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DIRECTIONAL DERIVATIVES IN SET OPTIMIZATION
WITH THE SET LESS ORDER RELATION

Johannes Jahn

Abstract. Based on a special concept of the difference of sets, a new notion of
the directional derivative of a set-valued map is presented. This theory is applied
to set optimization problems with the known set less order relation, and it results
in necessary and sufficient optimality conditions.

1. INTRODUCTION

Set optimization has developed as an extension of continuous optimization to prob-
lems with set-valued maps. Early investigations have already been carried out in the
1970s. Although most of the papers on set optimization work with the notion of a
minimizer and variants of it, nowadays one works with a more realistic order relation
for the comparison of sets which has been introduced to optimization by Kuroiwa (e.g.,
see [14]; a first publication has been given by Kuroiwa, Tanaka and Ha [15]). Outside
the optimization community this notion has been used by Young [22] in algebra, by
Nishnianidze [18] in fixed point theory and by Chiriaev and Walster [2] in computer
science and interval analysis. Since Chiriaev and Walster introduced the name “set
less” for the comparison of sets, which is also implemented in the FORTRAN compiler
f95 of SUN Microsystems [21], we also use this name in the present paper. In [11]
even more realistic order relations have been proposed. Set optimization has important
real-world applications in socio-economics which have been discussed by Neukel [17].

Several authors have already investigated directional derivatives of set-valued maps.
A first approach to directional derivatives has been given by Kuroiwa [16] in 2009.
Using a special embedding technique directional derivatives are introduced for set-
valued maps and optimality conditions for the lower set less order relation are presented.
In a paper by Hoheisel, Kanzow, Mordukhovich and Phan [7, 8] so-called restrictive
graphical derivatives are introduced which are special directional derivatives, where a
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translation (the difference of a set and a point) is considered instead of the difference of
sets consisting of more than one point. The approach by Hamel and Schrage [5, 6] is
based on a residuation operation and on the solution concept of an infimizer. In a recent
paper Pilecka [19] presents directional derivatives using the geometrical difference of
sets in combination with the lower set less order relation.

The present paper runs in another quite different direction: directional derivatives
of set-valued maps are developed from a computational point of view with respect to
the set less order relation which is generally more useful in real-world applications and
more difficult to treat. Here we interpret a directional derivative as a limit of difference
quotients. In the real- and single-valued case these difference quotients are of the form
“ 0

0” and in order to have comparable results in the set-valued case, set differences
have to be carefully defined. Baier and Farkhi [1] give a good survey on possible set
differences. The approach of the present paper adapts the Demyanov difference [3, 20]
to the structure of set optimization problems with the set less order relation. This new
set difference is then qualified for the appropriate definition of difference quotients and
directional derivatives. This approach can be used numerically and it can be applied
in order to formulate optimality conditions in set optimization.

This paper is organized as follows. In Section 2, we present the new set difference
and we define Lipschitz continuity with respect to this set difference in Section 3.
Directional derivatives are introduced in Section 4. Necessary and sufficient optimality
conditions for constrained set optimization problems with the set less order relation are
given in Section 5.

2. SET DIFFERENCE

In this section we investigate sets in the following setting.

Assumption 2.1. Let (Y, ‖ · ‖Y ) be a real normed space partially ordered by a
convex cone C �= Y .

Let T := C∗ ∩ {� ∈ Y ∗ | ‖�‖Y ∗ = 1} denote the subset of the unit sphere of the
topological dual space Y ∗ belonging to the dual cone C∗. For an arbitrary nonempty
set A ⊂ Y and every � ∈ T we consider the minimization problem

(1) min
y∈A

�(y)

and the maximization problem

(2) max
y∈A

�(y).

At least one solution of these problems exists whenever the constrained set A is weakly
compact. If the set A is strictly convex, then such a solution is even unique.
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Definition 2.1. A subset A with nonempty interior in a real topological linear space
is called strictly convex iff for arbitrary a1, a2 ∈ A with a1 �= a2

λa1 + (1 − λ)a2 ∈ int(A) for all λ ∈ (0, 1)

(here int(·) denotes the interior of a set).

Strictly convex sets are “round” sets. Polyhedral sets are not strictly convex. With
the following proposition we recall a well-known result in convex optimization.

Proposition 2.1. Let Assumption 2.1 be satisfied. For every � ∈ T und every
strictly convex and weakly compact set A ⊂ Y the optimization problems (1) and (2)
are uniquely solvable.

Proof. For simplicity, we prove this result only for the minimization problem (1)
for an arbitrary � ∈ T . Since this problem has at least one solution, assume that a1 and
a2 are two different minimal solutions. Because of � �= 0Y ∗ there is some y ∈ Y with
�(y) = −1. For an arbitrary λ ∈ (0, 1) and a sufficiently small μ > 0 we conclude

λa1 + (1− λ)a2 + μy ∈ A

and then we get

�(λa1 + (1− λ)a2 + μy) = �(λa1 + (1 − λ)a2) + μ �(y)︸︷︷︸
=−1

< �(λa1 + (1 − λ)a2).

This is a contradiction to the fact that λa1 + (1 − λ)a2 is a minimal solution (e.g.,
compare [9, Thm. 2.14]).

For convenience, a solution of the minization problem (1) is denoted by ymin(�, A)
and ymax(�, A) denotes a solution of the maximization problem (2).

Now we are able to present the basic definition of the difference of sets.

Definition 2.2. Let Assumption 2.1 be satisfied and let two sets A, B ∈ Y be
given so that for every � ∈ T the solutions ymin(�, A), ymin(�, B), ymax(�, A) and
ymax(�, B) are unique. Then the set

A � B :=
⋃
�∈T

{ymin(�, A)− ymin(�, B), ymax(�, A)− ymax(�, B)}

is called the set difference of the sets A and B.

The set difference A� B consits of all differences of supporting points of the sets
A and B given by supporting hyperplanes defined by continuous linear functionals
� ∈ T . Figure 1 illustrates elements of A � B.
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Definition 2.2 follows the lines of Demyanov’s definition of a difference of sets (see
[3] and also [20]). In both definitions differences of supporting points are considered.
This is an essential tool in set optimization. But there are also two important differences
between the two definitions. In Definition 2.2 the continuous linear functionals are
restricted to the set T (which fits to the vectorization approach in set optimization) and
one does not consider the closure of the convex hull of these difference vectors.

Fig. 1. Illustration of the vectors ymin(�, A) − ymin(�, B) =: �ymin and ymax(�, A) −
ymax(�, B) =: �ymax in Definition 2.2.

Example 2.1. We consider the simple case Y := R and C := R+. Then we
have C∗ = R+ and T = {1}. For arbitrary closed intervals A := [a1, a2] and B :=
[b1, b2] we obtain for � = 1 the optimal solutions ymin(�, A) = a1, ymin(�, B) = b1,
ymax(�, A) = a2 and ymax(�, B) = b2. Then it follows A � B = {a1 − b1, a2 − b2}.
This shows that this set difference has to do with the change of the lower and upper
interval bounds (in contrast to the usual difference in interval arithmetic given by
[a1, a2] − [b1, b2] = [a1 − b2, a2 − b1]).

Remark 2.1. In Definition 2.2 it is assumed that the optimization problems (1)
and (2) are uniquely solvable for two sets A and B. Without loss of generality we
consider only the minimization problem (1). If for some � ∈ T the minimization
problem min

y∈A
�(y) or min

y∈B
�(y) is solvable but not uniquely solvable, then we define

the sets of minimal solutions Ymin(�, A) and Ymin(�, B). In this case we assume that
(Y, ‖ · ‖Y ) is a real reflexive Banach space and we consider the sets

(3)

{
ymin(�, A)− ymin(�, B) |

‖ymin(�, A)− ymin(�, B)‖Y = min
y∈Ymin(�,B)

‖ymin(�, A)− y‖Y

or ‖ymin(�, A)− ymin(�, B)‖Y = min
y∈Ymin(�,A)

‖ymin(�, B)− y‖Y

}
.
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The afore-mentioned approximation problems are solvable, if the constraint sets
Ymin(�, A) and Ymin(�, B) are closed and convex (e.g., compare [9, Thm. 2.18]).
Notice that the sets Ymin(�, A) and Ymin(�, B) are convex, if the sets A and B are
convex (e.g., compare [9, Thm. 2.14]).

The set (3) is the so-called metric difference of the sets Ymin(�, A) and Ymin(�, B)
(see [4] and [1]). This metric difference can be used for an extension of Definition
2.2. Then polyhedral sets can also be investigated in reflexive Banach spaces.

Next we discuss some properties of the difference of sets. Recall that the Minkowski
sum of two nonempty sets A and B is defined by A+B := {a+b | a ∈ A and b ∈ B}
and the multiplication of the set A by some λ ∈ R is denoted by λA := {λa | a ∈ A}.

Lemma 2.1. Let Assumption 2.1 be satisfied. For nonempty sets A, B, A1, A2, B1,
B2 ⊂ Y it follows (if the following differences exist):

(a) A � B = −(B � A)

(b) A � B ⊂ (A � C) + (C � B) for all nonempty sets C ⊂ Y

(c) (αA) � (αB) = α(A � B) for all α ≥ 0

(d) (αA) � (αB) = |α|(B � A) for all α < 0

(e) (αA) � (βA) ⊂ (α − β)A for all α ≥ β ≥ 0

(f) (A1 + A2) � (B1 + B2) ⊂ (A1 � B1) + (A2 � B2)

(g) ({c}+ A) � ({d}+ B) = {c − d} + (A � B) for all c, d ∈ Y

(h) A � {0Y } ⊂ A

(i) A � A = {0Y }
Proof. We generally assume in this proof that � ∈ T is arbitrarily chosen.

(a) With the equality

ymin(�, A)− ymin(�, B) = −(
ymin(�, B)− ymin(�, A)

)

and a corresponding equality for maximal solutions we get the assertion.
(b) The assertion follows from the equality

ymin(�, A)− ymin(�, B) =
(
ymin(�, A)− ymin(�, C)

)
+

(
ymin(�, C)− ymin(�, B)

)

and the associated equality for maximal solutions.
(c) Since for every α ≥ 0

ymin(�, αA)− ymin(�, αB) = α
(
ymin(�, A)− ymin(�, B)

)
,

we get the desired result.
(d) We follow the proof in (c) and apply the result in (a).
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(e) Here we note the equality

ymin(�, αA)− ymin(�, βA) = (α − β)ymin(�, A).

(f) Notice that

ymin(�, A1 + A2) − ymin(�, B1 + B2)
= ymin(�, A1) + ymin(�, A2)− ymin(�, B1) − ymin(�, B2)
=

(
ymin(�, A1)− ymin(�, B1)

)
+

(
ymin(�, A2) − ymin(�, B2)

)
.

(g) The assertion follows from the equality

ymin(�, {c}+ A) − ymin(�, {d}+ B) = (c− d) + ymin(�, A)− ymin(�, B).

(h) We observe that

A � {0Y } =
⋃
�∈T

{ymin(�, A), ymax(�, A)} ⊂ A.

(i) The equality A � A = {0Y } follows directly from the definition of the set
difference.

Baier and Farkhi [1] have formulated axioms which should be fulfilled by set
differences in order to be able to prove basic results. Lemma 2.1 shows that most of
these axioms are fulfilled for the set difference in Definition 2.2.

Example 2.2. Let Assumption 2.1 be satisfied, let Ŝ be a nonempty set, and let
A ⊂ Y be a weakly compact and strictly convex set.
(a) We investigate the set-valued map F : Ŝ ⇒ Y with

F (x) = ϕ(x) · A for all x ∈ Ŝ

where ϕ : Ŝ → R is any real-valued functional. For arbitrary x1, x2 ∈ Ŝ we then
obtain

F (x1) � F (x2)

=
(
ϕ(x1)A

) � (
ϕ(x2)A

)
=

⋃
�∈T

{ymin(�, ϕ(x1)A)− ymin(�, ϕ(x2)A), ymax(�, ϕ(x1)A)− ymax(�, ϕ(x2)A)}

=
⋃
�∈T

{(ϕ(x1) − ϕ(x2))ymin(�, A), (ϕ(x1) − ϕ(x2))ymax(�, A)}

= (ϕ(x1)− ϕ(x2))
(
A � {0Y }

)
.
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(b) Now we investigate the set-valued map F : Ŝ ⇒ Y with

F (x) = {f(x)}+ A for all x ∈ Ŝ

where f : Ŝ → Y is any vector function. For arbitrary x1, x2 ∈ Ŝ we conclude with
Lemma 2.1, (g) and (i)

F (x1) � F (x2) =
({f(x1)} + A

) � ({f(x2)}+ A
)

= {f(x1) − f(x2)} + A � A︸ ︷︷ ︸
={0Y }

= {f(x1) − f(x2)}.

3. LIPSCHITZ CONTINUITY

In this short section we follow the lines of Baier and Farkhi [1] and define Lipschitz
continuity with the set difference � as in [1, Def. 3.1].

Definition 3.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, let Ŝ be a
nonempty subset of X and let F : Ŝ ⇒ Y be a set-valued map. The set-valued map
F is called Lipschitz continuous with Lipschitz constant L > 0 iff

‖F (x1) � F (x2)‖ ≤ L‖x1 − x2‖X for all x1, x2 ∈ Ŝ

where ‖A‖ := sup
y∈A

‖y‖Y for some nonempty set A in Y .

Next we investigate the set-valued maps discussed in Example 2.2.

Example 3.1. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, let Ŝ be a
nonempty subset of X and let A ⊂ Y be a weakly compact and strictly convex set.
(a) For the set-valued map F : Ŝ ⇒ Y with

F (x) = ϕ(x) · A for all x ∈ Ŝ

where ϕ : Ŝ → R is an arbitrary real-valued Lipschitz continuous functional with
Lipschitz constant L > 0, we have with Example 2.2, (a)

F (x1) � F (x2) = (ϕ(x1) − ϕ(x2))
(
A � {0Y }

)

and with Lemma 2.1, (b) it follows for every y ∈ (ϕ(x1) − ϕ(x2))
(
A � {0Y }

)

‖y‖Y ≤ |ϕ(x1)− ϕ(x2)| · ‖A � {0Y }︸ ︷︷ ︸
⊂A

‖

≤ L‖x1 − x2‖X · ‖A‖.
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This implies

‖F (x1)� F (x2)‖ = sup
y∈F (x1)�F (x2)

‖y‖Y ≤ L · ‖A‖ · ‖x1 − x2‖X for all x1, x2 ∈ Ŝ.

Consequently, the set-valued map F is Lipschitz continuous (a related result can be
found in [1, Lemma 3.5]).
(b) For the set-valued map F : Ŝ ⇒ Y with

F (x) = {f(x)}+ A for all x ∈ Ŝ

where f : Ŝ → Y is an arbitrary vector function being Lipschitz continuous with
Lipschitz constant L > 0, we get with Example 2.2, (b)

‖F (x1)� F (x2)‖ = ‖{f(x1) − f(x2)}‖
= ‖f(x1)− f(x2)‖Y

≤ L‖x1 − x2‖X for all x1, x2 ∈ Ŝ.

Proposition 3.2. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed spaces, let Ŝ be
a nonempty subset of X and let F1, F2 : Ŝ ⇒ Y be set-valued maps with weakly
compact and strictly convex images.

(a) If F1 is Lipschitz continuous with Lipschitz constant L1, then for every α ∈ R
the map αF1 is Lipschitz continuous with Lipschitz constant |α|L1.

(b) If F1 and F2 are Lipschitz continuous with Lipschitz constants L1 and L2,
respectively, then the map F1+F2 is Lipschitz continuous with Lipschitz constant
L1 + L2.

Proof. (a) With Lemma 2.1, (c) and (d) we obtain for all α ∈ R

‖(αF1(x1))�(αF1(x2))‖= |α|‖F1(x1)�F1(x2)‖≤|α|L1‖x1−x2‖X for all x1, x2∈ Ŝ.

(b) With Lemma 2.1, (f) we conclude for all x1, x2 ∈ Ŝ

‖(F1(x1) + F2(x1))� (F1(x2) + F2(x2))‖
≤ ‖(F1(x1) � F1(x2)) + (F2(x1)� F2(x2))‖
= sup

y1∈F1(x1)�F1(x2)
y2∈F2(x1)�F2(x2)

‖y1 + y2‖Y

≤ sup
y1∈F1(x1)�F1(x2)

‖y1‖Y + sup
y2∈F2(x1)�F2(x2)

‖y2‖Y

= ‖(F1(x1) � F1(x2))‖+ ‖(F2(x1) � F2(x2))‖
≤ L1‖x1 − x2‖X + L2‖x1 − x2‖X

≤ (L1 + L2)‖x1 − x2‖X .
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Baier and Farkhi have shown in [1, Prop. 3.7] that the result of Proposition 3.2
already holds for the Demyanov difference of sets which is closely related to the set
difference � in this paper.

4. DIRECTIONAL DERIVATIVE

The aim of this paper is to formulate directional derivatives of set-valued maps
which are suitable in set optimization. These derivatives are formulated in the following
setting.

Assumption 4.1. Let (Y, ‖ · ‖Y ) be a real normed space partially ordered by a
convex cone C �= Y , let X be a real linear space, let Ŝ be a subset of X with
nonempty interior int(Ŝ), and let F : Ŝ ⇒ Y be a set-valued map.

According to the real- and single-valued case we will introduce the directional
derivative of F at some x ∈ Ŝ in some direction d ∈ X as a certain limit of sets
1
λ(F (x + λd)� F (x)) for appropriate λ > 0. In the real- and single-valued case such
a difference quotient is nearly of the form “ 0

0” and, therefore, in the set-valued case
it makes certainly sense to use a set difference which becomes small for nearly the
same sets. The set difference of this paper has for appropriate sets A ⊂ Y the property
A � A = {0Y } (see Lemma 2.1, (i)). Consequently, the set difference � seems to be
qualified for the definition of directional derivatives.

It is obvious that the algebraic difference “−a” (see [1, Def. 2.1,(i)]) with
A −a A := {y1 − y2 | y1, y2 ∈ A}

generally is much larger than {0Y }. And the geometric difference “−g” (see [1, Def.
2.1,(ii)]) with

A −g A := {y ∈ Y | {y}+ A ⊂ A}
does not equal {0Y }, in general. The so-called �-difference “−�” introduced in [19,
Def. 5] has even the property A −� A = C where C is the ordering cone in Y .

From a numerical point of view the set difference � seems to be one possible tool
for the introduction of directional derivatives of set-valued maps.

For the following let some x ∈ int(Ŝ) and some d ∈ X be arbitrarily given. Then
we obtain for the difference quotient

1
λ

(F (x + λd)� F (x)) =
1
λ

⋃
�∈T

{ymin(�, F (x + λd))− ymin(�, F (x)),

ymax(�, F (x + λd))− ymax(�, F (x))}

=
⋃
�∈T

{1
λ

(
ymin(�, F (x + λd))− ymin(�, F (x))

)
,

1
λ

(
ymax(�, F (x + λd))− ymax(�, F (x))

)}

for sufficiently small λ > 0.
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So, we consider difference quotients of the minimal and maximal solution functions.
If these vector functions are directionally differentiable, we use the notation

(4) DminF (x, d, �) := lim
λ→0+

1
λ

(
ymin(�, F (x + λd))− ymin(�, F (x))

)
for all � ∈ T

and

(5) DmaxF (x, d, �) := lim
λ→0+

1
λ

(
ymax(�, F (x + λd))− ymax(�, F (x))

)
for all � ∈ T.

This approach motivates the following definition.

Definition 4.1. Let Assumption 4.1 be satisfied and let some x ∈ int(Ŝ) and
some d ∈ X be arbitrarily given. Let the directional derivatives DminF (x, d, �) and
DmaxF (x, d, �) (defined in (4) and (5)) exist for all � ∈ T . Then the set

DF (x, d) :=
⋃
�∈T

{
DminF (x, d, �), DmaxF (x, d, �)

}

is called the directional derivative of F at x in the direction d.

Example 4.1. We pick up on Example 3.1 in [12]. Here we have Y := R2,
C := R2

+, X := Ŝ := R and F : Ŝ ⇒ Y with

F (x) := {(y1, y2) ∈ R2 | (y1 − 2x2)2 + (y2 − 2x2)2 ≤ (x2 + 1)2} for all x ∈ R.

Following [12, Ex. 3.1] we have the minimal solutions

ymin(�, F (x)) = (2x2, 2x2) − (x2 + 1)� for all � ∈ T and all x ∈ R

and the maximal solutions

ymax(�, F (x)) = (2x2, 2x2) + (x2 + 1)� for all � ∈ T and all x ∈ R.

Then we get the difference quotients

1
λ

(
ymin(�, F (x + λd))− ymin(�, F (x))

)

=
1
λ

(
(4λdx + 2λ2d2, 4λdx + 2λ2d2) − (2λdx + λ2d2)�

)

=
1
λ

(
2λdx + λ2d2

)
(2 − �1, 2 − �2)

=
(
2dx + λd2

)
(2 − �1, 2 − �2)

for all x ∈ R, d ∈ R, � ∈ T and sufficiently small λ > 0
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and the directional derivative

DminF (x, d, �) = lim
λ→0+

1
λ

(
ymin(�, F (x + λd))− ymin(�, F (x))

)

= 2dx(2− �1, 2− �2)

for all x ∈ R, d ∈ R and � ∈ T.

Analogously, we conclude

DmaxF (x, d, �) = 2dx(2 + �1, 2 + �2) for all x ∈ R, d ∈ R and � ∈ T.

Then we obtain the directional derivative of F at some x ∈ R in the direction d ∈ R

DF (x, d) = 2dx
⋃
�∈T

{(2− �1, 2− �2), (2 + �1, 2 + �2)}

= 2dx
⋃
�∈T

{(2, 2) ± �}.

Figure 2 illustrates this directional derivative for x := 1
2 and d := 1.

Fig. 2. Illustration of the directional derivative DF (1
2
, 1) in Example 4.1.

Example 4.2. (a) We pick up on Example 2.2, (a) and investigate the set-valued
map F : Ŝ ⇒ Y with

F (x) = ϕ(x) · A for all x ∈ Ŝ.

In addition, we now assume that the set Ŝ has a nonempty interior int(Ŝ) and the
functional ϕ has a directional derivative Dϕ(x, d) at some x ∈ int(Ŝ) in some direction
d ∈ X . With Example 2.2,(a) we obtain the difference quotient

1
λ

(F (x + λd)� F (x)) =
1
λ

(ϕ(x + λd)− ϕ(x))(A� {0Y })

for sufficiently small λ > 0.
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So, we get the directional derivative

DF (x, d) = Dϕ(x, d)(A� {0Y }).
(b) Now we turn our attention to part (b) of Example 2.2. Under the additional
assumption that the vector function f has a directional derivative Df(x, d), we obtain
the difference quotient

1
λ

(F (x + λd)� F (x)) =
{1

λ
(f(x + λd)− f(x))

}
for sufficiently small λ > 0

and, therefore, we conclude

DF (x, d) = {Df(x, d)}.
The next proposition shows that directional derivatives of set-valued maps are pos-

itive homogeneous with respect to the direction.

Proposition 4.1. Let Assumption 4.1 be satisfied and assume that the set-valued
map F has a directional derivative DF (x, d) at some x ∈ int(Ŝ) in some direction
d ∈ X . Then

DF (x, αd) = αDF (x, d) for all α ≥ 0.

Proof. The assertion is obvious for α = 0. Therefore, we assume that some α > 0
is arbitrarily chosen. Then we have

DF (x, αd) =
⋃
�∈T

{
DminF (x, αd, �), DmaxF (x, αd, �)

}

=
⋃
�∈T

{
α lim

αλ→0+

1
αλ

(
ymin(�, F (x + αλd))− ymin(�, F (x))

)
,

α lim
αλ→0+

1
αλ

(
ymax(�, F (x + αλd))− ymax(�, F (x))

)}

= α
⋃
�∈T

{
DminF (x, d, �), DmaxF (x, d, �)

}

= αDF (x, d).

In the case of Lipschitz continuity difference quotients of set-valued maps satisfy
the following convergence result.

Proposition 4.2. Let Assumption 4.1 be satisfied and let some x ∈ int(Ŝ) and
some d ∈ X be arbitrarily given. For sufficiently small λ > 0 we have

lim
d→0X

∥∥∥1
λ

(F (x + λd)� F (x))
∥∥∥ = 0.
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Proof. Since F is Lipschitz continuous with Lipschitz constant L > 0, we obtain
for sufficiently small λ > 0

∥∥∥1
λ

(F (x + λd)� F (x))
∥∥∥ =

1
λ

L‖λd‖X = L‖d‖X

which implies the assertion.

The directional derivative has a rich mathematical structure so that a numerical
approximation of this set can be done on a computer.

Example 4.3. Consider the set-valued map F : (0,∞) ⇒ R with

F (x) := {(y1, y2) ∈ R2 | (y2
1 + y2

2)
2 − 2x2(y2

1 − y2
2) ≤ 0} for all x ∈ (0,∞).

For every x ∈ (0,∞) the boundary of the set F (x) is a Lemniscate with parameter x.
Figure 3 illustrates F at x := 1. For the following computations let the ordering cone
C := R2

+ be chosen. An approximation of the directional derivative of F at x = 1
in the direction d := 1 is illustrated in Figure 4. This approximation is calculated for
λ := 10−4. The set T is discretized by 1,000 equidistant points which implies that
4,000 optimization problems have to be solved (this number can be reduced to 2,000, if
one exploits the symmetry of the set). These problems are solved with the optimization
tool fmincon in MATLAB.

Fig. 3. Illustration of the set F (1) (with a Lemniscate as boundary) in Example 4.3.

5. OPTIMALITY CONDITIONS IN SET OPTIMIZATION

In this section we apply the developed theory to set optimization problems in the
following setting.

Assumption 5.1. Let (Y, ‖·‖Y ) be a real normed space partially ordered by a closed
convex cone C �= Y , let X be a real linear space, let S be a nonempty subset of X , let
Ŝ be an open superset of S, and let F : Ŝ ⇒ Y be a set-valued map. Let the set F (x)
be nonempty and weakly compact for all x ∈ S, and let the sets F (x)+C and F (x)−C

be convex for all x ∈ S (here we set F (x) ± C := {y ± c | y ∈ F (x) and c ∈ C}).
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Fig. 4. Illustration of the directional derivative DF (1, 1) of the set-valued map F in Ex-
ample 4.3.

Notice that for a closed convex cone C and a weakly compact set F (x) (with
x ∈ S) the sets F (x) + C and F (x) − C are also closed. The set F (x) has not to be
convex. Under Assumption 5.1 we now investigate the set optimization problem

(6) min
x∈S

F (x).

Minimal solutions of this problem are understood using the set less order relation.

Definition 5.1. Let Assumption 5.1 be satisfied.
(a) Let nonempty sets A, B ⊂ Y be given. Then the set less order relation �s is

defined by
A �s B :⇐⇒ B ⊂ A + C and A ⊂ B − C.

(b) x̄ ∈ S is called a minimal solution of the set optimization problem (6) iff F (x̄)
is a minimal element of the system of sets F (x) (with arbitrary x ∈ S), i.e.

F (x) �s F (x̄), x ∈ S =⇒ F (x̄) �s F (x).

The original definition of the set less order relation is replaced by a characterization
with the ordering cone C in Definition 5.1,(a) (e.g., see [11, Prop. 3.1,(a)]).

For the formulation of a vectorization result presented in [12, Thm. 3.1] we consider
continuous linear functionals � in the set T := C∗ ∩ {� ∈ Y ∗ | ‖�‖Y ∗ = 1}. Let A
be a system of nonempty and weakly compact subsets of Y and let R2(T ) denote the
space of functions on T with values in R

2. Then we define the map v : A → R2(T )
pointwise by

v(A)(�) :=

⎛
⎝ min

a∈A
�T a

max
a∈A

�Ta

⎞
⎠ for all A ∈ A and all � ∈ T.

With this map v we recall a vectorization result in set optimization in a modified form.
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Theorem 5.1. Let Assumption 5.1 be satisfied. x̄ ∈ S is a minimal solution of the
set optimization problem (6) with respect to the set less order relation �s if and only
if x̄ ∈ S is a minimal solution of the vector optimization problem

(7) min
x∈S

v(F (x))

with respect to the componentwise and pointwise order relation.

Proof. This result follows from [12, Thm. 3.1] with one modification. By
Remark 2.2 in [12] the set C∗ \ {0Y ∗}, which plays a central role in the key lemma
[12, Lemma 2.1], can be replaced by the set T so that we consider functions on T .

Now we are able to formulate a necessary optimality condition for the set optimiza-
tion problem (6) using the concept of the directional derivative.

Theorem 5.2. Let Assumption 5.1 be satisfied. If x̄ ∈ S is a minimal solution
of the set optimization problem (6) and if for all x ∈ S the directional derivative
DF (x̄, x− x̄) exists and x̄ + λ(x− x̄) ∈ S for sufficiently small λ > 0, then

(8) ∀ x ∈ S ∃ � ∈ T max
{
�
(
DminF (x̄, x− x̄, �)

)
, �

(
DmaxF (x̄, x− x̄, �)

)} ≥ 0.

If, in addition, the interior int(C) of the ordering cone is nonempty, then the necessary
optimality condition (8) implies

(9) DF (x̄, x− x̄) �⊂ −int(C) for all x ∈ S.

Proof. (a) We proof the first part of this theorem by contraposition. Assume that
the necessary condition (8) is not true, i.e. there is some x ∈ S so that for all � ∈ T

max
{
�
(
DminF (x̄, x − x̄, �)

)
, �

(
DmaxF (x̄, x− x̄, �)

)}
< 0.

Since functionals in T are continuous and linear, we conclude for all � ∈ T

0 > �
(
DminF (x̄, x − x̄, �)

)

= �
(

lim
λ→0+

1
λ

(
ymin(�, F (x̄ + λ(x− x̄)))− ymin(�, F (x̄))

))

= lim
λ→0+

1
λ

(
�
(
ymin(�, F (x̄ + λ(x− x̄)))

)
︸ ︷︷ ︸

=:ϕmin(�,F (x̄+λ(x−x̄)))

− �
(
ymin(�, F (x̄))

)
︸ ︷︷ ︸

=:ϕmin(�,F (x̄))

)

(the last term denotes the directional derivative of the minimal value functional where
ϕmin(�, F (x̄ + λ(x− x̄))) and ϕmin(�, F (x̄)) denote the minimal values of the mini-
mization problems min

y∈F (x̄+λ(x−x̄))
�(y) and min

y∈F (x̄)
�(y), respectively). So, there is some

λ̄ > 0 with x̄ + λ̄(x− x̄) ∈ S so that

0 >
1
λ̄

(
ϕmin(�, F (x̄ + λ̄(x − x̄))) − ϕmin(�, F (x̄))

)
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implying

(10) ϕmin(�, F (x̄ + λ̄(x− x̄))) < ϕmin(�, F (x̄)).

In analogy we get for the maximal value functionals of the maximization problems
max

y∈F (x̄+λ(x−x̄))
�(y) and max

y∈F (x̄)
�(y)

(11) ϕmax(�, F (x̄ + λ̄(x− x̄))) < ϕmax(�, F (x̄)).

The inequalities (10) and (11) imply that x̄ is not a minimal solution of the vector
optimization problem (7) (with respect to the componentwise and pointwise order rela-
tion). Consequently, by Theorem 5.1 x̄ is not a minimal solution of the set optimization
problem (6) with respect to the set less order relation �s.

(b) We prove the implication “(8)⇒(9)” by contraposition. Assume that the condition
(9) is not satisfied, i.e. there is some x ∈ S with DF (x̄, x − x̄) ⊂ −int(C). Then we
get for all � ∈ T

DminF (x̄, x − x̄, �) ∈ −int(C)

and
DmaxF (x̄, x− x̄, �) ∈ −int(C).

By a well-known characterization of the interior of the ordering cone (e.g. see [10,
Lemma 3.21,(c)]) we conclude for all � ∈ T ⊂ C∗\{0Y ∗}

�
(
DminF (x̄, x− x̄, �)

)
< 0

and
�
(
DmaxF (x̄, x− x̄, �)

)
< 0

resulting in

max
{
�
(
DminF (x̄, x − x̄, �)

)
, �

(
DmaxF (x̄, x− x̄, �)

)}
< 0 for all � ∈ T.

So, the condition (8) is not satisfied.

Theorem 5.2 with the necessary optimality condition (9) can be interpreted as
follows: If x̄ is a solution of the set optimization problem (6), then there is no feasible
point x ∈ S so that the directional derivative DF (x̄, x− x̄) is contained in −int(C).

The necessary optimality condition (8) extends a similar condition which is given
for unconstrained smooth problems in finite dimensional spaces in [13, Thm. 3.1].

It is well-known from nonlinear optimization that pseudoconvexity of the objective
functional ensures that a necessary optimality condition is also sufficient. We go in
line with this approach and present a concept of pseudoconvexity for set-valued maps
which seems to be more complex than in the real- and single-valued case. A motivation
of this notion is given by the following known result (see [12, Cor. 2.2]).
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Theorem 5.3. Let Assumption 5.1 be satisfied. An element x̄ is a minimal solution
of the set optimization problem (6) if and only if

∀ x ∈ S
(
∀ � ∈ T min

{
�
(
ymin(�, F (x))

)− �
(
ymin(�, F (x̄))

)
,

�
(
ymax(�, F (x))

)− �
(
ymax(�, F (x̄))

)} ≥ 0
)

or(
∃ � ∈ T max

{
�
(
ymin(�, F (x))

)− �
(
ymin(�, F (x̄))

)
,

�
(
ymax(�, F (x))

)− �
(
ymax(�, F (x̄))

)}
> 0

)
.

Proof. By [12, Remark 2.2] the set C∗ \ {0Y ∗} can be replaced by the set T , and
then Corollary 2.2 in [12] states that x̄ is a minimal solution of the set optimization
problem (6) if and only if there is no x ∈ S so that

� � ∈ T : min
y∈F (x)

�(y)− min
y∈F (x̄)

�(y) < 0 or max
y∈F (x)

�(y)− max
y∈F (x̄)

�(y) < 0

and

∀ � ∈ T : min
y∈F (x)

�(y) − min
y∈F (x̄)

�(y) ≤ 0 and max
y∈F (x)

�(y)− max
y∈F (x̄)

�(y) ≤ 0.

Hence, the assertion is evident.

Definition 5.2. Let Assumption 5.1 be satified and let the directional derivative
DF (x̄, x− x̄) exist at some x̄ ∈ S in every direction x− x̄ with x ∈ S. The set-valued
map F is called pseudoconvex at x̄ ∈ S iff

∀ x ∈ S ∃ � ∈ T max
{

�
(
DminF (x̄, x− x̄, �)

)
, �

(
DmaxF (x̄, x − x̄, �)

)}≥0

=⇒ ∀x ∈ S
(
∀ � ∈ T min

{
�
(
ymin(�, F (x))

)− �
(
ymin(�, F (x̄))

)
,

�
(
ymax(�, F (x))

)− �
(
ymax(�, F (x̄))

)} ≥ 0
)

or(
∃ � ∈ T max

{
�
(
ymin(�, F (x))

)− �
(
ymin(�, F (x̄))

)
,

�
(
ymax(�, F (x))

)− �
(
ymax(�, F (x̄))

)}
> 0

)
.

Theorem 5.4. Let Assumption 5.1 be satisfied, let the directional derivative DF (x̄,
x − x̄) exist at some x̄ ∈ S in every direction x − x̄ with x ∈ S, and let F be
pseudoconvex at x̄. If the condition (8) is satisfied, then x̄ is a minimal solution of the
set optimization problem (6).
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Proof. Let the condition (8) be satisfied at some x̄ ∈ S, i.e.

∀ x ∈ S ∃ � ∈ T max
{

�
(
DminF (x̄, x− x̄, �)

)
, �

(
DmaxF (x̄, x − x̄, �)

)} ≥ 0.

Since F is pseudoconvex at x̄, it follows

∀ x ∈ S
(
∀ � ∈ T min

{
�
(
ymin(�, F (x))

)− �
(
ymin(�, F (x̄))

)
,

�
(
ymax(�, F (x))

)− �
(
ymax(�, F (x̄))

)} ≥ 0
)

or(
∃ � ∈ T max

{
�
(
ymin(�, F (x))

)− �
(
ymin(�, F (x̄))

)
,

�
(
ymax(�, F (x))

)− �
(
ymax(�, F (x̄))

)}
> 0

)
.

By Theorem 5.3 we then conclude that x̄ is a minimal solution of the set optimization
problem (6).

Example 5.1. Again we consider Example 4.1 with the additional constrained set
S := [ 12 , 1] (see also [13, Ex. 4.1]). It is obvious from the geometrical construction of
the sets F (x) with x ∈ [ 12 , 1] that x̄ := 1

2 is a minimal solution of this set optimization
problem (compare Figure 5).

Fig. 5. Illustration of the sets F (1
2 ), F (3

4) and F (1) in Example 5.1.

In Example 4.1 the directional derivatives

DminF (x̄, x− x̄, �) = 2(x − x̄)x̄(2− �1, 2− �2) for all x ∈ S and all � ∈ T

and
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DmaxF (x̄, x− x̄, �) = 2(x− x̄)x̄(2 + �1, 2 + �2) for all x ∈ S and all � ∈ T

have already been determined. For every x ∈ S and every � ∈ T we then conclude

�T DminF (x̄, x− x̄, �) = 2(x − x̄)x̄
(
2(�1 + �2) − 1

)

and
�T DmaxF (x̄, x − x̄, �) = 2(x − x̄)x̄

(
2(�1 + �2) + 1

)
,

if we work with the Euclidean norm in R2. Consequently, we get for every x ∈ S and
every � ∈ T

max
{

�TDminF (x̄, x− x̄, �), �TDmaxF (x̄, x− x̄, �)
}

= 2(x − x̄︸ ︷︷ ︸
≥0

) x̄︸︷︷︸
= 1

2

(
2(�1 + �2︸ ︷︷ ︸

≥1

) + 1
)

≥ 0.

Hence, the necessary optimality condition (8) is fulfilled at x̄ = 1
2 .

Next, we show that the set-valued map F is pseudoconvex at x̄. It is remarked in
Example 4.1 that for an arbitrary x ∈ S and an arbitrary � ∈ T

ymin(�, F (x)) = (2x2, 2x2) − (x2 + 1)�

and
ymax(�, F (x)) = (2x2, 2x2) + (x2 + 1)�

are minimal solutions of the subproblems min
y∈F (x)

�Ty and max
y∈F (x)

�T y, respectively. For

every x ∈ S and every � ∈ T we then get

�Tymin(�, F (x)) = x2
(
2(�1 + �2) − 1

) − 1

and
�Tymax(�, F (x)) = x2

(
2(�1 + �2) + 1

)
+ 1.

This implies for every x ∈ S and every � ∈ T

min
{

�
(
ymin(�, F (x))

)− �
(
ymin(�, F (x̄))

)
, �

(
ymax(�, F (x))

)− �
(
ymax(�, F (x̄))

)}

=
(
x2 − 1

4

)
︸ ︷︷ ︸

≥0

min
{
2 (�1 + �2)︸ ︷︷ ︸

≥1

−1, 2(�1 + �2) + 1
}

≥ 0.

This shows that F is pseudoconvex at x̄, and by Theorem 5.4 we conclude that x̄ is a
minimal solution of the considered set optimization problem.
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6. CONCLUSION

This paper develops directional derivatives of set-valued maps from a numerical
point of view. Under appropriate assumptions an approximation of such a derivative can
even be calculated on a computer. Essentially, a directional derivative of a set-valued
map describes the directional derivative of certain supporting points and characterizes
the movement of certain border points of the considered set. Since the approach of this
paper depends on vectorization, where convexity plays an important role, it would be
helpful to investigate other transformations for nonconvex sets.
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