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INEQUALITIES FOR GENERALIZED NORMALIZED δ-CASORATI
CURVATURES OF SLANT SUBMANIFOLDS IN QUATERNIONIC SPACE

FORMS

Jaewon Lee and Gabriel-Eduard Vı̂lcu

Abstract. In this paper we prove two sharp inequalities involving the normalized
scalar curvature and the generalized normalized δ-Casorati curvatures for slant
submanifolds in quaternionic space forms. We also characterize those subman-
ifolds for which the equality cases hold. These results are a generalization of
some recent results concerning the Casorati curvature for a slant submanifold in
a quaternionic space form obtained by Slesar et al., J. Inequal. Appl., 2014,
2014:123.

1. INTRODUCTION

In order to provide answers to an open question raised by S. S. Chern [8] concern-
ing the existence of minimal immersions into Euclidean spaces of arbitrary dimension,
Prof. B.-Y. Chen [3] introduced in the early 1990’s new types of Riemannian invariants,
known in the literature as Chen invariants or δ-invariants and established general opti-
mal inequalities involving the new intrinsic invariants and the main extrinsic invariants
for arbitrary Riemannian submanifolds. Thus was born the theory of Chen invariants,
one of the most interesting research topic in differential geometry of submanifolds.

After δ-invariants were invented and first inequalities were proved, such invariants
and Chen-like inequalities were considered in different ambient spaces for many classes
of submanifolds. For example, new optimal inequalities involving Chen invariants were
recently proved in [1, 5, 6, 7, 11, 14, 15, 19].

On the other hand, it is well-known that the Casorati curvature of a submanifold
in a Riemannian manifold is an extrinsic invariant defined as the normalized square
of the length of the second fundamental form and it was preferred by Casorati over
the traditional Gauss curvature because corresponds better with the common intuition
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of curvature [2]. Some optimal inequalities involving Casorati curvatures were proved
in [9, 10, 12, 16] for several submanifolds in real, complex and quaternionic space
forms. In this paper, we establish two sharp inequalities involving the normalized scalar
curvature and the generalized normalized δ-Casorati curvatures for slant submanifolds
in quaternionic space forms and also completely characterize those submanifolds for
which the equality cases hold, generalizing some recent results from [16].

2. PRELIMINARIES

This section gives several basic definitions and notations for our framework based
mainly on [4, 13].

Let Mn be an n-dimensional Riemannian submanifold of an m-dimensional Rie-
mannian manifold (M̄m, ḡ). Then we denote by g the metric tensor induced on
M . Let K(π) be the sectional curvature of M associated with a plane section
π ⊂ TpM, p ∈ M . If {e1, ..., en} is an orthonormal basis of the tangent space
TpM and {en+1, ..., em} is an orthonormal basis of the normal space T⊥

p M , then the
scalar curvature τ at p is given by

τ(p) =
∑

1≤i<j≤n

K(ei ∧ ej)

and the normalized scalar curvature ρ of M is defined as

ρ =
2τ

n(n − 1)
.

If ∇̄ is the Levi-Civita connection on M̄ and ∇ is the covariant differentiation
induced on M , then the Gauss and Weingarten formulas are given by:

∇̄XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ(TM)

and
∇̄XN = −ANX + ∇⊥

XN, ∀X ∈ Γ(TM), ∀N ∈ Γ(TM⊥)

where h is the second fundamental form of M , ∇⊥ is the connection on the normal
bundle and AN is the shape operator of M with respect to N . If we denote by R̄ and
R the curvature tensor fields of ∇̄ and ∇, then we have the Gauss equation:

(1)
R̄(X, Y, Z, W ) = R(X, Y, Z,W )+ ḡ(h(X, W ), h(Y, Z))

−ḡ(h(X, Z), h(Y,W )),

for all X, Y, Z, W ∈ Γ(TM).



Inequalities for Generalized Normalized δ-Casorati Curvatures 693

We denote by H the mean curvature vector, that is

H(p) =
1
n

n∑
i=1

h(ei, ei)

and we also set

hα
ij = g(h(ei, ej), eα), i, j ∈ {1, ..., n}, α ∈ {n + 1, ..., m}.

Then it is well-known that the squared mean curvature of the submanifold M in M̄ is
defined by

‖H‖2 =
1
n2

m∑
α=n+1

(
n∑

i=1

hα
ii

)2

and the squared norm of h over dimension n is denoted by C and is called the Casorati
curvature of the submanifold M . Therefore we have

C =
1
n

m∑
α=n+1

n∑
i,j=1

(
hα

ij

)2
.

The submanifold M is called invariantly quasi-umbilical if there exists m − n

mutually orthogonal unit normal vectors ξn+1, ..., ξm such that the shape operators
with respect to all directions ξα have an eigenvalue of multiplicity n − 1 and that for
each ξα the distinguished eigendirection is the same.

Suppose now that L is an s-dimensional subspace of TpM , s ≥ 2 and let {e1, ..., es}
be an orthonormal basis of L. Then the scalar curvature τ(L) of the s-plane section L
is given by

τ(L) =
∑

1≤α<β≤s

K(eα ∧ eβ)

and the Casorati curvature C(L) of the subspace L is defined as

C(L) =
1
s

m∑
α=n+1

s∑
i,j=1

(
hα

ij

)2
.

The normalized δ-Casorati curvatures δc(n − 1) and δ̂c(n− 1) of the submanifold
Mn are given by

[δc(n − 1)]p =
1
2
Cp +

n + 1
2n

inf{C(L)|L a hyperplane of TpM}

and [
δ̂c(n − 1)

]
p

= 2Cp − 2n − 1
2n

sup{C(L)|L a hyperplane of TpM}.
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The generalized normalized δ-Casorati curvatures δC(r; n−1) and δ̂C(r; n−1) of
the submanifold Mn are defined for any positive real number r 	= n(n − 1) as

[δC(r; n− 1)]p

= rCp +
(n − 1)(n + r)(n2 − n − r)

rn
inf{C(L)|L a hyperplane of TpM},

if 0 < r < n2 − n, and[
δ̂C(r; n− 1)

]
p

= rCp − (n − 1)(n + r)(r − n2 + n)
rn

sup{C(L)|L a hyperplane of TpM},

if r > n2 − n.
Assume now that (M̄, ḡ) is a smooth manifold such that there is a rank 3-subbundle

σ of End(TM̄) with local basis {J1, J2, J3} satisfying for all α ∈ {1, 2, 3}:

ḡ(Jα·, Jα·) = ḡ(·, ·)

and
J2

α = −Id, JαJα+1 = −Jα+1Jα = Jα+2,

where Id denotes the identity tensor field of type (1, 1) on M̄ and the indices are
taken from {1, 2, 3} modulo 3. Then (M̄, σ, ḡ) is said to be an almost quaternionic
Hermitian manifold. It is easy to see that such manifold is of dimension 4m, m ≥ 1.
Moreover, if the bundle σ is parallel with respect to the Levi-Civita connection ∇̄ of
ḡ, then (M̄, σ, ḡ) is said to be a quaternionic Kähler manifold.

Let (M̄, σ, ḡ) be a quaternionic Kähler manifold and let X be a non-null vector
field on M̄ . Then the 4-plane spanned by {X, J1X, J2X, J3X}, denoted by Q(X), is
called a quaternionic 4-plane. Any 2-plane in Q(X) is called a quaternionic plane. The
sectional curvature of a quaternionic plane is called a quaternionic sectional curvature.
A quaternionic Kähler manifold is a quaternionic space form if its quaternionic sectional
curvatures are equal to a constant, say c. It is well-known that a quaternionic Kähler
manifold (M̄, σ, ḡ) is a quaternionic space form, denoted M̄(c), if and only if its
curvature tensor is given by

(2)
R̄(X, Y )Z =

c

4
{ḡ(Z, Y )X − ḡ(X, Z)Y +

3∑
α=1

[ḡ(Z, JαY )JαX

−ḡ(Z, JαX)JαY + 2ḡ(X, JαY )JαZ]}
for all vector fields X, Y, Z on M̄ and any local basis {J1, J2, J3} of σ.
A submanifold M of a quaternionic Kähler manifold (M̄, σ, ḡ) is said to be a slant

submanifold [17] if for each non-zero vector X tangent to M at p, the angle θ(X)
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between Jα(X) and TpM , α ∈ {1, 2, 3} is constant, i.e. it does not depend on the
choice of p ∈ M and X ∈ TpM . We can easily see that quaternionic submanifolds
are slant submanifolds with θ = 0 and totally-real submanifolds are slant submanifolds
with θ = π

2 . A slant submanifold of a quaternionic Käler manifold is said to be
proper (or θ-slant proper) if it is neither quaternionic nor totally real. We recall that
every proper slant submanifold of a quaternionic Kähler manifold is of even dimension
n = 2s ≥ 2 and we can choose a canonical orthonormal local frame, called an adapted
slant frame, as follows:

{e1, e2 = secθ Pαe1, ..., e2s−1, e2s = secθ Pαe2s−1},
where Pαe2k−1 denotes the tangential component of Jαe2k−1, k ∈ {1..., s} and α is 1,
2 or 3 (see [18, 20]).

3. MAIN RESULTS

Theorem 3.1. Let Mn be a θ-slant proper submanifold of a quaternionic space
form M̄4m(c). Then:

(i) The generalized normalized δ-Casorati curvature δC(r; n− 1) satisfies

(3) ρ ≤ δC(r; n− 1)
n(n − 1)

+
c

4

(
1 +

9
n − 1

cos2 θ

)
for any real number r such that 0 < r < n(n − 1).

(ii) The generalized normalized δ-Casorati curvature δ̂C(r; n− 1) satisfies

(4) ρ ≤ δ̂C(r; n− 1)
n(n − 1)

+
c

4

(
1 +

9
n − 1

cos2 θ

)
for any real number r > n(n − 1).

Moreover, the equality sign holds in the inequalities (3) and (4) if and only if
Mn is an invariantly quasi-umbilical submanifold with trivial normal connection in
M̄4m(c), such that with respect to suitable orthonormal tangent frame {ξ1, ..., ξn}
and normal orthonormal frame {ξn+1, ..., ξ4m}, the shape operators Ar ≡ Aξr , r ∈
{n + 1, ..., 4m}, take the following forms:

(5) An+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 ... 0 0
0 a 0 ... 0 0
0 0 a ... 0 0
...

...
... . . . ...

...
0 0 0 ... a 0
0 0 0 ... 0 n(n−1)

r a

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, An+2 = ... = A4m = 0.
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Proof. Since M is θ-slant, then it is known from [17] that

(6) PβPαX = −cos2θX, ∀X ∈ Γ(TM), α, β ∈ {1, 2, 3},

where PαX denotes the tangential component of JαX .
From (6) it follows immediately that

(7) g(PαX, PβY ) = cos2θg(X, Y ).

for X, Y ∈ Γ(TM) and α, β ∈ {1, 2, 3}.
On the other hand, because M̄4m(c) is a quaternionic space form, from (1) and (2)

we derive

(8) n2‖H‖2 = 2τ(p) + ‖h‖2 − n(n − 1)c
4

− 3c

4

3∑
β=1

n∑
i,j=1

g2(Pβei, ej).

Choosing now an adapted slant basis{e1, e2 = secθ Pαe1, ..., e2s−1, e2s =
secθ Pαe2s−1} of TpM , p ∈ M , where 2s = n, from (6) and (7), we derive

(9) g2(Pβei, ei+1) = g2(Pβei+1, ei) = cos2 θ, for i = 1, 3, ..., 2s− 1

and

(10) g(Pβei, ej) = 0, for (i, j) 	∈ {(2l− 1, 2l), (2l, 2l− 1)|l ∈ {1, 2, ...., s}}.

By using (9) and (10) in (8) we get

(11) 2τ(p) = n2‖H‖2 − nC +
c

4
[n(n − 1) + 9n cos2 θ].

We consider now the following quadratic polynomial in the components of the
second fundamental form:

P = rC +
(n − 1)(n + r)(n2 − n − r)

rn
C(L)− 2τ(p) +

c

4
[
n(n − 1) + 9n cos2 θ

]
,

where L is a hyperplane of TpM . Without loss of generality we can assume that L is
spanned by e1, ..., en−1. Then we derive

(12)
P =

r

n

4m∑
α=n+1

n∑
i,j=1

(
hα

ij

)2 +
(n + r)(n2 − n − r)

rn

4m∑
α=n+1

n−1∑
i,j=1

(
hα

ij

)2
−2τ(p) +

c

4
[
n(n − 1) + 9n cos2 θ

]
.
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From (11) and (12), we obtain

P =
n + r

n

4m∑
α=n+1

n∑
i,j=1

(
hα

ij

)2
+

(n + r)(n2 − n − r)
rn

4m∑
α=n+1

n−1∑
i,j=1

(
hα

ij

)2 − 4m∑
α=n+1

(
n∑

i=1

hα
ii

)2

which is equivalent to

P =
4m∑

α=n+1

n−1∑
i=1

[
n2 + n(r − 1)− 2r

r
(hα

ii)
2 +

2(n + r)
n

(hα
in)2

]

+
4m∑

α=n+1

⎡⎣2(n + r)(n − 1)
r

n−1∑
i<j=1

(
hα

ij

)2 − 2
n∑

i<j=1

hα
iih

α
jj +

r

n
(hα

nn)2

⎤⎦ .(13)

From (13) it follows that critical points

hc =
(
hn+1

11 , hn+1
12 , ..., hn+1

nn , ..., h4m
11 , h4m

12 , ..., h4m
nn

)
of P are the solutions of the following system of linear homogeneous equations:

(14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P
∂hα

ii

=
2(n + r)(n − 1)

r
hα

ii − 2
n∑

k=1

hα
kk = 0

∂P
∂hα

nn

=
2r

n
hα

nn − 2
n−1∑
k=1

hα
kk = 0

∂P
∂hα

ij

=
4(n + r)(n − 1)

r
hα

ij = 0

∂P
∂hα

in

=
4(n + r)

n
hα

in = 0

with i, j ∈ {1, ..., n− 1}, i 	= j, and α ∈ {n + 1, ..., 4m}.
From (14) it follows that every solutions hc has hα

ij = 0 for i 	= j and the determi-
nant which corresponds to the first two sets of equations of the above system is zero
(there exist solutions for non-totally geodesic submanifolds). Moreover it is easy to see
that the Hessian matrix of P has the form

H(P) =

⎛⎝ H1 0 0
0 H2 0
0 0 H3

⎞⎠ ,
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where

H1 =

⎛⎜⎜⎜⎜⎜⎜⎝

2(n+r)(n−1)
r − 2 −2 ... −2 −2
−2 2(n+r)(n−1)

r − 2 ... −2 −2
...

... . . . ...
...

−2 −2 ... 2(n+r)(n−1)
r − 2 −2

−2 −2 ... −2 2r
n

⎞⎟⎟⎟⎟⎟⎟⎠ ,

0 denotes the null matrix of corresponding dimensions and H2, H3 are the next diagonal
matrices

H2 = diag
(

4(n + r)(n− 1)
r

,
4(n + r)(n− 1)

r
, . . . ,

4(n + r)(n − 1)
r

)
,

H3 = diag
(

4(n + r)
n

,
4(n + r)

n
, . . . ,

4(n + r)
n

)
.

Therefore we find that H(P) has the following eigenvalues:

λ11 = 0, λ22 =
2(n3 − n2 + r2)

rn
, λ33 = ... = λnn =

2(n + r)(n − 1)
r

,

λij =
4(n + r)(n − 1)

r
, λin =

4(n + r)
n

, ∀i, j ∈ {1, ..., n− 1}, i 	= j.

Hence we deduce that P is parabolic and reaches a minimum P(hc) for each
solution hc of the system (14). Inserting now (14) in (13) we get that P(hc) = 0. So
P ≥ 0, and this implies

2τ(p) ≤ rC +
(n − 1)(n + r)(n2 − n − r)

rn
C(L) +

c

4
[
n(n − 1) + 9n cos2 θ

]
Therefore we derive

(15) ρ ≤ r

n(n − 1)
C +

(n + r)(n2 − n − r)
rn2

C(L) +
c

4

(
1 +

9
n − 1

cos2 θ

)
for every tangent hyperplane L of M and both inequalities (3) and (4) obviously follow
from (15).

Moreover, we can easily see now that the equality sign holds in the inequalities (3)
and (4) if and only if

(16) hα
ij = 0, ∀ i, j ∈ {1, ..., n}, i 	= j

and

(17) hα
nn =

n(n − 1)
r

hα
11 =

n(n − 1)
r

hα
22 = ... =

n(n − 1)
r

hα
n−1,n−1
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for all α ∈ {n + 1, ..., 4m}.
Finally, from (16) and (17) we deduce that the equality sign holds in (3) and (4)

if and only if the submanifold M is invariantly quasi-umbilical with trivial normal
connection in M̄ , such that the shape operators take the forms (5) with respect to
suitable tangent and normal orthonormal frames.

Corollary 3.2. Let Mn be a θ-slant proper submanifold of a quaternionic space
form M̄4m(c). Then:

(i) The normalized δ-Casorati curvature δc(n − 1) satisfies

(18) ρ ≤ δc(n − 1) +
c

4

(
1 +

9
n − 1

cos2 θ

)
.

Moreover, the equality sign holds if and only if Mn is an invariantly quasi-
umbilical submanifold with trivial normal connection in M̄4m(c), such that with
respect to suitable orthonormal tangent frame {ξ1, ..., ξn} and normal orthonor-
mal frame {ξn+1, ..., ξ4m}, the shape operators Ar ≡ Aξr , r ∈ {n + 1, ..., 4m},
take the following forms:

(19) An+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 ... 0 0
0 a 0 ... 0 0
0 0 a ... 0 0
...

...
... . . . ...

0 0 0 ... a 0
0 0 0 ... 0 2a

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, An+2 = ... = A4m = 0.

(ii) The normalized δ-Casorati curvature δ̂c(n − 1) satisfies

(20) ρ ≤ δ̂c(n − 1) +
c

4

(
1 +

9
n − 1

cos2 θ

)
.

Moreover, the equality sign holds if and only if Mn is an invariantly quasi-
umbilical submanifold with trivial normal connection in M̄4m(c), such that with
respect to suitable orthonormal tangent frame {ξ1, ..., ξn} and normal orthonor-
mal frame {ξn+1, ..., ξ4m}, the shape operators Ar ≡ Aξr , r ∈ {n + 1, ..., 4m},
take the following forms:

(21) An+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2a 0 0 ... 0 0
0 2a 0 ... 0 0
0 0 2a ... 0 0
...

...
... . . . ...

0 0 0 ... 2a 0
0 0 0 ... 0 a

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, An+2 = ... = A4m = 0.
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Proof. (i) It is easy to see that the following relation holds

(22)
[
δC

(
n(n − 1)

2
; n− 1

)]
p

= n(n − 1) [δC(n − 1)]p

in any point p ∈ M . Therefore, taking r = n(n−1)
2 in (3) and making use of (22) we

obtain the conclusion.
(ii) The following relation can be easily verified:

(23)
[
δ̂C (2n(n − 1); n− 1)

]
p

= n(n − 1)
[
δ̂c(n − 1)

]
p
, ∀p ∈ M.

Replacing now r = 2n(n − 1) in (4) and taking account of (23) we derive the
conclusion.

Remark 3.3. We note that the above Corollary was recently proved in [16], but
with a slightly modified coefficient in the definition of δC(n − 1); in fact, in [16] it
was used the coefficient n+1

2n(n−1) , as in [9, 12], instead of n+1
2n , like in the present

paper. However, because the normalized δ-Casorati curvature δC(n − 1) should be
able to be recovered from the generalized normalized δ-Casorati curvature δC(r; n−1)
for a positive real number r 	= n(n − 1), it would be more appropriate to define
δC(n − 1) using the coefficient n+1

2n and therefore the proof of Theorem 1.1 (i) in
[16] should be adapted to the amended coefficient. But we would like to point out
that this can be done easily replacing by (n+1)(n−1)

2 the coefficient n+1
2 of C(L) in the

definition of a quadratic polynomial P between (12) and (13) from [16] and modifying
the corresponding coefficients in (13), (14) and (15). Hence the eigenvalues of the new
Hessian matrix of P become

λ11 = 0, λ22 = n + 3, λ33 = ... = λnn = 2(n + 1),

λij = 4(n + 1), λin = 2(n + 1), ∀i, j ∈ {1, ..., n− 1}, i 	= j.

and the rest of the proof in [16] remains unchanged.

Remark 3.4. We note that the techniques used in this paper for prove optimal
inequalities involving the generalized normalized δ-Casorati curvatures for slant sub-
manifolds in quaternionic space forms are based on an optimization procedure by show-
ing that a quadratic polynomial in the components of the second fundamental form is
parabolic. We should point out that this approach is different for that used in [18, 19]
for establish some inequalities of Chen’s type between certain intrinsic invariants and
the squared mean curvature of θ-slant submanifolds in quaternionic space forms, which
is mainly based on algebraic lemmas.
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E-mail: gvilcu@gta.math.unibuc.ro


