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FIXED POINTS AND NEGATIVE CIRCUIT FREE IN FINITE LATTICES

Juei-Ling Ho* and Shu-Han Wu

Abstract. Let X be a dimensional finite lattice (not necessary distributive) and
let F be a mapping from X to X. Here we introduce a new notion of neighbours
of an element of X and prove that if all the neighbours of each element of X are
in X and there is no negative circuit in the interaction graph of F , then F has a
fixed point.

1. INTRODUCTION

Our starting point is the following theorem, which was proven by Shih and Dong
[4] and was conjectured by Shih and Ho [5].

Theorem 1.1. If the mapping F : {0, 1}n → {0, 1}n has the property that all the
Boolean eigenvalues of the discrete Jacobian matrix of each element of {0, 1}n are
zero, then it has a unique fixed point.

Theorem 1.1 is a discrete model of the fixed point conjecture [2] equivalent the
long- standing Jacobian conjecture.

Equivalently, Theorem 1.1 can be formulated as the following:

Theorem 1.2. If the mapping F : {0, 1}n → {0, 1}n has no fixed point or has
multiple fixed points, then there exits x ∈ {0, 1}n such that the network Γ(F ′(x)) has
a circuit.

Here F ′(x) is the discrete Jacobian matrix of F evaluated at x. Theorem 1.1 may
be called the network perspective of the Jacobian conjecture. It should be noted that
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Theorem 1.2 fits perfectly with the conjecture by the biologist René Thomas [3, 6]
concerning the rule of cell differentiation as pointed out by Professor Christophe Soulé
at IHÉS. The network perspective of the Jacobian conjecture goes deeper, it may raise
a universal mathematical principle that gives to the cell differentiation and stabilization
of gene expression.

The purpose of this paper is to study one aspect of Theorem 1.2 in the framework
of lattices.

2. ASYNCHRONOUS DYNAMICAL GRAPH AND INTERACTION GRAPH

Let (X,≤) be a lattice. This means that X is partially ordered by ≤, and that
any two elements, x and y of X , have the least upper bound or supremum (namely
the span x ∨ y, read as ’x join y’) and the greatest lower bound or infimum (namely
the intersection x ∧ y, read as ’x meet y’). Let S ⊆ X . Similarly we write ∨S (the
’join of S’) and ∧S (the ’meet of S’) instead of sup S and inf S when these exist.
If ∨S and ∧S exist for all S ⊆ X , then X is called a complete lattice. Let (X,≤)
be a lattice. We say X has a ”1”, if there exists 1 ∈ X such that a = a ∧ 1 for all
a ∈ X . Dually, X is said to have a ”0”, if there exists 0 ∈ X such that a = a ∨ 0 for
all a ∈ X . A lattice, (X,≤), having 0 and 1 is called bounded. A lattice is finite if it
has finite cardinality. Recall that a finite lattice (X,≤) is complete and bounded with
1 = ∨X and 0 = ∧X [1].

For a, b ∈ X , by”a covers b”, means that b < a and b < x < a is not satisfied by
any x in X . Let C ⊆ X such that for any two elements, x and y in C, either x ≤ y or
y ≤ x. Then C is said to be simply ordered, and called a chain. For a lattice (X,≤),
a segment is then drawn from a to b whenever a covers b. Any figure obtained as so is
called a diagram of X . Let (X,≤) be a lattice with the least element 0. Then a ∈ X

is called an atom if 0 < a and there is no x in X satisfying 0 < x < a. The set of
atoms of X is denoted by At(X). We say X is atomic if given x �= 0 in X , there
exists a ∈ At(X) such that a ≤ x. We write the cardinality of At(X) by #At(X).
Recall that every finite lattice is atomic.

Let (X,≤) be a finite lattice. If the set of atoms of X has cardinality n, then we put
At(X) = {a1, a2, . . . , an}. For x ∈ X , 1 ≤ i ≤ n, we define the i-th dimension di[x]
is r+1, if ai ≤ x where r is the maximum length of chains ai = x0 < . . . < xr = x, in
which X having x for the greatest element. Otherwise, di[x] = 0. Note that di[ai] = 1
and di[aj] = 0 if i �= j. A dimensional finite lattice is a finite lattice X in which for
all x, y ∈ X , if di[x] = di[y] for all i ∈ {1, . . . , n}, then x = y.

Recall that, a distributive lattice is a lattice in which for all x, y and z ∈ X ,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

We see the two typical examples of nondistributive lattices M3 and N5, they are di-
mensional finite lattice. Hence a dimensional finite lattice is not necessary distributive.
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Consider a map F from a dimensional finite lattice X to itself. For x ∈ X , set
x = (x1, . . . , xn), xi = di[x], 1 ≤ i ≤ n. Then we can set F (x) = (f1(x), . . . , fn(x)),
fi(x) = di[F (x)], 1 ≤ i ≤ n. Here n can be the number of interacting automata. For
i ∈ {1, . . . , n}, the state xi for an automaton i, is a finite integer. We consider the
dimensional finite lattice X as the set of states of a dynamical system. The dynamics
of the network is then described by a map F : X → X .

For x ∈ X , 1 ≤ i ≤ n, the state x∼i
F is defined by x∼i

F = (x1, . . . , fi(x), . . . , xn).
If x∼i

F ∈ X , 1 ≤ i ≤ n, then we set:

UF (x) = {x∼1
F , . . . , x∼n

F },
NF (x) = {i ∈ {1, . . . , n} | x∼i

F �= x}.

Remark 2.1. For any x ∈ X , the number of different states of UF (x)\{x} equals
to the number of indices ofNF (x), denoted as |UF (x)\{x}| = |NF (x)|.

A trajectory in the dynamics is a sequence of states {x1, . . . , xr} such that for each
t = 1, . . . , r − 1, xt+1 ∈ UF (xt)\{xt}. In terms of strategy ϕ : {1, . . . , r − 1} →
{1, . . . , n}, there exists ϕ(t) ∈ {1, . . . , n} such that

xt+1 = (xt)∼ϕ(t)
F �= xt.

A cycle is a trajectory in the form {x1, . . . , xr, x1} with r > 1. In this paper,
the asynchronous dynamical graph, denoted Γ(F ), is the directed graph whose set of
vertices is X and whose set of arcs is

{(x, x∼i
F ) : x ∈ Xand i ∈ NF (x)}.

Remark 2.2. The following conditions are mutually equivalent:
(a) x is a fixed point of F .
(b) UF (x) = {x}.
(c) NF (x) = φ.
(d) |UF (x)| = 1.
(e) |NF (x)| = 0.
(f) Γ(F ) has no arc from x to any vertex.

It is clear that there is an arc from x to y in Γ(F ) only if there exists a ϕ(t) ∈
{1, . . . , n} such that y = x

∼ϕ(t)
F �= x. A trap domain of the asynchronous dynamical

graph is a non-empty subset D ⊆ X , such that for every arc (x, x∼i
F ) of the asyn-

chronous dynamical graph that x ∈ D, x∼i
F ∈ D. An attractor of the asynchronous

dynamical graph is the smallest trap domain with respect to the inclusion. An attractor
of cardinality at least two is called a cycle, and a fixed point of F is an attractor of
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Γ(F ) with cardinality one. If x and y belong to the same attractor, then there exists a
trajectory from x to y. A cycle C is called a attractive cycle if it is an attractor.

For x ∈ X , 1 ≤ i ≤ n, the i-neighbour of x is denoted as x+i and defined by

x+i = (x1, . . . , xi + 1, . . . , xn).

The discrete derivative of F at x ∈ X is the Boolean n × n matrix, defined by

F
′
(x) = (fij(x)),

where fij(x) = 1 if x+j ∈ X and fi(x) �= fi(x+j), otherwise fij(x) = 0.

An interaction graph, denoted as G(F ), is the directed graph whose set of vertices
is {1, ..., n} and whose set of arcs is

{(j, s, i) : ∃x ∈ X, suchthat fij(x) = 1}.

For any arc (j, s, i) in G(F ), sign s is positive(negative) if fi(x+j) is greater than(less
than) fi(x).

A path of G(F ) of length r ≥ 1 is a sequence

{(i1, s1, i2), (i2, s2, i3), . . . , (ir, sr, ir+1)}.

Let the value of sign s =
∏r

i=1 si. It is a circuit if ir+1 = i1 and it is an elementary
circuit if, in addition, the vertices are mutually distinct.

3. ATTRACTIVE CYCLES AND NEGATIVE CIRCUITS

For an attractive cycle, each state in it has at least one successor. So, when the
network is inside an attractive cycle, it cannot reach a fixed point. Thus it describes
sustained oscillations. In this section, we are interested in the relationship between
sustained oscillations produced by a attractive cycle and the negative circuits of the
interaction graph of the network. Recall that if G(F ) has a negative circuit, then it
has an elementary negative circuit. So, in order to prove that G(F ) has an elementary
negative circuit, it is sufficient to prove that G(F ) has a negative circuit.

Theorem 3.1. Let (X,≤) be a dimensional finite lattice with #At(X) = n.
Suppose that F : X → X is a map such that x∼i

F ∈ X for all x ∈ X , 1 ≤ i ≤ n. If
G(F ) has no negative circuit, then Γ(F ) has no attractive cycle.

Remark 3.1 Let (X,≤) be a dimensional finite lattice with #At(X) = n. Suppose
that F : X → X is a map, such that x∼i

F ∈ X for all x ∈ X , 1 ≤ i ≤ n. If G(F ) has
no negative circuit, then F has at least one fixed point.
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For x ∈ X , 1 ≤ i ≤ n, we set si (x) = 0 if fi(x) = xi, si (x) = 1 if fi(x) is
greater then xi, and si (x) = −1 if fi(x) is less then xi. In order to establish Theorem
3.1 we shall employ the following lemmas.

Lemma 3.1. Let (X,≤) be a dimensional finite lattice with #At(X) = n.
Suppose that F : X → X is a map, such that x∼i

F ∈ X for all x ∈ X , 1 ≤ i ≤ n. If
∃x ∈ X , ∃j ∈ NF (x), ∃i ∈ NF (x∼j

F ), and si (x) �= si

(
x∼j

F

)
, then (j, s, i) is an arc

of G(F ), where the value of sign s equals sj (x) si

(
x∼j

F

)
.

Proof. Since j ∈ NF (x) and i ∈ NF (x∼j
F ), we obtain sj (x) �= 0 and si

(
x∼j

F

)
�=

0. Consider the following conditions:
(C1) sj (x) = si

(
x∼j

F

)
= 1 and si (x) ≤ 0.

(C2) sj (x) = si

(
x∼j

F

)
= −1 and si (x) ≥ 0.

(C3) sj (x) = −1, si

(
x∼j

F

)
= 1 and si (x) ≤ 0.

(C4) sj (x) = 1, si

(
x∼j

F

)
= −1 and si (x) ≥ 0.

Now, in order to prove this lemma, it is sufficient to prove the following statements:
(a) If ∃x ∈ X and ∃i, j ∈ {1, . . . , n} that satisfies C1 or C2, then (j, s, i) is a

positive arc of G(F );
(b) If ∃x ∈ X and ∃i, j ∈ {1, . . . , n} that satisfies C3 or C4, then (j, s, i) is a

negative arc of G(F ).

First, we will prove the statement (a). Since the condition C1 or C2 holds, we
obtain j �= i.

If it satisfies C1, then fj(x) > xj . Next we consider the sequence xj =p0, p1, . . . , pd

= fj(x) such that pk = pk−1 + 1, k = 1, . . . , d. Setting

yk = (x1, . . . , xj−1, pk, xj+1, . . . , xn)(k = 0, . . . , d).

Since x∼j
F ∈ X and pk ≤ fj(x), we obtain yk ∈ X . Since si

(
x∼j

F

)
= 1 and j �= i,

we have fi(yd) = fi(x
∼j
F ) > (x∼j

F )i = xi = (yd)i. Consider the smallest 0 ≤ t ≤ d
such that fi(yt) > (yt)i. Since si (x) ≤ 0 and j �= i, fi(y0) = fi(x) ≤ xi = (y0)i,
we obtain t > 0 and fi(yt−1) ≤ (yt−1)i. By j �= i, we deduce that fi(yt) > xi and
fi(yt−1) ≤ xi, hence fi(yt−1) < fi(yt), so fi(yt−1) �= fi(yt). Since yt = (yt−1)+j ,
we have fij(yt−1) = 1, and thus, by fi(yt−1) < fi(yt), we obtain (j, s, i) is a positive
arc of G(F ).

If it satisfies C2, then fj(x) < xj . We consider the sequence fj(x) = p0, p1, . . . , pd

= xj , such that pk = pk−1 + 1, k = 1, . . . , d. Setting

yk = (x1, . . . , xj−1, pk, xj+1, . . . , xn)(k = 0, . . . , d).
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Since x∼j
F ∈ X and pk ≤ xj , we obtain yk ∈ X . Since si (x) ≥ 0 and j �= i,

we have fi(yd) = fi(x) ≥ xi = (yd)i. Consider the smallest 0 ≤ t ≤ d such
that fi(yt) ≥ (yt)i. Since si

(
x∼j

F

)
= −1, fi(y0) = fi(x

∼j
F ) < (x∼j

F )i = (y0)i,
hence t > 0 and fi(yt−1) < (yt−1)i. By j �= i, we deduce that fi(yt) ≥ xi and
fi(yt−1) < xi, hence fi(yt−1) < fi(yt), so fi(yt−1) �= fi(yt). Since yt = (yt−1)+j ,
we have fij(yt−1) = 1, and thus, by fi(yt−1) < fi(yt), we obtain (j, s, i) is a positive
arc of G(F ). Therefore the statement (a) is proved.

Next, we will prove the statement (b). We suppose it satisfies C3 (the other case
being similar). Suppose j = i, otherwise it is similar to the proof of the statement
(a). Since si (x) = sj (x) = −1, fi(x) < xi. We consider the sequence xi =
p0, p1, . . . , pd = fi(x), such that pk = pk−1 − 1, k = 1, . . . , d. Setting

yk = (x1, . . . , xi−1, pk, xi+1, . . . , xn)(k = 0, . . . , d).

So (y0)i = xi > fi(x) = (yd)i and, by si

(
x∼j

F

)
= si

(
x∼i

F

)
= 1, we have fi(yd) =

fi(x∼i
F ) > (x∼i

F )i = fi(x) = (yd)i. Consider the smallest 0 ≤ t ≤ d such that
fi(yt) > (yd)i. Since fi(y0) = fi(x) = (yd)i, we have t > 0, and fi(yt−1) ≤ (yd)i.
We deduce that fi(yt) > fi(yt−1), so fi(yt) �= fi(yt−1). Since yt−1 = (yt)+i,
fii(yt) = 1, and thus, by fi(yt) > fi(yt−1), (i, s, i) is a negative arc of G(F ), and the
statement (b) is proved.

Lemma 3.2. Let (X,≤) be a dimensional finite lattice with #At(X) = n.
Suppose that F : X → X is a map, such that x∼i

F ∈ X for all x ∈ X , 1 ≤ i ≤ n.
Let {x1, . . . , xr} be an elementary trajectory of Γ(F ) with length r > 1, and let
i ∈ NF (xr). For 1 ≤ p < r , if si(xp) �= si(xr) then there exists j ∈ NF (x1),
such that G(F ) has a path from j to i with sign s, where the value of sign s equals
sj

(
x1

)
si (xr).

Proof. We proceed by induction.

Case r = 2. Let j = ϕ(1). Then j ∈ NF (x1) such that x2 = (x1)∼j
F �= x1;

hence sj

(
x1

) �= 0. Following the conditions of this lemma, we have i ∈ NF (x2) =
NF ((x1)∼j

F ) and si(x1) �= si(x2) = si((x1)∼j
F ), and thus, by Lemma 3.1, (j, s, i) is an

arc of G(F ), where the value of sign s equals sj

(
x1

)
si((x1)∼j

F ) = sj

(
x1

)
si

(
x2

)
.

Case r > 2. Let k = ϕ(r − 1). Then k ∈ NF (xr−1) such that xr = (xr−1)∼k
F �=

xr−1; hence sk

(
xr−1

) �= 0. Following the conditions of this lemma, we have i ∈
NF (xr) and si(xr−1) �= si(xr) = si((xr−1)∼k

F ), and thus, by Lemma 3.1, (k, ski, i)
is an arc of G(F ), where the value of sign ski equals sk

(
xr−1

)
si

(
(xr−1)∼k

F

)
=

sk

(
xr−1

)
si (xr).

Now, we consider the smallest 1 ≤ p < r such that sk(xp) = sk(xr−1) �= 0.
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First, suppose that p = 1. Then sk(x1) = sk(xr−1), hence sk(x1) �= 0; hence
k ∈ NF (x1) and this arc (k, ski, i) is a path from k to i, where the value of sign ski

equals sk

(
xr−1

)
si (xr) = sk

(
x1

)
si (xr). So that the lemma holds.

Next, suppose that p > 1. Then, by the choice of p, for all 1 ≤ m < p, we have
sk(xm) �= sk(xr−1). Thus the trajectory {x1, . . . , xp} satisfies the conditions of the
lemma for k ∈ NF (xp). Since p < r, by induction hypothesis, there exists j ∈ NF (x1)
such that G(F ) has a path from j to k of sign sjk , where the value of sign sjk equals
sj

(
x1

)
sk (xp); hence sj

(
x1

) �= 0. Since G(F ) contains an arc from k to i with sign
ski, we deduce that G(F ) contains a path from j to i of sign s, where the value of sign
s equals sjkski = sj(x1)sk(xp)sk(xr−1)si(xr), and since sk(xp) = sk(xr−1) �= 0, we
deduce that the value of sign s equals sj(x1)si(xr), and the lemma is proved.

Lemma 3.3. Let (X,≤) be a dimensional finite lattice with #At(X) = n.
Suppose that F : X → X is a map, such that x∼i

F ∈ X for all x ∈ X , 1 ≤ i ≤ n. Let
A be an attractive cycle of Γ(F ). If there exists x ∈ A such that NF (x) = {i}, then
G(F ) has a negative circuit.

Proof. Let x1 = x, then si(x1) �= 0. Suppose that si(x1) = 1 (the other case
being similar). Let x2 = (x1)∼i

F , then (x2)i = fi(x1) > (x1)i and (x1, x2) is an arc of
Γ(F ). Since x1 ∈ A, we have x2 ∈ A. Since A is an attractive cycle, we deduce that
Γ(F ) has an elementary trajectory {x2, . . . , xr} from x2 to xr = x1, all the vertices
of which belong to A.

Assume on the contrary that si(xp) = 0 or 1 for all 1 < p < r. Then (xp)i ≤
fi(xp). Suppose ϕ(p) �= i, then (xp)i = (xp+1)i; otherwise, fi(xp) = (xp+1)i. Hence
(xp)i ≤ (xp+1)i for all 1 < p < r, and we deduce that (x2)i ≤ (xr)i = (x1)i. But
this is impossible if si(x1) = 1.

Thus there exists a smallest 1 < p < r such that si(xp) = −1. Then, {x1, . . . , xp}
is an elementary trajectory with i ∈ NF (xp) and by the choice of p, we have si(xm) �=
si(xp) for all 1 ≤ m < p. So, according to Lemma 3.2, there exists j ∈ NF (x1)
and G(F ) has a path from j to i with sign s, where the value of sign s equals
sj

(
x1

)
si (xp). Since i is the unique one in NF (x1), we have j = i and consequently,

G(F ) has a path from i to itself, and thus creating a circuit of sign s, where the value
of sign s equals si

(
x1

)
si (xp). Since si(x1) = 1 and si(xp) = −1, we deduce that

si

(
x1

)
si (xp) = −1. Thus G(F ) has a negative circuit.

Lemma 3.4. Let (X,≤) be a dimensional finite lattice with #At(X) = n.
Suppose that F : X → X is a map, such that x∼i

F ∈ X for all x ∈ X , 1 ≤ i ≤ n. Let
A be an attractive cycle of Γ(F ). If there are at least two different numbers i and j

in NF (x) for all x ∈ A, then there exists H : X → X , such that Γ(H) contains an
attractive cycle B which is strictly included in A, and the elementary circuit of G(H)
is an elementary circuit of G(F ) with the same sign.

Proof. Let y ∈ A, by conditions of this lemma, there exists a number j ∈ NF (y).
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Consider the map H : X → X , defined by: for any x ∈ X

H(x) = (f1(x), . . . , fj−1(x), xj, fj+1(x), . . . , fn(x)).

For any x ∈ A, if there is a number i ∈ NH(x), then by hj(x) = xj , we obtain
i �= j, hence hi(x) = fi(x), so that x∼i

F = x∼i
H . Since A is an attractive cycle of Γ(F ),

we have x∼i
H = x∼i

F ∈ A. So A is a trap domain of Γ(H). By the definition of an
attractor, we obtain that Γ(H) contains one attractor B ⊆ A.

Let x ∈ B. Then x ∈ A. By conditions of this lemma, there exists a number i �= j
such that i ∈ NF (x). We deduce that xi �= fi(x) = hi(x) so i ∈ NH(x). Since x ∈ B
and B is an attractor of Γ(H), x∼i

H ∈ B. Thus B is an attractor of cardinality at least
two, so B is an attractive cycle of Γ(H).

Suppose, by contradiction, that B = A. Since y ∈ A = B and j ∈ NF (y), we
have y∼j

F ∈ B. Since B is an attractive cycle of Γ(H), we deduce that Γ(H) has
a trajectory {y = x1, . . . , xr = y∼j

F }. Since hj(x) = xj for all x ∈ X , we have
(x1)j = (x2)j = . . . = (xr)j . So yj = (y∼j

F )j , a contradiction. Therefore B �= A.
If (k, s1, i) is an arc of an elementary circuit of G(H), then by the definition of

elementary circuit, k �= i and ∃x ∈ X such that hik(x) = 1. Thus ∃z ∈ x+k such that
hi(x) �= hi(z). Suppose, by contradiction, that i = j then hi(z) = hj(z) = zj . Since
k �= j, we obtain zj = xj = hj(x) = hi(x) as a contradiction. Therefore, i �= j. We
deduce that fi(x) = hi(x) �= hi(z) = fi(z), hence fik(x) = 1. Then it is clear that
(k, s2, i) is an arc of G(F ). Since hi(z) > hi(x) if and only if fi(z) > fi(x), we have
s1 = s2. Thus we complete this proof.

Proof of Theorem 3.1. If there exists an attractive cycle of Γ(F ), denoted by A

and there exists x ∈ A such that i is the unique one in NF (x), then by Lemma 3.3,
G(F ) has a negative circuit.

Otherwise, there are at least two different numbers i and j in NF (x) for all x ∈ A,
then by Lemma 3.4, there exists H1 : X → X such that Γ(H1) contains an attractive
cycle B1 which is strictly included in A, and the elementary circuit of G(H) is an
elementary circuit of G(F ) with the same sign.

If there exists x ∈ B1 such that i is the unique one in NH1(x), then by Lemma
3.3, G(H1) has a negative circuit, hence G(H1) has an elementary negative circuit. In
the proof of Lemma 3.4, we obtain that it is an elementary negative circuit of G(F ).

If there are two different numbers i and j in NH1(x) for all x ∈ B1, by the same
process of analysis, we obtain a sequence of sets: A = B0 ⊃ B1 ⊃ B2 ⊃ . . ., and a
sequence of maps from X to itself: F = H0, H1, H2, . . . , such that Bi is an attractive
cycle of Γ(Hi) and there are two different numbers ki and ji in NHi(x) for all x ∈ Bi

and for i = 0, 1, 2, . . .. Since X is finite, there exists a number r, such that Br is
the minimal subset of X , in which Br is an attractive cycle of Γ(Hr) and there are
two different numbers kr and jr in NHr(x) for all x ∈ Br . By Lemma 3.4, there
exists Hr+1 : X → X such that Γ(Hr+1) contains an attractive cycle Br+1 which is
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strictly included in Br. By the minimality of Br , there exists at most one number ir
in NHr+1(x). Since Br+1 is an attractive cycle of Γ(Hr+1), we obtain that ir is the
unique one in NHr+1(x). By Lemma 3.3, G(Hr+1) has a negative circuit, hence it
has an elementary negative circuit C and then, C is an elementary negative circuit of
G(Hr), G(Hr−1), . . . , and G(H0)=G(F ). Therefore, G(F ) has a negative circuit.
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