
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 19, No. 3, pp. 673-690, June 2015
DOI: 10.11650/tjm.19.2015.4073
This paper is available online at http://journal.taiwanmathsoc.org.tw

HOMOCLINIC ORBITS FOR THE FIRST-ORDER HAMILTONIAN
SYSTEM WITH SUPERQUADRATIC NONLINEARITY

Wen Zhang, Xianhua Tang* and Jian Zhang

Abstract. In this paper, we consider the following first-order Hamiltonian system

ż = JHz(t, z),

where H ∈ C1(R×R
2N , R) is the form H(t, z) = 1

2L(t)z ·z+R(t, z). By apply-
ing the variant generalized weak linking theorem for strongly indefinite problem
developed by Schechter and Zou, we establish nontrivial and ground state solutions
for the above system under conditions weaker than those in [39].

1. INTRODUCTION AND MAIN RESULTS

We consider the following first-order Hamiltonian system

(1.1) ż = JHz(t, z),

where z = (p, q) ∈ R
N×R

N = R
2N , J =

(
0 IN

−IN 0

)
, and H ∈ C1(R×R

2N , R)

is the form

H(t, z) =
1
2
L(t)z · z + R(t, z)

with L(t) ∈ C(R, R
4N2

) being a 2N × 2N symmetric matrix valued function, and
R ∈ C1(R × R

2N , R) is superquadratic at infinity. In this paper, we are concerned
with the existence of homoclinic orbits. Here by a homoclinic orbit of system (1.1) we
mean a solution of the system satisfying z(t) �≡ 0 and z(t) → 0 as |t| → ∞.
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For convenience, we first introduce the following Hamiltonian operator

A = −(J d

dt
+ L).

As a special case of dynamical systems, Hamiltonian systems are very important in
the study of gas dynamics, finance, fluid mechanics, relativistic mechanics and nuclear
physics (see [1]). During the last decades, many authors were devoted to the existence
of periodic and homoclinic solutions for Hamiltonian systems via modern variational
methods. For example, see [3, 5, 6, 8, 16, 18, 30, 31, 32, 33, 34, 38] for the second
order systems, and [2, 4, 7, 9, 10, 11, 12, 13, 15, 17, 19, 20, 21, 24, 26, 27, 28, 35, 36,
37, 39, 40, 41, 42] for the first order systems and infinite dimensional systems. Coti-
Zelati, Ekeland and Séré first considered the system (1.1) in [2]. Under the classical
Ambrosetti-Rabinowitz growth condition, they proved the existence and multiplicity of
homoclinic orbits for strictly convex Hamiltonian system. The existence of infinitely
many homoclinic orbits was established in Séré [20], which generalized the result in
[2]. Subsequently, Hofer and Wysocki [15] removed the convexity assumption and
obtained the existence of homoclinic orbits. Using the subharmonic method, Tanaka
[26] also removed the convexity assumption, and proved that the system (1.1) has at
least one homoclinic orbit.

Recently, suppose that R(t, z) and L(t) depend periodically on t, the existence and
multiplicity of homoclinic orbit for system (1.1) was considered in [4, 7, 9, 13, 23, 24,
35, 36]. However, without the assumption of periodicity, the problem is quite different
in nature, and the main difficulty of such type problem is the lack of compactness of
the Sobolev embeddings. By applying a variety of techniques, some authors considered
the non-periodic case, we refer the readers to [10, 11, 12, 17, 29, 37, 39] and references
therein.

To continue the discussion, we define some notations. For any real function q(x)

will be regarded as a symmetric matrix q(x)I2N×2N and J0 :=
(

0 IN

IN 0

)
, for two

given matrix valued functions M1(t) and M2(t), we say that M1(t) ≤ M2(t) if and
only if maxξ∈R2N ,|ξ|=1(M1(t) − M2(t))ξ · ξ ≤ 0, and M1(t) > M2(t) if and only if
M1(t) ≤ M2(t) does not hold. Here we will mention the recent work of Zhang et
al.[39]. Based on the generalized Nehari manifold method developed by Szulkin and
Weth [21](see also [22]), the authors obtained the existence of ground state solution
under the following assumptions:

(L0) L(t) ∈ C(R × R
2N×2N), there exists r0 > 0 such that, for any h > 0,

meas ({t ∈ R : |t − t1| ≤ r0, J0L(t) < h}) → 0, as |t1| → ∞,

where meas denotes the Lebesgue measure;
(R1) R ∈ C1(R × R

2N , [0,∞)), R(t, z) > 0 for all z �= 0 and |Rz(t, z)| ≤ c(1 +
|z|p−1) for some c > 0, p > 2;
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(R2) Rz(t, z) = o(|z|) as |z| → 0 uniformly in t;

(R3) R(t,z)
|z|2 → ∞ as |z| → ∞ uniformly in t, and R̂(t, z) := 1

2Rz(t, z)·z−R(t, z) > 0
for all z �= 0;

(R4) (Rz(t, z) ·w)(z ·w) ≥ 0 uniformly in t for all z, w ∈ R
2N , where z ·w denotes

the usual Euclidean scalar product;

(R5) R(t, z) = R(t, w) and Rz(t, z) · w ≤ Rz(t, z) · z uniformly in t if |z| = |w|, if
in addition z �= w, then Rz(t, z) ·w < Rz(t, z) · z;

(R6) Rz(t, z) · w �= Rz(t, z) · z uniformly in t if |z| = |w| and z · w �= 0.

Motivated by the above facts, in the present paper, we continue to consider the non-
periodic system (1.1) without Ambrosetti-Rabinowitz condition. Our main purpose is
to weaken the above conditions to generalize and improve the result in [39]. More
precisely, we make the following assumptions for nonlinearity:

(H1) R ∈ C1(R×R
2N , [0,∞)) and |Rz(t, z)| ≤ c(1+ |z|p−1) for some c > 0, p > 2;

(H2) |R(t, z)| ≤ 1
2γ|z|2 if |z| < δ for some 0 ≤ γ < λ1, where δ > 0, z ∈ R

2N , and
λ1 will be defined later in (2.1);

(H3) R(t,z)
|z|2 → ∞ as |z| → ∞ uniformly in t;

(H4) R(t, z + u) − R(t, z) − rRz(t, z)u + (r−1)2

2 Rz(t, z)z ≥ −W1(t), r ∈ [0, 1],
W1(t) ∈ L1(R) and u, z ∈ R

2N .

The main results of this paper are the following theorems.

Theorem 1.1. Let (L0) and (H1) − (H4) be satisfied, then system (1.1) has at
least one solution.

Theorem 1.2. Let M be the collection of solutions of system (1.1). Then there is
a solution that minimizes the energy functional

Φ(z) :=
∫

R

(
1
2
Az · z − R(t, z)

)
dt, z ∈ E

over M, where E will be defined later. In addition, if

|Rz(t, z)| = o(|z|), as |z| → 0

uniformly in t, then there is a nontrivial solution that minimize the energy functional
over M\ {0} .
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Remark 1.3. It is obvious that conditions (H1)− (H3) are weaker than conditions
(R1) − (R3). Now we show that conditions (R4) − (R6) imply (H4). In fact, under
conditions (R4) − (R6), Lemma 3.3 in [39] shows the following relation holds

(1.2) R(t, (s+1)z +w)−R(t, z)−Rz(t, z)
(
s(

s

2
+ 1)z + (s + 1)w

)
≥ 0, s ≥ −1.

If we take r = s + 1 and w = (1 − r)z + u, then

R(t, z + u) − R(t, z)− rRz(t, z)u +
(r − 1)2

2
Rz(t, z)z ≥ 0, r ≥ 0,

which implies (H4) holds if we take W (x) = 0 and r ∈ [0, 1].
Observe that the energy functional of system (1.1) is strongly indefinite, in order

to obtain the existence of ground states, Zhang et al.[39] used the generalized Nehari
manifold method in [21, 22]. It is well known that (1.2) plays a very important role
in generalized Nehari manifold method, see [21, Lemma 2.2]. However, (1.2) is no
longer valid under the conditions we considered in this paper, hence their arguments
collapses in this case. In order to successfully carry out our work, the tool we used is
the variant generalized weak linking theorem for strongly indefinite problem developed
by Schechter and Zou [25]. Therefore, from the above argument and Remark 1.3,
we see that our results improve and generalize the result in [39] by weakening the
corresponding conditions.

The rest of the present paper is organized as follows. In Section 2, we establish
the variational framework associated with (1.1), and we also give some preliminary
lemmas, which are useful in the proofs of our main results. In Section 3, we give the
detailed proofs of our main results.

2. VARIATIONAL SETTING AND PRELIMINARY LEMMAS

Below by ‖ · ‖q we denote the usual Lq- norm, (·, ·)2 denote the usual L2 inner
product, ci, C, Ci stand for different positive constants. Let σ(A), σd(A) be the
spectrum of A, the discrete spectrum of A, respectively. Observe that, since we have
assumed (L0) on L(t), A is a selfdajoint operater on L2 := L2(R, R

2N) with D(A) ⊂
H1(R, R

2N). In order to establish a variational setting for system (1.1), we have the
following Lemma due to [17].

Lemma 2.1. ([17], Lemma 2.2). Suppose (L0) holds. Then σ(A) = σd(A).

From Lemma 2.1, we know that the Hamiltonian operator A has a sequence of
eigenvalues

(2.1) · · ·λ−k ≤ · · · ≤ λ−1 ≤ 0 < λ1 ≤ · · · ≤ λk · · · ,
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with λ±k → ±∞ as k → ∞, and corresponding eigenfunctions {e±k}k∈N form an
orthogonal basis in L2. Observe that we have an orthogonal decomposition

L2 = L− ⊕ L0 ⊕ L+ and z = z− + z0 + z+,

such that A is negative definite on L− and positive definite on L+ and L0 = kerA. Let
P 0 : L2 → L0 be the projection. Set E := D(|A| 12 ) be the domain of the selfadjoint
operator |A| 12 which is a Hilbert space equipped with the inner product

〈z, w〉 = (|A| 12 z, |A| 12 w)2 + (P 0z, P 0w)2

and the norm ‖z‖ = 〈z, z〉 1
2 . Let E± := span{e±k}k∈N

, E0 = kerA. Clearly, E−, E0

and E+ are orthogonal with respect to the products (·, ·)2 and 〈·, ·〉. Hence

E = E− ⊕ E0 ⊕ E+

is an orthogonal decomposition of E . Moreover, it is easy to prove the following
embedding theorem by Lemma 2.1.

Lemma 2.2. ([17], Lemma 2.3). E embeds continuously into H
1
2 := H

1
2 (R, R

2N).
Moreover, E embeds compactly into Lp := Lp(R, R

2N) for all p ∈ [2,∞).

Next, on E we define the following functional

(2.2) Φ(z) =
1
2
(‖z+‖2 − ‖z−‖2) − Ψ(z),

where Ψ(z) =
∫

R
R(t, z)dt. Lemma 2.1 implies that Φ is strongly indefinite, and

our hypotheses imply that Φ ∈ C1(E, R), and a standard argument shows that critical
points of Φ are solutions of system (1.1) (see [14, 43]).

The following abstract critical point theorem plays an important role in proving
our main result. Let E be a Hilbert space with norm ‖ · ‖ and have an orthogonal
decomposition E = N ⊕ N⊥, N ⊂ E being a closed and separable subspace. There
exists a norm |v|ω ≤ ‖v‖ for all v ∈ N and induces a topology equivalent to the weak
topology of N on a bounded subset of N . For z = v + w ∈ E = N ⊕ N⊥ with
v ∈ N, w ∈ N⊥, we define |z|2ω = |v|2ω + ‖w‖2. Particularly, if zn = vn + wn is

| · |ω-bounded and zn
|·|ω−−→ z, then vn ⇀ v weakly in N , wn → w strongly in N⊥,

zn ⇀ v + w weakly in E ([25]).
Let E = E− ⊕ E0 ⊕ E+, e ∈ E+ with ‖e‖ = 1. Let N := E− ⊕ E0 ⊕ Re and

E+
1 := N⊥ = (E− ⊕ E0 ⊕ Re)⊥. For R > 0, let

Q := {z := z− + z0 + se : s ∈ R
+, z− + z0 ∈ E− ⊕ E0, ‖z‖ < R}.
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For 0 < s0 < R, we define

D := {z := se + w+ : s ≥ 0, w+ ∈ E+
1 , ‖se + w+‖ = s0}.

For Φ ∈ C1(E, R), define

Γ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h :

h : R × Q̄ → E is | · |ω -continuous;
h(0, z) = z and Φ(h(s, z)) ≤ Φ(z) for all z ∈ Q̄;

For any(s0, z0) ∈ R × Q̄, there is a | · |ω -neighborhood;
U(s0, z0) s.t. {z − h(t, z) : (t, z) ∈ U(s0, z0) ∩ (R × Q̄)} ⊂ Efin.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where Efin denotes various finite-dimensional subspaces of E; Γ �= 0 since id ∈ Γ.

The variant weak linking theorem is:

Lemma 2.3. The family of C1-functional Φλ has the form

Φλ(z) := λK(z)− J(z), ∀λ ∈ [1, λ0],

where λ0 > 1. Assume that
(a) K(z) ≥ 0, ∀ z ∈ E , Φ1 = Φ;
(b) |J(z)| + K(z) → ∞ as ‖z‖ → ∞;
(c) Φλ is | · |ω-upper semicontinuous, Φ′

λ is weakly sequentially continuous on E ,
Φλ maps bounded sets to bounded sets;

(d) sup∂Q Φλ < infD Φλ, ∀ λ ∈ [1, λ0].

Then for almost all λ ∈ [1, λ0], there exists a sequences a sequences {zn} such that

sup
n

‖zn‖ < ∞, Φ′
λ(zn) → 0, Φλ(zn) → cλ,

where
cλ := inf

h∈Γ
sup
z∈Q̄

Φλ(h(1, z)) ∈ [inf
D

Φλ, sup
Q̄

Φλ].

In order to apply Lemma 2.3, we shall prove a few Lemmas. We pick λ0 such that
1 < λ0 < min[2, λ1

γ ]. For 1 ≤ λ ≤ λ0, we consider

(2.3) Φλ(z) :=
λ

2
‖z+‖2 −

(
1
2
‖z−‖2 +

∫
R

R(t, z(t))dt

)
:= λK(z)− J(z).

It is easy to see that Φλ satisfies condition (a) in Lemma 2.3. To see (c), if zn
|·|ω−−→ z,

and Φλ(zn) ≥ c, then z+
n → z+ and z−n ⇀ z− in E , zn → z a.e. on R, going to a

subsequence if necessary. Using Fatou’s lemma, we know Φλ(z) ≥ c, which means
that Φλ is | · |ω-upper semicontinuous; Φ′

λ is weakly sequentially continuous on E is
due to [43].
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Lemma 2.4. Under the assumptions of Theorem 1.1, then

J(z) + K(z) → ∞ as ‖z‖ → ∞.

Proof. Suppose to the contrary that there exists {zn} with ‖zn‖ → ∞ such that
J(zn) + K(zn) ≤ M for some M > 0. Let wn = zn

‖zn‖ = w−
n + w0

n + w+
n , then

‖wn‖ = 1 and

(2.4)

M

‖zn‖2
≥ K(zn) + J(zn)

‖zn‖2

=
1
2
(‖w+

n ‖2 + ‖w−
n ‖2) +

∫
R

R(t, zn)
‖zn‖2

dt

=
1
2
(‖wn‖2 − ‖w0

n‖2) +
∫

R

R(t, zn)
‖zn‖2

dt.

Going to a subsequence if necessary, we may assume wn ⇀ w, w−
n ⇀ w−, w+

n ⇀ w+,
w0

n → w0 and wn(x) → w(x) on R. If w0 = 0, by (H1) and (2.4) we have

1
2
‖wn‖2 +

∫
R

R(t, zn)
‖zn‖2

dt ≤ 1
2
‖w0

n‖2 +
M

‖zn‖2
,

which implies ‖wn‖ → 0, this contradicts with ‖wn‖ = 1. If w0 �= 0, then w �= 0.
Therefore, |zn| = |wn|‖zn‖ → ∞. By (H1), (H3) and Fatou’s lemma we have

∫
R

R(t, zn)
|zn|2 |wn|dt → ∞.

Hence by (2.4) again, we obtain 0 ≥ +∞, a contradiction. The proof is complete.

Therefore, Lemma 2.4 implies condition (b) holds. To continue the discussion, we
still need to verify condition (d), that is, the following two Lemmas:

Lemma 2.5. Under the assumptions of Theorem 1.1, there are two positive
constants κ, ρ > 0 such that

Φλ(z) ≥ κ, z ∈ E+, ‖z‖ = ρ, λ ∈ [1, λ0].

Proof. It is easy to see that

(2.5) ‖z‖2 = (Az, z)2 ≥ λ1‖z‖2
2, ∀z ∈ E+,

where λ1 is defined in (2.1).



680 Wen Zhang, Xianhua Tang and Jian Zhang

For any z ∈ E+, by (H1), (H2), (2.5) and Lemma 2.2, we have

Φλ(z) =
λ

2
‖z‖2 −

∫
R

R(t, z)dt

≥ 1
2
‖z‖2 −

∫
{|z|<δ}

R(t, z)dt−
∫
{|z|≥δ}

R(t, z)dt

≥ 1
2
‖z‖2 − 1

2
γ

∫
{|z|<δ}

|z|2dt − c

∫
{|z|≥δ}

(|z|2 + |z|p)dt

≥ 1
2
‖z‖2 − γ

λ1

1
2
‖z‖2 − C′‖z‖p

=
1
2
‖z‖2(1 − γ

λ1
− 2C′‖z‖p−2), 0 ≤ γ < λ1.

This implies the conclusion if we take ‖z‖ sufficiently small.

Lemma 2.6. Under the assumptions of Theorem 1.1, there exists a constant
R > 0 such that

Φλ(z) ≤ 0, z ∈ ∂QR, λ ∈ [1, λ0],

where

QR := {z := v + se : s ≥ 0, v ∈ E− ⊕ E0, e ∈ E+ with ‖e‖ = 1, ‖z‖ ≤ R}.

Proof. By contradiction, we suppose that there exit Rn → ∞, λn ∈ [1, λ0] and
zn = vn + sne = v−n + v0

n + sne ∈ ∂QRn such that Φλn(zn) > 0. If sn = 0, by (H1),
we get

Φλn(zn) = −1
2
‖v−n ‖2 −

∫
R

R(t, zn)dt ≤ −1
2
‖v−n ‖2 ≤ 0.

Therefore,
sn �= 0 and ‖zn‖2 = ‖vn‖2 + s2

n.

Let
z̃n =

zn

‖zn‖ = s̃ne + ṽn,

then
‖z̃n‖2 = ‖ṽn‖2 + s̃2

n = 1.

Thus, passing to a subsequence, we may assume

s̃n → s̃, λn → λ,

z̃n =
zn

‖zn‖ = s̃ne + ṽn ⇀ z̃ in E,

z̃n → z̃ a.e. on R.
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It follows from Φλn(zn) > 0 and the definition of Φ that

(2.6)
0 <

Φλn(zn)
‖zn‖2

=
1
2
(λns̃2

n − ‖ṽn‖2) −
∫

R

R(t, zn)
|zn|2 |z̃n|2dt

=
1
2
[(λn + 1)s̃2

n − 1]−
∫

R

R(t, zn)
|zn|2 |z̃n|2dt.

From (H1) and (2.6), we know that

(λ + 1)s̃2 − 1 ≥ 0,

that is
s̃2 ≥ 1

1 + λ
≥ 1

1 + λ0
> 0.

Thus z̃ �= 0. It follows from (H3) and Fatou’s lemma that∫
R

R(t, zn)
|zn|2 |z̃n|2dt → ∞ as n → ∞,

which contradicts to (2.6). The proof is complete.

Hence, Lemmas 2.5 and 2.6 imply condition (d) of Lemma 2.3 holds. Applying
Lemma 2.3, we soon obtain the following fact:

Lemma 2.7. Under the assumptions of Theorem 1.1, for almost all λ ∈ [1, λ0],
there exists a sequence {zn} such that

sup
n

‖zn‖ < ∞, Φ′
λ(zn) → 0, Φλ(zn) → cλ,

where the definition of cλ is given in Lemma 2.3.

Lemma 2.8. Under the assumptions of Theorem 1.1, for almost all λ ∈ [1, λ0],
there exists a zλ ∈ E such that

Φ′
λ(zλ) = 0, Φλ(zλ) = cλ.

Proof. Let {zn} be the sequence obtained in Lemma 2.7. Since {zn} is bounded,
we can assume zn ⇀ zλ in E and zn → zλ a.e. on R. By Lemma 2.7 and the fact Φ′

λ

is weakly sequentially continuous, we have

〈Φ′
λ(zλ), ϕ〉 = lim

n→∞〈Φ′
λ(zn), ϕ〉 = 0, ∀ϕ ∈ E.

That is Φ′
λ(zλ) = 0. By Lemma 2.7, we have

Φλ(zn) − 1
2
〈Φ′

λ(zn), zn〉 =
∫

R

[
1
2
Rz(t, zn)zn − R(t, zn)

]
dt → cλ.
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On the other hand, by Lemma 2.2, it is easy to prove that

(2.7)
∫

R

1
2
Rz(t, zn)zndt →

∫
R

1
2
Rz(t, zλ)zλdt

and

(2.8)
∫

R

R(t, zn)dt →
∫

R

R(t, zλ)dt,

Therefore, by (2.7), (2.8) and the fact Φ′
λ(zλ) = 0, we obtain

Φλ(zλ) = Φλ(zλ) − 1
2
〈Φ′

λ(zλ), zλ〉 =
∫

R

[
1
2
Rz(t, zλ)zλ − R(t, zλ)

]
dt = cλ.

The proof is complete.

Applying Lemma 2.8, we obtain the following fact:

Lemma 2.9. Under the assumptions of Theorem 1.1, for almost all λ ∈ [1, λ0],
there exists sequences zn ∈ E and λn ∈ [1, λ0] with λn → λ such that

Φ′
λn

(zn) = 0, Φλn(zn) = cλn .

Lemma 2.10. Under the assumptions of Theorem 1.1, then
∫

R

[
R(t, z)− R(t, rw) + r2Rz(t, z)w − 1 + r2

2
Rz(t, z)z

]
dt ≤ C,

where z ∈ E, w ∈ E+, 0 ≤ r ≤ 1 and the constant C does not depend on z, w, r.

Proof. This follows from (H4) if we take z = z and u = rw − z.

Lemma 2.11. Under the assumptions of Theorem 1.1, the sequences {zn} given
in Lemma 2.9 are bounded.

Proof. Suppose to the contrary that {zn} is unbounded. Without loss of generality,
we can assume that ‖zn‖ → ∞ as n → ∞. Let vn = zn

‖zn‖ = v+
n + v0

n + v−n , then
‖vn‖ = 1. Going to a subsequence if necessary, we can assume that vn ⇀ v in E ,
vn → v in Lp(R) for p ∈ [2,∞), vn ⇀ v a.e. on R. For v, we have only the following
two cases: v �= 0 or v = 0.

Case 1. v �= 0. It follows from (H3) and Fatou’s Lemma that∫
R

R(t, zn)
‖zn‖2

dt =
∫

R

R(t, zn)
|zn|2 |vn|2dt → ∞ as n → ∞,
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which, together with Lemma 2.5, Lemma 2.9, thus

0 ≤ cλn

‖zn‖2
=

Φλn(zn)
‖zn‖2

=
λn

2
‖v+

n ‖2 − 1
2
‖v−n ‖2 −

∫
R

R(t, zn)
‖zn‖2

dt → −∞ as n → ∞.

It is a contradiction.

Case 2. v = 0. We claim that there exist a constant c independent of zn and λn

such that

(2.9) Φλn(rz+
n ) − Φλn(zn) ≤ c, ∀r ∈ [0, 1].

Since

1
2
〈Φ′

λn
(zn), ϕ〉 =

1
2
λn(z+

n , ϕ+) − 1
2
(z−n , ϕ−) − 1

2

∫
R

Rz(t, zn)ϕdt = 0, ∀ϕ ∈ E,

it follows from the definition of Φ that

(2.10)

Φλn(rz+
n )− Φλn(zn)

=
1
2
λn(r2 − 1)‖z+

n ‖2 +
1
2
‖z−n ‖2 +

∫
R

[
R(t, zn) − R(t, rz+

n )
]
dt

+
1
2
λn(z+

n , ϕ+) − 1
2
(z−n , ϕ−) − 1

2

∫
R

Rz(t, zn)ϕdt.

Take

ϕ = (r2 + 1)z−n − (r2 − 1)z+
n + (r2 + 1)z0

n = (r2 + 1)zn − 2r2z+
n ,

which together with Lemma 2.10 and (2.10) implies that

Φλn(rz+
n ) − Φλn(zn)

= −1
2
‖z−n ‖2 +

∫
R

[
R(t, zn) − R(t, rz+

n ) + r2Rz(t, zn)z+
n − 1 + r2

2
Rz(t, zn)zn

]
dt

≤ C.

Hence, (2.9) holds.
Let C0 be a constant and take

rn :=
C0

‖zn‖ → 0 as n → ∞.

Therefore, (2.9) implies that

Φλn(rnz+
n ) − Φλn(zn) ≤ C
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for all sufficiently large n. From v+
n = z+

n
‖zn‖ and Lemma 2.9 that

(2.11) Φλn(C0v
+
n ) ≤ C′

for all sufficiently large n. Note that Lemma 2.5, Lemma 2.9 and (H1) imply that

0 ≤ cλn

‖zn‖2
=

Φλn(zn)
‖zn‖2

=
λn

2
‖v+

n ‖2 − 1
2
‖v−n ‖2 −

∫
R

R(t, zn)dt

‖zn‖2

≤ λ0

2
‖v+

n ‖2 − 1
2
‖v−n ‖2,

thus,
λ0‖v+

n ‖ ≥ ‖v−n ‖.
If v+

n → 0, then from the above inequality, we have v−n → 0, and therefore

‖v0
n‖2 = 1 − ‖v+

n ‖2 − ‖v−n ‖2 → 1.

Hence, v0
n → v0 because of dimE0 < ∞. Thus, v �= 0, a contradiction. Therefore,

v+
n � 0 and ‖v+

n ‖2 ≥ α for all n and some α > 0. By (H1) and (H2), we have

(2.12)

∫
R

R(t, C0v
+
n )dt

≤ 1
2
γC2

0

∫
{|C0v+

n |<δ}
|v+

n |2dt +
1
2
c

∫
{|C0v+

n |≥δ}

(
C2

0 |v+
n |2 + Cp

0 |v+
n |p

)
dt

≤ 1
2
γC2

0

∫
{|C0v+

n |<δ}
|v+

n |2dt + C′
1

∫
{|C0v

+
n |≥δ}

|v+
n |pdt.

For all sufficiently large n, if follows from (2.11), (2.12) and the fact λn → λ, v+
n →

v+ = 0 in Lp(R) for all [2,∞) that

Φλn(C0v
+
n ) =

1
2
λnC2

0‖v+
n ‖2 −

∫
R

R(t, C0v
+
n )dt

≥ 1
2
λnC2

0α − 1
2
γC2

0

∫
{|C0v+

n |<δ}
|v+

n |2dt − C′
1

∫
{|C0v+

n |≥δ}
|v+

n |pdt

→ 1
2
λαC2

0 , as n → ∞.

This implies that Φλn(C0v
+
n ) → ∞ as C0 → ∞, contrary to (2.11). Therefore, {zn}

are bounded. The proof is complete.
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3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.1. From Lemma 2.9, there are sequences 1 < λn → 1 and
{zn} ⊂ E such that Φ′

λn
(zn) = 0 and Φλn(zn) = cλn. By Lemma 2.11, we know

{zn} is bounded in E , thus we can assume zn ⇀ z in E , zn → z in Lp(R) for
p ∈ [2,∞), zn ⇀ z a.e. on R. Therefore

〈Φ′
λn

(zn), ϕ〉 = λn(z+
n , ϕ)− (z−n , ϕ)−

∫
R

Rz(t, zn)ϕdt = 0, ∀ϕ ∈ E.

Hence, in the limit

〈Φ′(z), ϕ〉 = (z+, ϕ)− (z−, ϕ)−
∫

R

Rz(t, z)ϕdt = 0, ∀ϕ ∈ E.

Thus Φ′(z) = 0. Note that

(3.1) Φλn(zn) − 1
2
〈Φ′

λn
(zn), zn〉 =

∫
R

[
1
2
Rz(t, zn)zn − R(t, zn)

]
dt = cλn ≥ c1.

Similar to (2.7) and (2.8), we know that
∫

R

[
1
2
Rz(t, zn)zn − R(t, zn)

]
dt →

∫
R

[
1
2
Rz(t, z)z − R(t, z)

]
dt, as n → ∞.

It follows from Φ′(z) = 0, (3.1) and Lemma 2.5 that

Φ(z) = Φ(z)− 1
2
〈Φ′(z), z〉

=
∫

R

[
1
2
Rz(t, z)z − R(t, z)

]
dt

= lim
n→∞

∫
R

[
1
2
Rz(t, zn)zn − R(t, zn)

]
dt

≥ c1 ≥ κ > 0.

Therefore, z �= 0.

Proof of Theorem 1.2. By Theorem 1.1, M �= ∅, where M is the collection of
solution of (1.1). Let

θ := inf
z∈M

Φ(z).

If z is a solution of (1.1), by Lemma 2.10, ( take r = 0)

Φ(z) = Φ(z)− 1
2
〈Φ′(z), z〉 =

∫
R

[
1
2
Rz(t, z)z − R(t, z)

]
dt ≥ −C = −

∫
R

|W1(t)|dt.
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Thus, θ > −∞. Let {zn} be a subsequence in M such that

(3.2) Φ(zn) → θ.

By Lemma 2.11, the sequence {zn} is bounded in E . Thus, zn ⇀ z in E zn → z in
Lp(R) for p ∈ [2,∞) and zn → z a.e. on R, after passing to a subsequence. Therefore

〈Φ′(zn), ϕ〉 = (z+
n , ϕ)− (z−n , ϕ)−

∫
R

Rz(t, zn)ϕdt = 0, ∀ϕ ∈ E.

Hence, in the limit

〈Φ′(z), ϕ〉 = (z+, ϕ)− (z−, ϕ)−
∫

R

Rz(t, z)ϕdt = 0, ∀ϕ ∈ E.

Thus, Φ′(z) = 0. Similar to (2.7) and (2.8), we have

Φ(zn) − 1
2
〈Φ′(zn), zn〉 =

∫
R

[
1
2
Rz(t, zn)zn − R(t, zn)

]
dt

→
∫

R

[
1
2
Rz(t, z)z − R(t, z)

]
dt as n → ∞.

If follows from Φ′(z) = 0 and (3.2) that

Φ(z) = Φ(z)− 1
2
〈Φ′(z), z〉 =

∫
R

[
1
2
Rz(t, z)z − R(t, z)

]
dt

= lim
n→∞

∫
R

[
1
2
Rz(t, zn)zn − R(t, zn)

]
dt

= lim
n→∞Φ(zn) = θ.

Now suppose that
|Rz(t, z)| = o(|z|), as |z| → 0.

It follows from (H1) that for any ε > 0, there exists a constant Cε > 0 such that

(3.3) |Rz(t, z)| = ε|z|+ Cε|z|p−1.

Let
β := inf

z∈M′
Φ(z),

where M′ := M\ {0}. Let {zn} be a sequence in M\ {0} such that

(3.4) Φ(zn) → β.
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Note that
0 = 〈Φ′(zn), z+

n 〉 = ‖z+
n ‖2 −

∫
R

Rz(t, zn)z+
n dt,

which together with (3.3), Hölder inequality and the Sobolev embedding theorem im-
plies

(3.5)

‖z+
n ‖2 =

∫
R

Rz(t, zn)z+
n dt

≤ ε

∫
R

|zn||z+
n |dt + Cε

∫
R

|zn|p−1|z+
n |dt

≤ ε‖zn‖‖z+
n ‖ + C′

ε‖zn‖p−1
p ‖z+

n ‖
≤ ε‖zn‖‖z+

n ‖ + C′′
ε ‖zn‖p−2

p ‖zn‖‖z+
n ‖

≤ ε‖zn‖2 + C′′
ε ‖zn‖p−2

p ‖zn‖2.

Similarly, we get

(3.6) ‖z−n ‖2 ≤ ε‖zn‖2 + C′′
ε ‖zn‖p−2

p ‖zn‖2.

From (3.5) and (3.6), we have

‖zn‖2 ≤ 2ε‖zn‖2 + 2C′′
ε ‖zn‖p−2

p ‖zn‖2,

which means ‖zn‖p ≥ c for some constant c > 0. Since zn → z in Lp(R), we know
z �= 0. As before, Φ(zn) → Φ(z) = β as n → ∞.
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