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SOME NORMAL CRITERIA FOR FAMILIES
OF MEROMORPHIC FUNCTIONS

Bing Xiao, Weiling Xiong and Wenjun Yuan*

Abstract. In the paper, we study the normality of families of meromorphic func-
tions related a Hayman Conjecture. We consider whether a family meromorphic
functions F is normal in D, if for each function f in F , f ′ + afn = b has at
most one zero, where n is a positive integer, a and b �= 0 are two finite complex
numbers. Some examples show that the conditions in our results are best possible.

1. INTRODUCTION AND MAIN RESULTS

Let f(z) and g(z) be two nonconstant meromorphic functions in a domain D ⊆ C,
and let a be a finite complex value. We say that f and g share a CM (or IM ) in D
provided that f−a and g−a have the same zeros counting (or ignoring) multiplicity in
D. When a = ∞ the zeros of f −a means the poles of f (see [21]). It is assumed that
the reader is familiar with the standard notations and the basic results of Nevanlinna’s
value-distribution theory ([8, 9, 20] or [21]).

Bloch’s principle [1] states that every condition which reduces a meromorphic
function in the plane C to be a constant forces a family of meromorphic functions
in a domain D normal. Although the principle is false in general (see [17]), many
authors proved normality criterion for families of meromorphic functions corresponding
to Liouville-Picard type theorem (see [6] or [20]).

It is also more interesting to find normality criteria from the point of view of
shared values. In this area, Schwick [18] first proved an interesting result that a
family of meromorphic functions in a domain is normal if in which every function
shares three distinct finite complex numbers with its first derivative. And later, more
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results about normality criteria concerning shared values have emerged, for instance,
(see [15, 16, 24]). In recent years, this subject has attracted the attention of many
researchers worldwide.

We now first introduce a normality criterion related to a Hayman normal conjec-
ture [10].

Theorem 1.1. Let F be a family of holomorphic ( meromorphic) functions defined
in a domain D , n ∈ N, a �= 0, b ∈ C. If f ′(z) + afn(z) − b �= 0 for each function
f(z) ∈ F and n ≥ 2(n ≥ 3), then F is normal in D.

The results for the holomorphic case are due to Drasin [6] for n ≥ 3, Pang [14]
for n = 3, Chen and Fang [4] for n = 2, Ye [22] for n = 2, Chen and Gu [5] for
the generalized result with a and b replaced by meromorphic functions. The results
for the meromorphic case are due to Li [12], Li [13] and Langley [11] for n ≥ 5,
Pang [14] for n = 4, Chen and Fang [4] for n = 3, Zalcman [26] for n = 3, obtained
independently.

When n = 2 and F is meromorphic, Theorem 1.1 is not valid in general. Fang
and Yuan [7] gave an example to show this, and got a special result below.

Example 1.1. The family of meromorphic functions F = {fj(z) = jz
(
√

jz−1)2
: j =

1, 2, · · · , } is not normal in D = {z : |z| < 1}. This is deduced by f#
j (0) = j → ∞,

as j → ∞ and Marty’s criterion [8], although for any fj(z) ∈ F , f ′j + f2
j =

j(
√
jz − 1)−4 �= 0.

Here f#(ξ) denotes the spherical derivative

f#(ξ) =
|f ′(ξ)|

1 + |f(ξ)|2 .

Theorem 1.2. Let F be a family of meromorphic functions in a domain D, and
, a �= 0, b ∈ C. If f ′(z) + a(f(z))2 − b �= 0 and the poles of f(z) are of multiplicity
≥ 3 for each f(z) ∈ F , then F is normal in D.

It is nature to ask whether the conditions in above theorems that f ′(z)+afn(z)−b �=
0 can be relaxed. In this paper, we answer above question and prove the following
results.

Theorem 1.3. Let F be a family of meromorphic (holomorphic) functions in D,
n be a positive integer and a, b be two finite complex numbers such that a �= 0. If
n ≥ 4 (n ≥ 2) and for each function f in F , f ′ + afn − b has at most one zero in D,
ignoring multiplicity, then F is normal in D.
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Example 1.2. The family of meromorphic functions F = {fj(z) = 1√
j(z− 1

j
)

: j =

1, 2, · · · , } is not normal in D = {z : |z| < 1}. Obviously f ′j − f3
j = − z√

j(z− 1
j
)3

. So

for each j, f ′j − f3
j takes the value 0 in D, but F is not normal at the point z = 0,

since f#
j (0) = 2(

√
j)3

1+j → ∞, as j → ∞.

Remark 1.4. Example 1.2 shows that Theorem 1.3 is not valid when n = 3,
and the condition n = 4 is best possible for meromorphic case.

Theorem 1.5. Let F be a family of meromorphic functions in D, a and b be two
finite complex numbers such that a �= 0. Suppose that each f(z) ∈ F has no simple
pole. If for each function f in F , f ′ + af3 − b has at most one zero in D, ignoring
multiplicity, then F is normal in D.

Remark 1.6. Example 1.2 shows that the condition added in Theorem 1.5 about
the multiplicity of poles of f(z) is best possible.

Theorem 1.7. Let F be a family of meromorphic functions in D, a and b be two
finite complex numbers such that a �= 0. Suppose that f(z) admits the zeros of multiple
and the poles of multiplicity ≥ 3 for each f(z) ∈ F . If for each function f in F ,
f ′ + af2 − b has at most one zero in D, ignoring multiplicity, then F is normal in D.

Remark 1.8. Example 1.1 shows that the condition added in Theorem 1.7 about
the multiplicity of poles and zeros of f(z) is best possible.

Theorem 1.9. Let F be a family of meromorphic functions in D, a and b be two
non-zero finite complex numbers. Suppose that f(z) �= 0, its poles are multiple and
f ′ + af − b has at most one zero in D for each f(z) ∈ F , ignoring multiplicity, then
F is normal in D.

Corollary 1.10. Let F be a family of holomorphic functions in D, a and b be two
finite complex numbers such that b �= 0. Suppose that f(z) �= 0 for each f(z) ∈ F . If
for each function f in F , f ′ +af − b has at most one zero in D, ignoring multiplicity,
then F is normal in D.

Example 1.3. The family of holomorphic functions F = {fj(z) = jzez −
jez + j − b : j = 1, 2, · · · , } is not normal in D = {z : |z| < 1}. Obviously
f ′j − fj = j(ez − 1) + b. So for each j, f ′j − fj takes the value b in D. On the other
hand, fj(0) = −b, fj( 1√

j
) =

√
j(1 + 1√

j
+ o(1)) → ∞, as j → ∞. This implies that

the family F fails to be equicontinuous at 0, and thus F is not normal at 0.

In 2011, Yuan et al. [23] proved the following theorem.
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Theorem 1.11. Let F be a family of meromorphic functions in D, a and b be two
finite complex numbers such that b �= 0. Suppose that f(z) �= 0 and f ′(z)−af(z) �= b
for each f(z) ∈ F . Then F is normal in D.

Example 1.4. The family of holomorphic functions F = {fj(z) = j(z + 1) −
1 : j = 1, 2, · · · , } is normal in D = {z : |z| < 1}. Obviously fj(z) �= 0 and
f ′j − fj = −jz + 1. So for each j, f ′j − fj takes the value 1 in D. Corollary 1.10
implies that the family F is normal in D.

Example 1.5. The family of meromorphic functions F = {fj(z) = z
j − 1 : j =

1, 2, · · · , } is normal in D = {z : |z| < 1}. The reason is the conditions of Theorem
1.11 hold that fj(z) �= 0 and f ′j − fj = 1−z

j + 1 �= 1 in D = {z : |z| < 1}.

Remark 1.12. Example 1.3 shows that Theorem 1.3 is not valid when n = 1 and
holomorphic case, and the condition f(z) �= 0 is necessary in Theorem 1.9, Corollary
1.10. Both Example 1.4 and Example 1.5 tell us that Corollary 1.10 and Theorem 1.11
occur.

2. PRELIMINARY LEMMAS

In order to prove our result, we need the following lemmas. The first is the extended
version Zalcman’s [25] concerning normal families.

Lemma 2.1. [27]. Let F be a family of meromorphic functions on the unit
disc satisfying all zeros of functions in F which have multiplicity ≥ p and all poles
of functions in F which have multiplicity ≥ q. Let α be a real number satisfying
−q < α < p. Then F is not normal at 0 if and only if there exist

(a) a number 0 < r < 1;

(b) points zn with |zn| < r;

(c) functions fn ∈ F ;

(d) positive numbers ρn → 0

such that gn(ζ) := ρ−αfn(zn +ρnζ) converges spherically uniformly on each compact
subset of C to a non-constant meromorphic function g(ζ) , whose all zeros have
multiplicity ≥ p and all poles have multiplicity ≥ q and order is at most 2.

Remark 2.2. If F is a family of holomorphic functions on the unit disc in
Lemma 2.1, then g(ζ) is a nonconstant entire function whose order is at most 1.

The order of g is defined by using the Nevanlinna’s characteristic function T (r, g):

ρ(g) = lim
r→∞ sup

logT (r, g)
log r

.
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Lemma 2.3. [3] or [19]. Let f(z) be a meromorphic function and c ∈ C\{0}. If
f(z) has neither simple zero nor simple pole, and f ′(z) �= c, then f(z) is constant.

Lemma 2.4. [2]. Let f(z) be a transcendental meromorphic function of finite
order in C, and have no simple zero, then f ′(z) assumes every non-zero finite value
infinitely often.

Lemma 2.5. [9]. Let f(z) be a meromorphic function in C, then

(2.1) T (r, f) ≤ (2 +
1
k
)N (r,

1
f

) + (2 +
2
k

)N(r,
1

f (k) − 1
) + S(r, f).

and

(2.2) T (r, f) ≤ N (r, f) +N (r,
1
f

) +N (r,
1

f (k) − 1
) + S(r, f).

Remark 2.6. Both (2.1) and (2.2) are called as Hayman inequality and Milloux
inequality, respectively.

3. PROOF OF THE RESULTS

Proof of Theorem 1.3. Suppose that F is a family meromorphic and not normal
in D. Then there exists at least one point z0 such that F is not normal at the point z0.
Without loss of generality we assume that z0 = 0. By Lemma 2.1, there exist points
zj → 0, positive numbers ρj → 0 and functions fj ∈ F such that

(3.1) gj(ξ) = ρ
1

n−1

j fj(zj + ρjξ) ⇒ g(ξ)

locally uniformly with respect to the spherical metric, where g is a non-constant mero-
morphic function in C. Moreover, the order of g is less than 2.

From (3.1) we know

g′j(ξ) = ρ
n

n−1

j f ′j(zj + ρjξ) ⇒ g′(ξ)

and

(3.2)
ρ

n
n−1

j (f ′j(zj + ρjξ) + afn
j (zj + ρjξ) − b) = g′j(ξ) + agn

j (ξ)− ρ
n

n−1

j b

⇒ g′(ξ) − agn(ξ)

in C\S locally uniformly with respect to the spherical metric, where S is the set of all
poles of g(ξ).

If g′ + agn ≡ 0 then 1
n−1

1
gn−1 ≡ aξ + c where c is a constant. This contradicts

with g being a meromorphic function and n ≥ 4. So g′ + agn �≡ 0.
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If g′ + agn �= 0, then g′
gn �= −a. Set g = 1

ϕ , then ϕn−2ϕ′ �= a. By Lemma 2.3
then ϕ is a constant, so g is also a constant which is a contradiction with g being a
non-constant. Hence, g′+agn is a non-constant meromorphic function and has at least
one zero.

Next we prove that g′ + agn has just a unique zero. By contraries, let ξ0 and
ξ∗0 be two distinct zeros of g′ + agn, and choose δ(> 0) small enough such that
D(ξ0, δ) ∩ D(ξ∗0, δ) = φ where D(ξ0, δ) = {ξ : |ξ − ξ0| < δ} and D(ξ∗0 , δ) = {ξ :
|ξ − ξ∗0| < δ}. From(3.2), by Hurwitz′s theorem, there exist points ξj ∈ D(ξ0, δ),
ξ∗j ∈ D(ξ∗0, δ) such that for sufficiently large j

f ′j(zj + ρjξj) + afn
j (zj + ρjξj) − b = 0,

f ′j(zj + ρjξ
∗
j ) + afn

j (zj + ρjξ
∗
j ) − b = 0.

Since zj → 0, positive numbers ρj → 0, we have zj +ρjξj ∈ D(ξ0, δ), zj +ρjξ
∗
j ∈

D(ξ∗0, δ) for sufficiently large j. Thus each f ′j(z)+ afn
j (z)− b has two distinct zeros,

which contradicts with our hypothesis. So g′ + agn has just a unique zero, which can
be denoted by ξ0.

Set g = 1
ϕ again, then g′ +agn = −ϕ′ϕn−2−a

ϕn . Soϕ′ϕn−2−a
ϕn has only a unique zero

ξ0. Therefore ξ0 is a multiple pole of ϕ, or else a zero of ϕ′ϕn−2−a. If ξ0 is a multiple
pole of ϕ, since ϕ′ϕn−2−a

ϕn has only one zero ξ0, then ϕ′ϕn−2 − a �= 0. By Lemma 2.3
again, ϕ is a constant which contradicts with the idea that g is a non-constant.

So ϕ has no multiple pole and ϕ′ϕn−2 − a has just a unique zero ξ0. By Lemma
2.3, ϕ is not any transcendental function.

If ϕ is a non-constant polynomial, then ϕ′ϕn−2 − a = A(ξ − ξ0)l, where A is a
non-zero constant, l is a positive integer, l ≥ n − 2 ≥ 2. Set ψ = 1

n−1ϕ
n−1, then

ψ′ = A(ξ − ξ0)l + a, and ψ
′′

= Al(ξ − ξ0)l−1. Note that n ≥ 4 , we see that the
zeros of ψ are of multiplicities ≥ n − 1 ≥ 3. But ψ′′ has only one zero ξ0, so ψ has
only the same zero ξ0 too. Hence ψ′(ξ0) = 0 which contradicts with ψ′(ξ0) = a �= 0.
Therefore ϕ and ψ are rational functions which are not polynomials, and ψ′ − a has
just a unique zero ξ0.

Next we prove that there exists no rational function such as ψ. Noting that ψ =
1

n−1ϕ
n−1 and ϕ has no multiple pole, we consider two Csaes.

Case 1. ψ(ξ) has zero.
We can set

(3.3) ψ(ξ) = A
(ξ − ξ1)m1(ξ − ξ2)mn−1 · · · (ξ − ξs)ms

(ξ − η1)n−1(ξ − ηn−1)n−1 · · · (ξ − ηt)n−1

where A is a non-zero constant, s ≥ 1, t ≥ 1, mi ≥ n − 1 (i = 1, 2, · · · , s). For
stating briefly, denote

(3.4) m = m1 +m2 + · · ·+ms ≥ (n− 1)s.
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From (3.3) then

(3.5) ψ′(ξ) =
A(ξ − ξ1)m1−1(ξ − ξ2)m2−1 · · · (ξ − ξs)ms−1h(ξ)

(ξ − η1)n(ξ − η2)n · · · (ξ − ηt)n
=
p1(ξ)
q1(ξ)

,

where

(3.6)
h(ξ) = (m− t(n − 1))ξs+t−1 + as+t−2ξ

s+t−2 + · · ·+ a0,

p1(ξ) = A(ξ − ξ1)m1−1(ξ − ξ2)m2−1 · · · (ξ − ξs)ms−1h(ξ),
q1(ξ) = (ξ − η1)n(ξ − η2)n · · · (ξ − ηt)n

are polynomials. Since ψ′(ξ) − a has only a unique zero ξ0, set

(3.7) ψ′(ξ)− a =
B(ξ − ξ0)l

(ξ − η1)n(ξ − η2)n · · · (ξ − ηt)n

where B is a non-zero constant, so

(3.8) ψ
′′
(ξ) =

(ξ − ξ0)l−1p2(ξ)
(ξ − η1)n+1(ξ − η2)n+1 · · · (ξ − ηt)n+1

where p2(ξ) = B(l−nt)ξt + bt−1ξ
t−1 + · · ·+ b0 is a polynomial. From (3.5) we also

have

(3.9) ψ
′′
(ξ) =

(ξ − ξ1)m1−2(ξ − ξ2)m2−2 · · · (ξ − ξs)ms−2p3(ξ)
(ξ − η1)n+1(ξ − η2)n+1 · · · (ξ − ηt)n+1

where p3(ξ) is also a polynomial.
Let deg(p) denote the degree of a polynomial p(ξ).
From (3.5), (3.6) then

(3.10) deg(h) ≤ s+ t− 1, deg(p1) ≤ m+ t− 1, deg(q1) = nt.

Similarly from (3.8), (3.9) and noting (3.10) then

(3.11) deg(p2) ≤ t,

(3.12) deg(p3) ≤ deg(p1) + t− 1 − (m− 2s) ≤ 2t+ 2s − 2,

Note that mi ≥ n − 1 (i = 1, 2, · · · , s), it follows from (3.5) and (3.7) that
ψ′(ξi) = 0 (i = 1, 2, · · · , s) and ψ′(ξ0) = a �= 0. Thus ξ0 �= ξi (i = 1, 2, · · · , s), and
then (ξ − ξ0)l−1 is a factor of p3(ξ). Hence we get that l− 1 ≤ deg(p3). Combining
(3.8) and (3.9) we also have m − 2s = deg(p2) + l − 1 − deg(p3) ≤ deg(p2). By
(3.11) we obtain

(3.13) m− 2s ≤ deg(p2) ≤ t.
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Since m ≥ (n− 1)s, we know by (3.13) and n ≥ 4 that

(3.14) s ≤ t.

If l ≥ nt, from (3.8) and (3.9), we have l − 1 ≤ deg(p3). By (3.12), then
nt− 1 ≤ l − 1 ≤ deg(p3) ≤ 2t+ 2s− 2. Noting (3.14), we obtain (n− 4)t+ 1 ≤ 0,
a contradiction with n ≥ 4.

If l < 3t, from (3.5) and (3.7), then deg(p1) = deg(q1). Noting that deg(p1) =
m+t−i, 1 ≤ i ≤ s+t, deg(p2) = nt, so m+t−i = nt,m = (n−1)t+i �= (n−1)t.
From (3.6), then deg(h) = s + t − 1, and then deg(p1) = m + t − 1. Noting
deg(q1) = nt, hence m = (n − 1)t + 1. By (3.13) then (n − 2)t ≤ 2s − 1. From
(3.14), we obtain (n− 4)t+ 1 ≤ 0 again, a contradiction with n ≥ 4, too.

Case 2. ψ(ξ) has no zero.
We can set

(3.15) ψ(ξ) =
A

(ξ − η1)n−1(ξ − η2)n−1 · · · (ξ − ηt)n−1
,

where A is a non-zero constant. In this case, g(ξ) is an entire function. Then

(3.16) ψ′(ξ) =
Ap1(ξ)

(ξ − η1)n(ξ − η2)n · · · (ξ − ηt)n
,

where p1(ξ) = (l − n)tξt−1 + at−2ξ
t−2 + · · ·+ a0 is a polynomial. Since ψ′(ξ) − a

has only a unique zero ξ0, set

(3.7) ψ′(ξ)− a =
B(ξ − ξ0)l

(ξ − η1)n(ξ − η2)n · · · (ξ − ηt)n

where B is a non-zero constant. Thus l = nt. Moreover, (3.7) gives

(3.17) ψ
′′
(ξ) =

(ξ − ξ0)l−1p2(ξ)
(ξ − η1)n+1(ξ − η2)n+1 · · · (ξ − ηt)n+1

where p2(ξ) is a polynomial. From (3.16) we also have

(3.18) ψ
′′
(ξ) =

p3(ξ)
(ξ − η1)n+1(ξ − η2)n+1 · · · (ξ − ηt)n+1

,

where p3(ξ) = A((n−1)2t2+(n−1)t)ξ2t−2+b2t−3ξ
2t−3+· · ·+b0 is also a polynomial.

Therefore, From (3.17) and (3.18), we deduce that l−1 ≤ deg(p3) = 2t−2. Note
that l = nt, we have (n − 2)t+ 1 ≤ 0, a contradiction with n ≥ 2.

Suppose that F is a family holomorphic and not normal in D. As the same as the
former arguments, noting that the g(ξ) is a non-constant entire function, only Case 2
occurs. We omit the detail states.
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The proof of Theorem 1.3 is complete.

Proof of Theorem 1.5. Suppose that F is not normal in D. As the similar as the
arguments in the proof of Theorem 1.3 and take n = 3. Here, we state the different
places from each other.

The poles of g are of multiplicity ≥ 2.
mi ≥ 4(i = 1, 2, · · · , s).

(3.4)′ m = m1 +m2 + · · ·+ms ≥ 4s.

Since m ≥ 4s, we know by (3.13) that

(3.14)′ 2s ≤ t.

If l ≥ 3t, by (3.12), then 3t− 1 ≤ l− 1 ≤ deg(p3) ≤ 2t+ 2s− 2. Noting (3.14),
we obtain 1 ≤ 0, a contradiction.

If l < 3t, from (3.5) and (3.7), then deg(p1) = deg(q1). Noting that deg(p1) =
m + t − i, 1 ≤ i ≤ s + t, deg(q1) = 3t, so m + t − i = 3t, m = 2t+ i �= 2t. From
(3.6), then deg(h) = s + t− 1, and then deg(p1) = m+ t− 1. Noting deg(q1) = 3t,
hence m = 2t + 1. By (3.13) then t ≤ 2s − 1. From (3.14)′, we obtain 1 ≤ 0, a
contradiction.

The proof of Theorem 1.5 is complete.

Proof of Theorem 1.7. Suppose that F is not normal in D. As the similar as the
arguments in the proof of Theorem 1.3 and take n = 2. Here, we state the different
places from each other.

All zeros and poles of g(ξ) are multiple.
Hence ϕ is an entire function with no simple zero and growth order at most 2 and

ϕ′− a has just a unique zero ξ0. By Lemma 2.4, ϕ is not any transcendental function.
Therefore ϕ is a non-constant polynomial, and has the form that ϕ′ − a = C(ξ − ξ0)l,
where C is a non-zero constant, l is a positive integer, because the poles of g are
of multiplicity ≥ 3. So the zeros of ϕ are of multiplicity ≥ 3, thus, l ≥ 2, ϕ

′′
=

Cl(ξ− ξ0)l−1. Note that ϕ′′ has only one zero ξ0, so ϕ has only the same zero ξ0 too.
Hence ϕ′(ξ0) = 0 which contradicts with ϕ′(ξ0) = a �= 0.

The proof of Theorem 1.7 is complete.

Proof of Theorem 1.9. Suppose that F is not normal in D. As the similar as the
arguments in the proof of Theorem 1.3. Here, we state the different places from each
other.

gj(ξ) = ρ−1
j fj(zj + ρjξ)

converges uniformly with respect to the spherical metric to a non-constant meromorphic
function g(ξ) whose poles are multiple and g(ξ) �= 0.
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Thus
g′j(ξ) = f ′j(zj + ρjξ) ⇒ g′(ξ)

and
g′j(ξ) + aρjgj(ξ) − b = f ′j(zj + ρjξ) + afj(zj + ρjξ) − b

⇒ g′(ξ) − b

also locally uniformly with respect to the spherical metric.
If g′−b ≡ 0, then g = bξ+c where c is a constant. This contradicts with g(ξ) �= 0.

So g′ − b �≡ 0.
If g′ − b �= 0, then by Milloux inequality (2.2) of Lemma 2.5 we have

(3.19)

T (r, g) ≤ N(r, g) +N (r,
1
g
) +N (r,

1
g′ − b

) + S(r, g)

≤ 1
2
N (r, g)+ S(r, g)

≤ 1
2
T (r, g)+ S(r, g).

From (3.19) we know that g is a constant which contradicts with our conclusion. Hence,
g′ − b is a non-constant meromorphic function and has at least one zero.

As the same argument in the proof of Theorem 1.3, we obtain that g′ − b has only
one distinct zero denoted by ξ0. Thus Hayman inequality (2.1) of Lemma 2.5 implies
that g is a rational function of degree at most 4. Noting that g �= 0 and has no simple
pole, we obtain that g has at most two distinct poles. Using Milloux inequality (2.2)
of Lemma 2.5 again we get that g has at most one distinct pole. Hence we can write
g(ξ) = 1

(dξ+e)m , 2 ≤ m ≤ 3 where d �= 0 and e are two finite complex numbers.
Simple calculating shows that g′−b has at least three distinct zeros. This is impossible.

The proof of Theorem 1.9 is complete.
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