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ON SOME STRUCTURAL PROPERTIES OF SPACES
OF HOMOGENEOUS TYPE

Krzysztof Stempak

Abstract. We prove that every space of homogeneous type (X, ρ, μ) is either an
LCH space and μ is a Radon measure, or X may be identified as a dense subset,
with inherited quasi-distance and measure, of another space of homogeneous type
which is LCH. We also take an opportunity to present a metamathematical prin-
ciple which is useful in proving results for general quasi-metric measure spaces
by reducing arguments to the case of metric measure spaces.

1. INTRODUCTION

A quasi-metric on a nonempty set X is a mapping ρ : X × X → [0,∞) which
satisfies the conditions:

(i) for every x, y ∈ X , ρ(x, y) = 0 if and only if x = y;
(ii) for every x, y ∈ X , ρ(x, y) = ρ(y, x);
(iii) there is a constant K ≥ 1 such that for every x, y, z ∈ X ,

ρ(x, y) ≤ K
(
ρ(x, z) + ρ(z, y)

)
.

The pair (X, ρ) is then called a quasi-metric space; if K = 1, then ρ is a metric and
(X, ρ) is a metric space.

Given r > 0 and x ∈ X , let

B(x, r) = {y ∈ X : ρ(x, y) < r}

be the (quasi-metric) ball related to ρ of radius r and with center x. If (X, ρ) is a
quasi-metric space, then Tρ := T (X, ρ), the topology in X induced by ρ, is canonically
defined by declaring G ⊂ X to be open, i.e. G ∈ Tρ, if and only if for every x ∈ G
there exists r > 0 such that B(x, r) ⊂ G (at this point one easily checks directly that
the topology axioms are satisfied for such a definition). Note that this definition enjoys
the two features:
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• it is consistent with the definition of metric topology in case ρ is a genuine
metric;

• the topology Tρ is metrizable.

The second fact may be justified by a general topology argument or by a relatively
simple construction included in the proof of Theorem 1.1, see [1, 13]. It is worth noting
that balls themselves need not be open (unless ρ is a genuine metric). Originally, in
[12] a topology in a quasi-metric space was defined by using the notion of a uniform
structure, see [5, Chapter 8] for details concerning this way of introducing a topology.
It is easily seen that the topology defined in this way coincides with Tρ; however the
procedure of defining Tρ as presented above seems to be more direct.

Two quasi-metrics ρ and ρ′ on X are said to be equivalent if c−1ρ′(x, y) ≤
ρ(x, y) ≤ cρ′(x, y) with some c > 0 independent of x, y ∈ X . It is clear that for
equivalent quasi-metrics induced topologies coincide. Moreover, for any a > 0, ρa is
a quasi-metric as well and Tρ = Tρa .

The following result is a refined version of a theorem proved by Aimar, Iaffei
and Nitti [1]. In some sense it is fundamental in the theory of quasi-metric spaces
and corresponds to an analogous result for quasi-normed spaces, known as the Aoki-
Rolewicz theorem.

Theorem 1.1. [1, 13]. Let (X, ρ) be a quasi-metric space and 0 < q ≤ 1 be given
by (2K)q = 2. Then dq defined by

(1.1) dq(x, y) = inf
{ n∑

j=1

ρ(xj−1, xj)q : x = x0, x1, . . . , xn = y, n ≥ 1
}

is a metric on X equivalent to ρq; more precisely, dq ≤ ρq ≤ 4 dq.

Notions of convergent and Cauchy sequences and completeness carry over from
metric to quasi-metric spaces. Also, the classic construction of completion of a metric
space which is not complete (see [5, Chapter 4.4 (F)]) may be repeated in the framework
of a quasi-metric space. Thus, given (X, ρ) such that ρ is not complete, by (X̃, ρ̃)
we denote the complete quasi-metric space obtained by this construction. Then, by
i : X → X̃ we mean the isometric embedding (that maps x into the equivalence class
represented by (x, x, . . .) and ρ(x) = ρ̃([(x, x, . . .)])) such that i(X) is dense in X̃;
clearly, we can identify X with i(X). It is worth noting that in general X need not be a
Borel subset in X̃ (take X to be a dense subset of R equipped with the Euclidean metric
which is not Borel; then R with the Euclidean metric is the completion). However, if
(X, ρ) is explicitely given we can directly identify X̃ and then verify whether or not
X is Borel in X̃.

It is easily seen that equivalent quasi-metrics on X lead to identical completion (that
is, the resulting tilde spaces and tilde quasi-metrics coincide). Moreover, the same is
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true for the pair of quasi-metrics ρ and ρa, where a > 0. Thus, if ρ is given and dq

is the corresponding metric as in Theorem 1.1, then completeness of ρ is equivalent
to completeness of dq and completion of (X, ρ) gives the identical result as that of
(X, dq).

We take an opportunity to present here an example (we were not able to find a
similar one in the literature), rather pathological, of a quasi-normed space such that
each ball fails to be Borel. Note that if ‖ · ‖ is a quasi-norm on a real or complex
vector space (that is ‖ · ‖ satisfies the axioms of a norm except the triangle inequality
which is replaced by a modified inequality with a constant K ≥ 1, as in (iii)), then
ρ(x, y) = ‖x − y‖ is a quasi-metric there.

Example 1.1. Let X = R2 and E be a symmetric with respect to (0, 0) subset of
Σ1 = {x ∈ R2 : ‖x‖2 = 1}, which is not Borel; here ‖ · ‖2 denotes the Euclidean
norm. Define

S =
{1

2
x : x ∈ Σ1 \ E

}
∪ {2x : x ∈ E}.

Then S ⊂ {x ∈ R2 : 1
2 ≤ ‖x‖2 ≤ 2}, and for every x ∈ X , x 
= (0, 0), the intersection

{ax : a > 0} ∩ S contains precisely one element. It is easy to check that above
properties imply, that ‖ · ‖S , the quasi-functional of Minkowski type given on X by

‖x‖S = a ⇐⇒ a−1x ∈ S, (0, 0) 
= x ∈ X,

and ‖(0, 0)‖S = 0, defines a quasi-norm on X and the topology generated by ‖ · ‖S

coincides with the Euclidean topology.

The declared properties of E imply that the unit ball B‖·‖S
, which corresponds to

the quasi-norm ‖ · ‖S and centered at (0, 0), is not Borel and the same can be said
about any ball. Indeed, if B‖·‖S

were Borel in R2, then also B‖·‖S
∩ Σ1 = E would

be Borel, a contradiction.
The abbreviation LCH is used for ‘locally compact Hausdorff’. We follow [6,

Chapter 7] for terminology concerning regular and Radon measures on LCH spaces.

2. MAIN RESULTS

The following definition originated the theory of spaces of homogeneous type, see
[4].

Definition 2.1. A quasi-metric space (X, ρ) is said to be geometrically doubling
if there exists N ∈ N such that every ball with radius r can be covered by at most N

balls of radii 1
2r.

Equivalently, the parameter 1
2 can be replaced by any δ ∈ (0, 1) with N = N (δ)

depending on δ.
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In what follows, if (X, ρ) is a given quasi-metric space, then X is considered as a
topological space equipped with the (metrizable) topology Tρ and B(X, Tρ) denotes the
Borel σ-algebra generated by Tρ. If X is additionally equipped with a Borel measure
μ, then we assume that all balls are Borel sets; from now on this is the standing
assumption. We then say that (X, ρ, μ) is a quasi-metric measure space.

A Borel measure μ on X nontrivial in the sense that μ(X) > 0 and satisfying the
doubling condition

(2.1) μ(B(x, 2r)) ≤ Cμμ(B(x, r)),

with a constant Cμ ≥ 1 independent of x ∈ X and r > 0, is called a doubling measure.
Clearly (2.1) implies that 0 < μ(B(x, r)) for every ball B(x, r) and moreover

(2.2) μ(B(x, kr)) ≤ Cμ,kμ(B(x, r)), x ∈ X, r > 0,

where k > 1 and Cμ,k = C
1+log2 k
μ .

It is well known, see [4, p. 67] and [8, Lemma 2.3], that if (X, ρ) admits a
doubling measure, then (X, ρ) is geometrically doubling.

Definition 2.2. A space of homogeneous type is a triple (X, ρ, μ), where (X, ρ) is
a quasi-metric space and μ is a Borel measure on X satisfying the doubling condition
and such that μ(B(x, r)) < ∞ for every ball B(x, r).

As already mentioned, originally the definition of space of homogeneous type was
somewhat more general. Nowdays, the above definition seems to be commonly ac-
cepted, see [3] for example, though in the literature still some mutations appear.

Hytönen [8] enhanced the concept of doubling by introducing the following defi-
nition.

Definition 2.3. An upper doubling quasi-metric measure space is a quadruple
(X, ρ, μ, λ), where (X, ρ, μ) is a quasi-metric measure space and λ = λρ is a dominat-
ing function, i.e. a function λ : X ×R+ → R+ such that for every x ∈ X r → λ(x, r)
is non-decreasing and

μ(B(x, 2r)) ≤ λ(x, 2r) ≤ Cλλ(x, r)

holds with a constant Cλ independent of x ∈ X and r > 0.

An argument analogous to that leading from (2.1) to (2.2) shows that given k > 1
one has λ(x, kr) ≤ Cλ,kλ(x, r) with Cλ,k = C

1+log2 k
λ .

The result that follows is a direct consequence of Theorem 1.1. We use ρ or dq as
subscripts to indicate that a ball is related to ρ or dq, respectively.

Proposition 2.1. Let (X, ρ) be a quasi-metric space and q and dq be as in Theorem
1.1. Then:
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(i) (X, dq) is geometrically doubling whenever (X, ρ) is;
(ii) (X, dq, μ) is a space of homogeneous type whenever (X, ρ, μ) is; in addition

(2.3) μ(Bρ(x, r1/q)) � μ(Bdq (x, r)), x ∈ X, r > 0;

(iii) (X, dq, μ, λq) is upper doubling whenever (X, ρ, μ, λ) is, where the dominating
function λq is given by λq(x, r) = λ(x, (4r)1/q); moreover, if λ(x, r) ≤ Cλ(y, r)
whenever ρ(x, y) ≤ r, then also λq(x, r) ≤ Cλq(y, r) whenever dq(x, y) ≤ r

(with the same constant C).

Proof. Note that dq ≤ ρq ≤ 4dq implies

(2.4) Bρ(x, r) ⊂ Bdq (x, rq) ⊂ Bρ(x, 41/qr),

and hence i) follows. For ii) first of all note that dq is a genuine metric and therefore
every ball related to dq is open hence Borel. To check that μ is also doubling for balls
related to dq we use (2.4) and write

μ(Bdq (x, 2r)) ≤ μ(Bρ(x, (8r)1/q)) ≤ Cμ,81/qμ(Bρ(x, r1/q)) ≤ Cμ,81/qμ(Bdq (x, r)),

where Cμ,81/q is the constant from (2.2). In addition it follows that μ(Bdq (x, r)) < ∞
for every ball Bdq (x, r). Finally, (2.3) is a consequence of (2.4) and (2.2). For iii)
checking that λq has the desired properties is, by (2.4) and (2.3), immediate.

The doubling measure structure (or even geometrically doubling property) imposed
on a quasi-metric space heavily influences its topological properties. This will be seen
in the two results that follow. The first one is well known, see for instance [8, Lemma
2.5]. We include its proof only for the sake of completeness.

Proposition 2.2. Every geometrically doubling space is separable; in particular,
each space of homogeneous type is separable.

Proof. Fix a reference point x0 ∈ X and for any j ≥ 2 consider the ball B(x0, j).
For δj := j−2 find Nj = N (δj) as in the geometrically doubling condition and let
{xj1, . . . , xjNj} be the set of centers of balls with radii j−1 that cover B(x0, j). Then
the union of these sets forms a dense countable subset in X . Finally, recall that (X, ρ)
being equipped with a doubling measure is geometrically doubling.

Not every space of homogeneous type is locally compact. For instance, if Y = R\Q

with metric and measure inherited from the Euclidean metric and Lebesgue measure on
R, then Y is not locally compact. This ‘simplest’ example is, in some sense, a special
case of a more general one. Recall that if (X, ρ) is not complete, then (X̃, ρ̃) denotes
its completion, X is identified with a dense subset of X̃ and ρ = ρ̃|X .
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Theorem 2.3. Let (X, ρ, μ) be a space of homogeneous type. Then:
(1) if (X, ρ) is complete, then X is an LCH space and μ is a Radon measure;
(2) if (X, ρ) is not complete, then there exists a Borel measure μ̃ on X̃ such that

(X̃, ρ̃, μ̃) becomes a space of homogeneous type and μ̃ extends μ in the following
sense: if X is Borel in X̃, then μ̃ is the extension of μ in the usual sense and
μ̃(X̃ \ X) = 0; if X is not Borel in X̃ , then μ̃ extends μ only on the family of
those Borel sets in X which are also Borel in X̃.

Note that, in particular, in the case of (2) when X is Borel in X̃, X is a dense
subset of an LCH space and μ is a restriction of a Radon measure.

Proof. In what follows we shall use the following well-known facts (see, for
instance, [6, p.118, Theorem 7.8, Theorem 0.25]):

(i) every separable metric space is second countable;
(ii) every Borel measure on a second countable LCH space that is finite on compact

sets is regular hence Radon;
(iii) in a complete metric space a subset is relatively compact if and only if it is totally

bounded.

Assume (X, ρ) is complete. Since (X, ρ) is geometrically doubling, hence every
ball B(x, r) is a totally bounded set. But Tρ, the topology in X , is metrizable thus the
closure of B(x, r) is compact and consequently X is an LCH space. In addition, X is
separable, hence μ is Radon.

Assume now that (X, ρ) is not complete, which is equivalent with the statement
that (X, dq) is not complete. Since T (X, ρ) and T (X̃, ρ̃) are metric topologies and
ρ̃ extends ρ, the topology on X induced by ρ coincides with the relative topology
inherited from the topology on X̃ induced by ρ̃. This means that

T (X, ρ) = {Ũ ∩ X : Ũ ∈ T (X̃, ρ̃)}.

Moreover,
B(X, Tρ) = {B̃ ∩ X : B̃ ∈ B(X̃, Tρ̃)}.

Indeed, the inclusion ⊂ is clear. To justify the opposite inclusion let

A = {A ⊂ X̃ : A ∩ X ∈ B(X, ρ)}.

A is a σ-algebra in X̃ and T (X̃, ρ̃) ⊂ A. Therefore B(X̃, Tρ̃) ⊂ A and the required
inclusion follows. Note that the assumption ‘X is Borel in X̃’ was not used here.

Therefore we may define the Borel measure μ̃ in X̃ by setting

μ̃(Ã) = μ(Ã ∩ X), Ã ∈ B(X̃, Tρ̃).
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Clearly, μ̃ extends μ in the usual sense if X is Borel in X̃ , and in the sense described
above, otherwise. It remains to check that for every ball Bρ̃(x̃, r) in X̃ we have
μ̃(Bρ̃(x̃, r)) < ∞ and that μ̃ is doubling, i.e.,

(2.5) μ̃(Bρ̃(x̃, 2r)) ≤ Cμ̃(Bρ̃(x̃, r)), x̃ ∈ X̃, r > 0.

To check the first property note that if x̃ ∈ X , then Bρ̃(x̃, r) ∩ X = Bρ(x̃, r), and
hence

μ̃(Bρ̃(x̃, r)) = μ(Bρ̃(x̃, r)∩ X) = μ(Bρ(x̃, r)) < ∞.

If x̃ /∈ X , then there exists x ∈ X such that ρ̃(x, x̃) < r and Bρ̃(x̃, r) ∩ X ⊂
Bρ(x, 2Kr), hence μ̃(Bρ̃(x̃, r)) < ∞ again follows.

To check (2.5) we also distinguish the cases, x̃ ∈ X and x̃ /∈ X . For x̃ ∈ X
we proceed as in the step done above and write (Cμ(ρ) denotes the doubling constant
related to ρ)

(2.6) μ̃(Bρ̃(x̃, 2r)) = μ(Bρ(x̃, 2r)) ≤ Cμ(ρ)μ(Bρ(x̃, r)) = Cμ(ρ)μ̃(Bρ̃(x̃, r)).

Assume that x̃ /∈ X . In fact we now prove (2.5) with d̃q replacing ρ̃; this is enough since
then (2.5) follows by an argument similar to that used in the proof of Proposition 2.1
ii). To begin with, note that if x ∈ X and r′ > 0 are such that Bd̃q

(x, r′) ⊂ Bd̃q
(x̃, r),

then

(2.7) μ̃(Bd̃q
(x, 2r′)) ≤ Cμ(dq)μ̃(Bd̃q

(x, r′)) ≤ Cμ(dq)μ̃(Bd̃q
(x̃, r))

(the first inequality is just (2.6) but with d̃q replacing ρ̃; Cμ(dq) denotes the doubling
constant related to dq). It is now possible to find a sequence (xn, rn) ∈ X × (0,∞),
n ≥ 2, with the property

Bd̃q

(
x̃,

n − 1
n

r
)
⊂ Bd̃q

(xn, rn) ⊂ Bd̃q

(
x̃,

n

n + 1
r
)

(it suffices to take xn such that d̃q(x̃, xn) ≤ r
2n(n+1)

and rn = 2n2−1
2n(n+1)

r; here we use
the fact that d̃q is a genuine metric). This implies that {Bd̃q

(xn, rn)}n≥2 is increasing
and

⋃
n≥2 Bd̃q

(xn, rn) = Bd̃q
(x̃, r). Hence, by continuity of the measure μ̃ and (2.7),

μ̃(Bd̃q
(x̃, 2r))= lim

n→∞ μ̃(Bd̃q
(xn, 2rn))≤sup

n≥2
μ̃(Bd̃q

(xn, 2rn))≤Cμ(dq)μ̃(Bd̃q
(x̃, r)).

3. METAMATHEMATICAL PRINCIPLE

The triangle inequality with a constant K > 1 in the definition of a quasi-metric
causes some complications in reasonings related to objects in quasi-metric measure
spaces, in particular in spaces of homogeneous type. Frequently, the authors working
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in the enviroment of quasi-metric measure spaces for simplicity consider the case of
genuine metric only, and then say something like “with minor modifications similar
results hold for the quasi-metric measure spaces”. It happens, however, that minor
sometimes means tedious. The principle we suggest seems to be useful in overcoming
such difficulties. It is based on Proposition 2.1 and allows to reduce reasonings to the
case K = 1 (i.e. to the situation of a metric). In fact, in numerous circumstances the
following metamathematical principle works:

If a theorem holds for some ‘objects’ in the context of metric measure
spaces from a given class, then the analogous theorem is satisfied in the
framework of quasi-metric measure spaces from that class.

We explain how it works on concrete examples considering successively: the class
of separable upper doubling spaces, the class of quasi-metric measure spaces with the
property μ(Bρ(x, r)) ≤ Crτ (or, the class of spaces of homogeneous type with the
property μ(Bρ(x, r)) ≥ Crτ , respectively) for some τ > 0, and the class of complete
geometrically doubling quasi-metric spaces. The ‘objects’ then are: Calderón-Zygmund
operators, fractional integral operators, and doubling measures, respectively. In what
follows, if not specified otherwise, (X, ρ, μ) is a quasi-metric measure space and q, dq

and λq are as in Theorem 1.1 and in Proposition 2.1.

(A) Theorems on boundedness of C-Z operators.
A kernel K : X × X \Δ → C, Δ = {(x, x) : x ∈ X}, is said to be a standard kernel
on (X, ρ, μ, λ), if there exist constants C > 0, c > 1, δ > 0 such that:
(i) for every x, y ∈ X , x 
= y, the growth condition

(3.1) |K(x, y)| ≤ C
1

λ(x, ρ(x, y))

holds;
(ii) for every x, x′, y ∈ X , if ρ(x, y) > cρ(x, x′), then the smoothness condition

(3.2) |K(x, y)− K(x′, y)|+ |K(y, x)− K(y, x′)| ≤ C
(ρ(x, x′)

ρ(x, y)

)δ 1
λ(x, ρ(x, y))

is satisfied. A Calderón-Zygmund operator with an associated standard kernel K is an
operator TK which is bounded on L2(X, μ) and such that

TKf(x) =
∫

X
K(x, y)f(y) dμ(y), x /∈ supp f,

for any f ∈ L2(X, μ) with compact support.
We now show that the standard kernel K satisfying (3.1) and (3.2), fulfills the

same conditions with replacement of ρ onto dq and λ onto λq, and with the new triple
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of constants, namely (some) C′ , c′ = 4cq and δ′ = δ/q. Indeed, by dq ≤ ρq ≤ 4dq we
have

λq

(
x, dq(x, y))

)
= λ

(
x, (4dq(x, y))1/q

)
≤ λ

(
x, 41/qρ(x, y)

)
≤ Cλ,41/qλ(x, ρ(x, y)),

and hence the new growth condition is obtained from (3.1). Moreover,

ρ(x, x′)
ρ(x, y)

≤ 41/q
(dq(x, x′)

dq(x, y)

)1/q
,

and, in addition, the condition dq(x, y) > c′dq(x, x′) with c′ as above implies

ρ(x, y) ≥ dq(x, y)1/q > (c′)1/qdq(x, x′)1/q ≥ (c′/4)1/qρ(x, x′) = cρ(x, x′),

so that the new smoothness condition, under the assumption dq(x, y) > c′dq(x, x′), is
also satisfied.

Thus, for instance, [9, Theorem 1.1] may be also framed into the context of sepa-
rable quasi-metric measure spaces. This means that the estimate

(3.3) ‖TKf‖Lp(dμ) ≤ Cp‖f‖Lp(dμ), f ∈ Lp(dμ),

1 ≤ p < ∞, with ‖ · ‖L1,∞(dμ) replacing ‖ · ‖L1(dμ) on the left-hand side when p = 1,
holds in the framework of any upper doubling quasi-metric measure space.

(B) Theorems on boundedness of fractional integral operators.

In the literature there are several notions of fractional integral operators appearing
in the framework of quasi-metric measure spaces and the most representative seem to
be

Iαf(x) =
∫

X

f(y)
ρ(x, y)τ−α

dμ(y),

and
Îαf(x) =

∫
X

f(y)
ρ(x, y)α

μ(Bρ(x, ρ(x, y)))
dμ(y),

as an alternative version. Here τ in some sense represents the ’dimension’ of (X, ρ, μ),
and 0 < α < τ . (In addition the constraint 1/p− 1/q = α/τ is also assumed but this
is, in fact, immaterial for the argument we present.) Usually additional assumptions
are imposed on the measure μ when Iα or Îα are discussed, like μ(Bρ(x, r)) ≤ Crτ

in the case of Iα, see for instance [7], or μ(Bρ(x, r)) ≥ Crτ in the case of Îα, see for
instance [2]. If one of these estimates holds for some τ > 0, then we shall refer to μ

as to satisfying a power growth or a reverse power growth condition, respectively.
We now show that the estimate

(3.4) ‖Iαf‖Ls(dμ) ≤ Cp,s‖f‖Lp(dμ), f ∈ Lp(dμ),
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1 ≤ p, s < ∞, with a possible extensions to weighted inequalities or weak type
estimates, holds in the framework of any quasi-metric measure space satisfying the
power growth condition provided it holds in each case of metric measure space with
this condition. Analogously, if (3.4) with Îα replacing Iα holds for each space of
homogeneous type with measure satisfying the reverse power growth condition, then
it holds for any space of homogeneous type with this condition. First of all note
that by (2.4), if the measure μ satisfies μ(Bρ(x, r)) ≤ Crτ (or ≥ Crτ ), then also
μ(Bdq (x, r)) ≤ Crτ/q (≥ Crτ/q, respectively). It is therefore sufficient to show, that
the integral kernels of the operators Iα or Îα, are dominated by analogous integral
kernels with replacement of ρ onto dq; of course the parameter τ may also change. In
the case of Iα this is evident since dq � ρq and we have

1
ρ(x, y)τ−α

≤ C
1

dq(x, y)
τ
p
−α

p

.

In the case of Îα, if μ satisfies μ(Bρ(x, r)) ≥ Crτ , then by ρ ≤ d
1/q
q and

μ(Bρ(x, ρ(x, y)))≥ Cμ(Bdq (x, dq(x, y))) (doubling property is used here) we have

ρ(x, y)α

μ(Bρ(x, ρ(x, y)))
≤ C

dq(x, y)
α
q

μ(Bdq (x, dq(x, y)))
.

Thus, for instance, [7, Theorem 3.2] and [2, Corollary 5.2] have their counter-
parts in the framework of relevant quasi-metric measure spaces or relevant spaces of
homogeneous type.

(C) Existence of doubling measures.

As already mentioned, if (X, ρ) admits a doubling measure, then (X, ρ) is geomet-
rically doubling. The question if the opposite implication is true found the following
answer (see [11] or [10, Theorem 3.1]): if (X, ρ) is a complete geometrically doubling
metric space, then X carries a doubling measure. (A simple example of X = Q with
the usual distance shows that the assumption on completeness is necessary.)

The argument analogous to that used in the proof of Proposition 2.1 easily shows
that [10, Theorem 3.1] can be extended to the setting of any complete geometrically
doubling quasi-metric space. Indeed, if (X, ρ) is such a space, then (X, dq) is a
complete geometrically doubling metric space, hence there exists a Borel measure μ

which is doubling (with respect to balls related to dq) on X . But then (2.4) shows that
μ is also doubling with respect to balls related to ρ since we have

μ(Bρ(x, 2r)) ≤ μ(Bdq (x, 2qrq))

≤ Cμ,2q+2(dq)μ(Bdq (x, 4−1rq)) ≤ Cμ,2q+2(dq)μ(Bρ(x, r)),

where Cμ,2q+2(dq) is the constant as in (2.2) but related to dq.



Spaces of Homogeneous Type 613

REFERENCES

1. H. Aimar, B. Iaffei and L. Nitti, On the Macı́as-Segovia metrization of quasi-metric
spaces, Revista U. Mat. Argentina, 41 (1998), 67-75.

2. P. Auscher and J. M. Martell, Weighted norm inequalities for fractional operators, Indiana
Univ. Math. J., 57 (2008), 1845-1870.

3. M. Christ, Lectures on Singular Integral Operators, CBMS Reg. Conf. Ser. Math. 77,
AMS, Providence, Rhode Island, 1990.

4. R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Es-
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