
3 cos(t)

,

b1+ =
ek1 sin( 5s

3 ) tan(t) − e
2k1+k2

5

(
cos( 2s

3 )∂k2
∂u − sin( 2s

3 )∂k2
∂v

)
3 cos(t)

,

and for b2 = −
√

1 + a2
3 we obtain

γ1− =
−5ek1− 5si

3 tan(t) + e
2k1+k2

5
− 2si

3

(
(3∂k1

∂v − ∂k2
∂v )− i(3∂k1

∂u − ∂k2
∂u )

)
5 cos(t)

,

a1− =
−ek1 cos( 5s

3 ) tan(t) + e
2k1+k2

5

(
cos( 2s

3 )∂k2
∂v − sin( 2s

3 )∂k2
∂u

)
3 cos(t)

,

b1− =
ek1 sin( 5s

3 ) tan(t) − e
2k1+k2

5

(
cos( 2s

3 )∂k2
∂u + sin( 2s

3 )∂k2
∂v

)
3 cos(t)

.
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Solving the last equations in (7) implies restrictions on the functions k1(u, v) and
k2(u, v) given by

Δk1 = 2e−
2(2k1+k2)

5

(
3 − e2k1 − e2k2

)

Δk2 = e−
2(2k1+k2)

5

(
8− e2k1 − 6e2k2

)
.

(52)

These equations are valid for both b2 = ±
√

1 + a2
3. Similarly to the case in C4, we

can define ω1 = 6k1−2k2
5 and ω2 = 2k1−4k2

5 to obtain

∂∂̄ω1 = eω2−ω1 − eω1−ln(2),

∂∂̄ω2 = e−2ω2 − eω2−ω1 .

We summarize this in the following theorem.

Theorem 4.3. Each special Lagrangian submanifold of CP 4 with a pointwise
SO(2) � S3-symmetry where the only integral distribution containing N1 is the tan-
gent bundle, can be constructed in the way above using either functions {k1, k2, k3, k4}
subject to (51) or functions {k1, k2} subject to (52). Conversely, each such a con-
struction results in such a submanifold, unique up to local isometry.

5. SUBMANIFOLDS IN CH4

5.1. The case where b2 = 0.
This is the case where N1 is an integrable distribution. We assume that a3 = 0.

Similar to the case in CP 4 we have that M is a double warped product R×eg R×ef N 2.
The function a2 depends only on the coordinate s and is given by

∂a2

∂s
= a2

2 − 1.

This equation has 4 possible solutions, depending on the initial conditions. For a2(0) =
±1, it is a constant. For |a2(0)| > 1 it is given as a2 = − coth(s), up to translation
of s. Finally for |a2(0)| < 1, it is given as a2(s) = − tanh(s), up to translation of s.
The connection ∇ is given by

∇X1X1 = a1X2 + a2X3 ∇X1X2 = −a1X1,

∇X2X1 = b1X2 ∇X2X2 = −b1X1 + a2X3,

∇X3X1 = 0 ∇X3X2 = 0,
∇X4X1 = 0 ∇X4X2 = 0,

∇X1X3 = −a2X1 ∇X1X4 = 0,
∇X2X3 = −a2X2 ∇X2X4 = 0,

∇X3X3 = 0 ∇X3X4 = 0,
∇X4X3 = −X4

a2
∇X4X4 = X3

a2
.

We have the following result.
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Theorem 5.1. Suppose M is a special Lagrangian submanifold in CH4 having a
pointwise SO(2)�S3-symmetry on the cubic form. Suppose N1 is integrable. Then M
can be lifted horizontally to a submanifold in H9 through F and is locally isometric
to either

(53) F (t, s, u, v) = (φ(u, v) cosh(s), sin(t) sinh(s), cos(t) sinh(s)) ,

where φ is a minimal C-totally real submanifold of H5 ⊂ C3 in case a2
2 < 1, or

(54) F (t, s, u, v) = (cosh(t) cosh(s), sinh(t) cosh(s), φ(u, v) sinh(s)) ,

where φ is a minimal C-totally real submanifold of S5 ⊂ C3 in case a2
2 > 1, or

(55) F (t, s, u, v) =
(

(φ(u, v), t)e−s,−1
2
e−s,

(‖(φ(u, v), t)‖2 + if(u, v)
)
e−s+es

)
,

where φ is a holomorphic curve in C2 and f is an integral of the differential form

2
2∑

i=1

(
xidyi − yidxi

)

on C2 in case a2
2 = 1.

Remark 5.1.

• In (55) the coordinates are taken slightly differently, namely such that

〈�z, �w〉 = �
⎛
⎝ 3∑

j=1

zjw̄j + z4w̄5 + z5w̄4

⎞
⎠ .

• The first 2 cases are similar to the CP 4 case in that we connect a C-totally real
submanifold in the first part and connect it with a complementary geodesic curve
using a geodesic.

Proof. We can check similarly to the case in CP 4 that M = R ×eg R ×ef ×N 2,
where f and g are functions on the first factor, determined by X3(g) = − 1

a2
and

X3(f) = −a2. We can treat the cases separately for each solution to a2(s).
Assume a2 = − tanh(s), then it is easy to see that ∂

∂t = − sinh(s)X4 commutes
with ∂

∂s . The Gauss identity now implies for i ∈ {1, 2} that

D ∂
∂s

∂

∂s
=
∂2F

∂s2
= F

⇒ F = A sinh(s) +B cosh(s),

D ∂
∂t

∂

∂s
=
∂2F

∂t∂s
=
∂A

∂t
cosh(s) +

∂B

∂t
sinh(s)
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= coth(s)
∂F

∂t
=
∂A

∂t
cosh(s) +

∂B

∂t

cosh(s)2

sinh(s)

⇒ ∂B

∂t
= 0,

DXi

∂

∂s
=
∂F∗Xi

∂s
= A∗Xi cosh(s) + B∗Xi sinh(s)

= tanh(s)Xi = A∗Xi
sinh(s)2

cosh(s)
+ B∗Xi sinh(s)

⇒ A∗Xi = 0.

Using the fact that 〈F, F 〉1 = −1, we get that 〈B,B〉1 = −〈A,A〉1 = −1 and
〈A,B〉1 = 0. Furthermore, we find

D ∂
∂t

∂

∂t
=
∂2F

∂t2
=
∂2A

∂t2
sinh(s)

= − cosh(s) sinh(s)
∂F

∂s
+ sinh(s)2F = −A sinh(s)

⇒ A = A1 cos(t) +A2 sin(t).

Because A has unit length, so do A1 and A2 and they are both orthogonal. Calculations
similar to (27) show that B can be taken as the horizontal lift of any special Lagrangian
submanifold in CH2 and applying a suitable isometry gives (53).
For a2 = − coth(s) up to translation of s calculations similar to the previous case
result in (54).
Finally we assume a2 = 1. Then the vector field given by ∂

∂t = e−sX4 commutes with
∂
∂s . We can calculate for i ∈ {1, 2} that

D ∂
∂s

∂

∂s
=
∂2F

∂s2
= F ⇒ F = Aes + Be−s,

D ∂
∂t

∂

∂s
=
∂2F

∂t∂s
=
∂A

∂t
es − ∂B

∂t
e−s

= −∂F
∂t

= −∂A
∂t
es − ∂B

∂t
e−s

⇒ ∂A

∂t
= 0,

DXi

∂

∂s
=
∂F∗Xi

∂s
= A∗Xie

s −B∗Xie
−s

= −F∗Xi = − (
A∗Xie

s + B∗Xie
−s

)
⇒ A∗ = 0.

Using the fact that 〈F, F 〉1 = −1, we obtain that A and B are vector fields with 0
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length and they satisfy 〈A,B〉1 = −1
2 . Further calculations show

D ∂
∂t

∂

∂t
=
∂2F

∂t2
= e−s ∂

2B

∂t2

= e−2s

(
∂F

∂s
+ F

)
= 2Ae−s

⇒ B = At2 +B1t+ B2,

DXi

∂

∂t
=
∂F∗Xi

∂t
= B1∗Xie

−s = 0

⇒ B1∗ = 0.

We can conclude that F has the form

F =
(
At2 +B1t+ φ

)
e−s + Aes

Here, φ is an immersion of a 2-fold in C5
1 tangent to N1. Calculating the scalar products

of B and A, we get

〈A,B〉1 = t〈A,B1〉1 + 〈A, φ〉1 = −1
2

⇒ 〈A,B1〉1 = 0 and 〈A, φ〉1 = −1
2
,

〈B,B〉1 = t2 (〈B1, B1〉1 − 1) + 2t〈B1, φ〉1 + 〈φ, φ〉1 = 0
⇒ 〈B1, B1〉1 = 1 and 〈B1, φ〉1 = 0 and 〈φ, φ〉1 = 0.

(56)

We can shift to a different standard basis of C5
1 such that

〈�z, �w〉 = �
⎛
⎝ 3∑

j=1

zjw̄j + z4w̄5 + z5w̄4

⎞
⎠ .

In this case the constant light-like vector A and time-like B1, after applying a suitable
isometry, can be chosen to be

A = (0, 0, 0, 0, 1) ,

B1 = (0, 0, 1, 0, 0) .

We can write φ = (φ1, φ2, φ3, φ4, φ5) where φj = xj + iyj . Then (56) implies

x4 = −1
2
,

x3 = 0,

x5 − 2y4y5 =
3∑

j=1

|φj|2.
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We can use the fact that both F and iF are orthogonal to the tangent space in C5
1 and

this results in

φ4 = −1
2
,

φ3 = 0,

dy5 = 2
2∑

i=1

(xidyi − yidxi).

This last equation is integrable if and only if its derivative vanishes on the submanifold.
But this derivative is nothing more than a multiple of the Kähler form on C2 spanned
by the first 2 complex coordinates. In other words, for such a submanifold to exist, the
projection of φ onto the first 2 coordinates should be a Lagrangian submanifold in C2.
Calculating the Gauss identity on DXiXj we find that the metric on this immersion is
given by

〈φ∗Xi, φ∗Xj〉 = e2sδij,

where 〈a, b〉 is the standard scalar product on C2 and φ here is the restriction to the
first 2 complex coordinates. Because 〈F∗Xi, F∗Xj〉 = δij and because φ3∗ = 0 and
φ4∗ = 0 this condition is included in the warped product structure. Using calculations
like (27) we conclude that (φ1, φ2) can be any special Lagrangian 2-fold in C2. The
result is summarized in (55).
It can be remarked that the solution a2 = −1 just switches es and e−s in the immersion,
hence corresponds to a coordinate change of s→ −s.
5.2 The case where b2 �= 0.

First we assume that N+ is an integrable distribution. This is equivalent to a6 +
ib6 = 0. The connection is given by (28), resulting in a warped product structure
R ×ef N 3. The equation

X4(a3) =
∂a3

∂t
= a2

3 − 1

has a solution given as |a3| = 1, a3 = − tanh(t) or a3 = − coth(t), depending on the
initial value of a3. Using an analysis similar to the case of CP 4 and the cases above
gives the following result.

Theorem 5.2. Suppose M is a special Lagrangian submanifold in CH4 having
a pointwise SO(2) � S3-symmetry on the cubic form. Suppose N1 is non-integrable,
but is contained in the integrable N+ distribution. Then M can be lifted horizontally
to a submanifold in H9 through F and is locally isometric to either

(57) F (t, s, u, v) = (φ(s, u, v) cosh(t), sinh(t)) ,
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where φ is a minimal C-totally real submanifold with a pointwise S3-symmetry of
H7 ⊂ C4 in case a2

3 < 1, or

(58) F (t, s, u, v) = (cosh(t), φ(s, u, v) sinh(t)) ,

where φ is a minimal C-totally real submanifold with a pointwise S3-symmetry of
S7 ⊂ C4 in case a2

3 > 1, or

(59) F (t, s, u, v) =
(
φ(s, u, v)e−t,−e−t/2,

(‖φ(s, u, v)‖2 + if(s, u, v)
)
e−t + et

)
,

where φ is a special Lagrangian submanifold in C3 with a pointwise S3-symmetry and
f is an integral of the differential form

2
3∑

i=1

(
xidyi − yidxi

)
.

Remark 5.2. As in CP 4 the first 2 immersions are constructed similarly to a
Lagrangian cone in C4.

Finally we assume that there is no integrable distribution that contains N1 except
for the tangent bundle. We return to the analysis as done for C4, but set ε = −1. The
result will depend on the initial value of a3. First assume that a2

3 < 1, then ε̃ = −1.
We find functions {k1, k2, k3, k4} of (u, v) such that

a3 = − tanh(t),

a2 = − sinh(2s)
cosh(t) (cosh(2s) + cos(2k1))

,

b2 = − sin(2k1)
cosh(t) (cosh(2s) + cos(2k1))

,

r =
ek2

cosh(t)
√

cosh(2s) + cos(2k1)
,

a6 + ib6 =
k3 + ik4

ρ

√
1− a2

3

(
1 − z̄2

)− 1
2 .

Using (7) as earlier, we obtain a1, b1, γ1 as

γ1 =
− tanh(t)(k3 + ik4) cosh(s− ik1) +

(
∂k1
∂v − i∂k1

∂u

)
ρ

,

a1 =
2

2
3 e

2
3
k2

3 cosh(t)2 (cosh(2s) + cos(2k1))
2

(
(cosh(2s) + cos(2k1))(ρ1

∂k2

∂v
+ ρ2

∂k2

∂u
)

+ sinh(2s)(ρ2
∂k1

∂v
− ρ1

∂k1

∂u
) + sin(2k1)(ρ1

∂k1

∂v
+ ρ2

∂k1

∂u
)
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+ sin(2k1) tanh(t) (cosh(s) cos(k1)(k4ρ2 − k3ρ1)

− sinh(s) sin(k1)(k4ρ1 + k3ρ2))
)
,

b1 =
2

2
3 e

2
3
k2

3 cosh(t)2 (cosh(2s) + cos(2k1))
2

(
(cosh(2s) + cos(2k1))(ρ2

∂k2

∂v
− ρ1

∂k2

∂u
)

− sinh(2s)(ρ2
∂k1

∂u
+ ρ1

∂k1

∂v
) − sin(2k1)(ρ1

∂k1

∂u
− ρ2

∂k1

∂v
)
)

− sin(2k1) tanh(t) (sinh(s) sin(k1)(k4ρ2 − k3ρ1)
+ cosh(s) cos(k1)(k4ρ1 + k3ρ2))

)
.

The other equations in (7) put restrictions on {k1, k2, k3, k4} given by

Δk1 =
sin(2k1)

2

(
2e−

2k2−ln(2)
3 + k2

3 + k2
4

)
,

Δk2 = −3e−
2k2−ln(2)

3

(
e2k2 + cos(2k1)

)
,

∂k4

∂v
+
∂k3

∂u
= −2 cot(k1)

(
k3
∂k1

∂u
+ k4

∂k1

∂v

)
,

∂k4

∂u
− ∂k3

∂v
= 2 tan(k1)

(
k4
∂k1

∂u
− k3

∂k1

∂v

)
.

(60)

We can use u + iv as a complex coordinate to simplify these equations. In this case,
we define α = sin(2k1)(k3−ik4)

2 and ω = 2k2−ln(2)
3 and obtain

∂̄α = −2ᾱ∂k1 csc(2k1),

2∂∂̄k1 = |α|2 csc(2k1) +
1
2
e−ω sin(2k1),

∂∂̄ω = −e2ω − 1
2
e−ω cos(2k1).

Here, the equations look slightly different than the other cases because of the presence
of standard goniometric functions instead of hyperbolic ones.
Then we set a2

3 > 1 and assume z2 �= −1. We then find

a3 = − coth(t),

a2 =
sin(2s)

sinh(t) (cos(2s) + cosh(2k1))
,

b2 =
sinh(2k1)

sinh(t) (cos(2s) + cosh(2k1))
,

r =
ek2

sinh(t)
√

cos(2s) + cosh(2k1)
,

a6 + ib6 =
k3 + ik4

ρ

√
a2

3 − 1
(
1 + z̄2

)− 1
2 .
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We obtain

γ1 =
coth(t)(k3 + ik4) cos(s− ik1) +

(
∂k1
∂v − i∂k1

∂u

)
ρ

,

a1 =
2

2
3 e

2
3
k2

3 sinh(t)2 (cos(2s) + cosh(2k1))
2

(
(cos(2s) + cosh(2k1))(ρ1

∂k2

∂v
+ ρ2

∂k2

∂u
)

+ sin(2s)(ρ1
∂k1

∂u
− ρ2

∂k1

∂v
) − sinh(2k1)(ρ1

∂k1

∂v
+ ρ2

∂k1

∂u
)

+ sinh(2k1) coth(t) (cos(s) cosh(k1)(k4ρ2 − k3ρ1)
+ sin(s) sinh(k1)(k4ρ1 + k3ρ2))

)
,

b1 =
2

2
3 e

2
3
k2

3 sinh(t)2 (cosh(2s) + cos(2k1))
2

(
(cosh(2s) + cos(2k1))(ρ2

∂k2

∂v
− ρ1

∂k2

∂u
)

+ sin(2s)(ρ2
∂k1

∂u
+ ρ1

∂k1

∂v
) + sinh(2k1)(ρ1

∂k1

∂u
− ρ2

∂k1

∂v
)
)

− sinh(2k1) coth(t) (sin(s) sinh(k1)(k3ρ1 − k4ρ2)
+ cos(s) cosh(k1)(k4ρ1 + k3ρ2))

)
.

The functions {k1, k2, k3, k4} have to satisfy

Δk1 = −sinh(2k1)
2

(
2e−

2k2−ln(2)
3 + k2

3 + k2
4

)
,

Δk2 = 3e−
2k2−ln(2)

3

(
cosh(2k1) − e2k2

)
,

∂k4

∂v
+
∂k3

∂u
= −2 coth(k1)

(
k3
∂k1

∂u
+ k4

∂k1

∂v

)
,

∂k4

∂u
− ∂k3

∂v
= 2 tanh(k1)

(
k3
∂k1

∂v
− k4

∂k1

∂u

)
.

(61)

Using u + iv as a complex coordinate and defining α = sinh(2k1)(k3−ik4)
2 and ω =

2k2−ln(2)
3 , we simplify these as

∂̄α = −2ᾱ∂k1csch(2k1),

2∂∂̄k1 = −|α|2csch(2k1) − 1
2
e−ω sinh(2k1),

∂∂̄ω = −e2ω +
1
2
e−ω cosh(2k1).

Again, these equations compare rather well to those obtained in [3].
Finally, assume a2

3 > 1 and z2 = −1. Then we find
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a3 = − coth(t),

a6 =
ek1 cos( 5

3s)
sinh(t)2

,

b6 = ±e
k1 sin( 5

3s)
sinh(t)2

,

r =
ek2

sinh(t)
.

We obtain for b2 =
√
a2

3 − 1 that

γ1+ =
5ek1+

5si
3 coth(t) + e

2k1+k2
5

+ 2si
3

(
(∂k2

∂v − 3∂k1
∂v ) − i(∂k2

∂u − 3∂k1
∂u )

)
5 sinh(t)

,

a1+ =
−ek1 cos( 5s

3 ) coth(t) + e
2k1+k2

5

(
cos( 2s

3 )∂k2
∂v + sin( 2s

3 )∂k2
∂u

)
3 sinh(t)

,

b1+ =
−ek1 sin( 5s

3 ) coth(t) − e
2k1+k2

5

(
cos( 2s

3 )∂k2
∂u − sin( 2s

3 )∂k2
∂v

)
3 sinh(t)

,

and for b2 = −√
a2

3 − 1 we obtain

γ1− =
5ek1− 5si

3 coth(t) + e
2k1+k2

5
− 2si

3

(
(3∂k1

∂v − ∂k2
∂v ) − i(3∂k1

∂u − ∂k2
∂u )

)
5 sinh(t)

,

a1− =
ek1 cos( 5s

3 ) coth(t) + e
2k1+k2

5

(
cos( 2s

3 )∂k2
∂v − sin( 2s

3 )∂k2
∂u

)
3 sinh(t)

,

b1− =
−ek1 sin( 5s

3 ) coth(t) − e
2k1+k2

5

(
cos( 2s

3 )∂k2
∂u + sin( 2s

3 )∂k2
∂v

)
3 sinh(t)

.

Solving the other Gauss equations results in the relations

Δk1 = e−
2
5
(2k1+k2)

(
6 + 2e2k1 − 2e2k2

)
,

Δk2 = e−
2
5
(2k1+k2)

(
8 + e2k1 − 6e2k2

)
.

(62)

These equations are valid for both b2 = ±
√
a2

3 − 1. As in the previous cases, we can
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define ω1 = 6k1−2k2
5 and ω2 = 2k1−4k2

5 to obtain

∂∂̄ω1 = eω2−ω1 − eω1−(ln(2)+iπ),

∂∂̄ω2 = e−2ω2 − eω2−ω1 .

We can conclude with the following proposition.

Theorem 5.3. Each special Lagrangian submanifold of CH4 with a pointwise
SO(2) �S3-symmetry where the only integral distribution containing N1 is the whole
tangent bundle, can be constructed in the way above using functions {k1, k2, k3, k4}
subject to (60) in case a2

3(0) < 1, subject to (61) in case a2
3(0) > 1, or functions

{k1, k2} subject to (62) when a2
3(0) > 1 and z2 = −1. Conversely, each such a

construction results in such a submanifold, unique up to local isometry.
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