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GENERAL DECAY OF SOLUTIONS FOR A VISCOELASTIC EQUATION
WITH BALAKRISHNAN-TAYLOR DAMPING

Shun-Tang Wu

Abstract. A viscoelastic equation with Balakrishnan-Taylor damping and non-
linear boundary/interior sources is considered in a bounded domain. Under ap-
propriate assumptions on the relaxation function and with certain initial data and
by adopting the perturbed energy method, we establish uniform decay rate of the
solution energy in terms of the behavior of the relaxation function, which are not
necessarily of exponential or polynomial decay.

1. INTRODUCTION

In this paper, we study the following viscoelastic problem with Balakrishnan-Taylor
damping and nonlinear boundary/interior sources:

(1.1)

utt(t) − M(t)Δu(t) +
∫ t

0

g(t− s)Δu(s)ds

= |u|p−1 u, in Ω × (0,∞),

u = 0, on Γ0 × (0,∞), M(t)
∂u

∂ν
−
∫ t

0
g(t − s)

∂

∂ν
u(s)ds + αut

= |u|k−1 u, on Γ1 × (0,∞)

u(0) = u0(x), ut(0) = u1(x), x ∈ Ω,

where M(t) = a + b ‖∇u‖2
2 + σ

∫
Ω ∇u ·∇utdx, a > 0, b > 0, σ > 0, α > 0 and Ω is

a bounded domain in Rn (n ≥ 1) with smooth boundary Γ = Γ0 ∪ Γ1. Here, Γ0 and
Γ1 are closed and disjoint with meas (Γ0) > 0, and ν is the unit outward normal to
Γ. The relaxation function g is a positive and uniformly decaying function and

(1.2)
1 ≤ p ≤ n

n − 2
, n > 2 and 1 ≤ p < ∞, if n = 2,

1 ≤ k <
n − 1
n − 2

, n > 2 and 1 ≤ k < ∞, if n = 2.
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The equations in (1.1) with M ≡ 1 form a class of nonlinear viscoelastic equations
used to investigate the motion of viscoelastic materials. As these materials have a
wide application in the natural sciences, their dynamics are interesting and of great
importance. Hence, questions related to the behavior of the solutions for the PDE
system have attracted considerable attention in recent years. For example, Cavalcanti
et al. [6] considered the following problem:

(1.3)

utt(t) − Δu(t) +
∫ t

0
g(t − s)Δu(s)ds = 0, in Ω × (0,∞),

u = 0, on Γ0 × (0,∞),

∂u

∂ν
−
∫ t

0
g(t − s)

∂

∂ν
u(s)ds + h(ut) = 0, on Γ1 × (0,∞)

u(0) = u0(x), ut(0) = u1(x), x ∈ Ω.

They showed the global existence of solutions and established some uniform decay
results under quite restrictive assumptions on both the damping function h and the re-
laxation function g. Later, Cavalcanti et al. [5] generalized the result without imposing
a growth condition on h and under a weaker assumption on g. Recently, Messaoudi
and Mustafa [11] exploited some properties of convex functions [1] and the multiplier
method to extend these results. They established an explicit and general decay rate re-
sult without imposing any restrictive growth assumption on damping term h and greatly
weakened the assumption on g.

In the absence of Balakrishnan-Taylor damping (σ = 0) , equation (1.1)1 is the
model to describe the motion of deformable solids as hereditary effect is incorporated,
which was first studied by Torrejon and Yong [15]. They proved the existence of
weakly asymptotic stable solution for large analytical datum. Later, Rivera [13] showed
the existence of global solutions for small datum and the total energy decays to zero
exponentially under some restrictions.

Conversely, in the presence of Balakrishnan-Taylor damping (σ 
= 0) and g = 0,
equation (1.1)1 is used to study the flutter panel equation and to the spillover problem,
which was initially proposed by Balakrishnan and Taylor in 1989 [2], and Bass and
Zes [3]. The related problems also concerned by You [17], Clark [8], Tatar and Zarai
[14, 18] and Mu et al. [12]. Recently, Zarai et al. [19] considered the following flutter
equation with memory term:

utt(t) − M(t)Δu(t) +
∫ t

0
g(t− s)Δu(s)ds = 0, in Ω × (0,∞),

u = 0, on Γ0 × (0,∞),

M(t)
∂u

∂ν
−
∫ t

0
g(t − s)

∂

∂ν
u(s)ds + αut = |u|k−2 u, on Γ1 × (0,∞)

u(0) = u0(x), ut(0) = u1(x), x ∈ Ω,
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which arises in a wind tunnel experiment for a panel at supersonic speeds. They proved
the global existence of solutions and a general decay result for the energy by using the
multiplier technique..

Motivated by previous works, it is interesting to investigate the uniform decay result
of solutions to problem (1.1) with two nonlinear source terms (boundary and interior).
Indeed, we show in this study that the decay rate of the solution energy is similar to the
relaxation function, which is not necessarily decaying in a polynomial or exponential
fashion. Our proof technique closely follows the arguments of [12, 16], with some
modifications being needed for our problem. The remainder of this paper is organized
as follows. In section 2, we give some notations and assumptions and state the local
existence result Theorem 2.1. In section 3, we prove our stability result that is given
in Theorem 3.7.

2. PRELIMINARIES RESULTS

In this section, we give assumptions and preliminaries that will be needed through-
out the paper. First, we introduce the set

H1
Γ0

=
{
u ∈ H1 (Ω) : u |Γ0 = 0

}
,

and endow H1
Γ0

with the Hilbert structure induced by H1 (Ω) , we have that H1
Γ0

is
a Hilbert space. For simplicity, we denote ‖·‖q = ‖·‖Lq(Ω) and ‖·‖q,Γ1

= ‖·‖Lq(Γ1)
,

1 ≤ q ≤ ∞. According to (1.2), we have the imbedding : H1
Γ0

↪→ Lp+1 (Ω) . Let
c∗ > 0 be the optimal constant of Sobolev imbedding which satisfies the inequality

(2.1) ‖u‖p+1 ≤ c∗ ‖∇u‖2 , ∀u ∈ H1
Γ0

,

and we use the trace-Sobolev imbedding: H1
Γ0

↪→ Lk+1 (Γ1) , 1 ≤ k < n
n−2 . In this

case, the imbedding constant is denoted by B∗, i.e.

(2.2) ‖u‖k+1,Γ1
≤ B∗ ‖∇u‖2 .

Next, we state the assumptions for problem (1.1):
(A1) g : [0,∞) → (0,∞) is a bounded C1 function satisfying

(2.3) g(0) > 0, a −
∫ ∞

0

g(s)ds = l > 0,

and there exists a non-increasing positive differentiable function ξ such that

(2.4) g′(t) ≤ −ξ(t)g(t),

for all t ≥ 0.
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Now, we state the local existence result, which can be obtained by [4, 7, 9, 16].

Theorem 2.1. Let the initial data {u0, u1} ∈ H1
Γ0

∩ H2 (Ω) × H1
Γ0

. Suppose
that the hypotheses (A1) and (1.2) hold. Then there exists a regular solution u of the
problem (1.1) satisfying

u ∈ L∞ ([0, T ); H1
Γ0

∩ H2 (Ω)
)
, ut ∈ L∞ ([0, T ); H1

Γ0

)
, utt ∈ L∞ ([0, T ); L2 (Ω)

)
for some T > 0.

3. UNIFORM DECAY

In this section, we prove decay rate estimates for problem (1.1). For this purpose,
the energy associated with problem (1.1) is given by

(3.1) E(t) =
1
2
‖ut‖2

2 + J(u(t)), for u ∈ H1
Γ0

,

where

(3.2)
J(u(t)) =

1
2

(
a −

∫ t

0
g(s)ds

)
‖∇u(t)‖2

2 +
b

4
‖∇u(t)‖4

2

+
1
2
(g ◦ ∇u)(t)− 1

p + 1
‖u(t)‖p+1

p+1 −
1

k + 1
‖u(t)‖k+1

k+1,Γ1
,

and
(g ◦ ∇u)(t) =

∫ t

0
g(t− s) ‖∇u(t) −∇u(s)‖2

2 ds.

Adopting the proof of [11], we still have the following result.

Lemma 3.1. Let u be the solution of (1.1), then, E(t) is a non-increasing function
on [0, T ) and

(3.3)
E ′(t) = −σ

(
1
2

d

dt
‖∇u‖2

2

)2

− α ‖ut‖2
2,Γ1

+
1
2
(g′ ◦ ∇u)(t)− 1

2
g(t) ‖∇u(t)‖2

2 ≤ 0.

Next, we define a functional F introduced by Cavalcanti et al. [4], which helps in
establishing desired results. Setting

(3.4) F (x) =
1
2
x2 − Bp+1

Ω

p + 1
xp+1 − Bk+1

Γ

k + 1
xk+1, x > 0,

where
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(3.5) BΩ = sup
u∈H1

Γ0
,

u �=0

‖u‖p+1√(
l+ b

2 ‖∇u‖2
2

)
‖∇u‖2

2

and BΓ = sup
u∈H1

Γ0
,

u �=0

‖u‖k+1,Γ1√(
l+ b

2 ‖∇u‖2
2

)
‖∇u‖2

2

.

Remark 3.2. (i) As in [4], we can verify that the functional F is increasing in (0, λ0) ,

decreasing in (λ0,∞) , and F has a maximum at λ0 with the maximum value

(3.6)
d ≡ F (λ0)

=
1
2
λ2

0 −
Bp+1

Ω

p + 1
λp+1

0 − Bk+1
Γ

k + 1
λk+1

0 ,

where λ0 is the first positive zero of the derivative function F ′(x).
(ii) From (3.1), (3.2), (1.2), (2.3) and the definition of F , we have

(3.7) E(t) ≥ J(u(t)) ≥ 1
2
γ2(t)− Bp+1

Ω

p + 1
γp+1(t)− Bk+1

Γ

k + 1
γk+1(t)

= F (γ(t)) , t ≥ 0,

where
γ2(t) = l ‖∇u(t)‖2

2 +
b

2
‖∇u(t)‖4

2 + (g ◦ ∇u)(t).

Now, if one considers γ(t) < λ0, then, from (3.7), we get

E(t) ≥ F (γ(t)) > γ2(t)

(
1
2
− Bp+1

Ω

p + 1
λp−1

0 − Bk+1
Γ

k + 1
λk−1

0

)
, t ≥ 0,

which together with the identity

(3.8) 1 − Bp+1
Ω λp−1

0 − Bk+1
Γ λk−1

0 = 0

give

(3.9) E(t) ≥ F (γ(t)) ≥ c0γ
2(t),

where c0 =

{
p−1

2(p+1)
, if k ≥ p,

k−1
2(k+1) , if p ≥ k.

and the identity (3.8) is derived because λ0 is the

first positive zero of the derivative function F ′(x).

Lemma 3.3. Let u0 ∈ H1
Γ0

, u1 ∈ L2 (Ω) and the hypotheses (A1) and (1.2) hold.

Assume further that γ(0) =
√

l ‖∇u0‖2
2 + b

2 ‖∇u0‖4
2 < λ0 and E(0) < d. Then,

(3.10) γ(t) =

√
l ‖∇u‖2

2 +
b

2
‖∇u(t)‖4

2 + (g ◦ ∇u)(t) < λ0,
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for all t ∈ [0, T ).

Proof. Using (3.7) and considering E(t) is a non-increasing function, we obtain

(3.11) F (γ(t)) ≤ E(t) ≤ E(0) < d, t ∈ [0, T ).

In addition, from Remark 3.2 (i), we see that F is increasing in (0, λ0) , decreasing in
(λ0,∞) and F (λ) → −∞ as λ → ∞. Thus, as E(0) < d, there exist λ′

2 < λ0 < λ2

such that F (λ′
2) = F (λ2) = E (0) . Besides, through the assumption γ(0) < λ0, we

observe that
F (γ(0)) ≤ E (0) = F

(
λ′

2

)
.

This implies that γ(0) ≤ λ′
2. Next, we will prove that

(3.12) γ(t) ≤ λ′
2, t ∈ [0, T ).

To establish (3.12), we argue by contradiction. Suppose that (3.12) does not hold, then
there exists t∗ ∈ (0, T ) such that γ(t∗) > λ′

2.

Case 1. If λ′
2 < γ(t∗) < λ0, then

F (γ(t∗)) > F (λ′
2) = E (0) ≥ E(t∗).

This contradicts (3.11).

Case 2. If γ(t∗) ≥ λ0, then by continuity of γ(t), there exists 0 < t1 < t∗ such
that

λ′
2 < γ(t1) < λ0,

then
F (γ(t1)) > F (λ′

2) = E (0) ≥ E(t1).

This is also a contradiction of (3.11). Thus, we have proved (3.10).

Theorem 3.4. Let u0 ∈ H1
Γ0

, u1 ∈ L2 (Ω) and (A1 ) and (1 .2 ) hold. Assume
further that γ(0) < λ0 and E(0) < d, then the problem (1 .1 ) admits a global
solution.

Proof. It follows from (3.10), (3.9) and (3.7) that

(3.13)
1
2
‖ut‖2

2 + c0γ
2(t) ≤ 1

2
‖ut‖2

2 + F (γ(t)) ≤ 1
2
‖ut‖2

2 + J(u(t))

= E(t) ≤ E(0) < d.
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Thus, we establish the boundedness of ut in L2 (Ω) and the boundedness of u in H1
Γ0

.

Moreover, from (2.1), (2.2) and (3.13), we also obtain

‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ1
≤ cp+1

∗ ‖∇u‖p+1
2 + Bk+1

∗ ‖∇u‖k+1
2

≤ 1
l

(
cp+1
∗

(
E(0)
lc0

) p−1
2

+ Bk+1
∗

(
E(0)
lc0

)k−1
2

)
l ‖∇u‖2

2

≤ Lγ2(t),

which implies that the boundedness of u in Lp+1 (Ω) and in Lk+1 (Γ1) with L =
1
l

(
cp+1
∗

(
E(0)
lc0

) p−1
2 + Bk+1∗

(
E(0)
lc0

)k−1
2

)
. Hence, it must have T = ∞. qed

Now, we shall investigate the asymptotic behavior of the energy function E(t).
First, we define some functionals and establish several lemmas. Let

(3.14) G(t) = ME(t) + εΦ(t) + Ψ(t),

where

Φ(t) =
∫

Ω
utudx +

σ

4
‖∇u‖4

2(3.15)

Ψ(t) =
∫

Ω
ut

∫ t

0
g(t − s) (u(s) − u(t)) dsdx,(3.16)

and M, ε are some positive constants to be be specified later.

Lemma 3.5. There exist two positive constants β1 and β2 such that the relation

(3.17) β1E(t) ≤ G(t) ≤ β2E(t)

holds, for ε > 0 small enough while M > 0 is large enough.

Proof. By Hölder’s inequality, Young’s inequality, (2.1) and (2.3), we deduce that

|G(t)− ME(t)| ≤ ε |Φ(t)|+ |Ψ(t)|

≤ ε + 1
2

‖ut‖2 +
εc2∗
2

‖∇u‖2
2 +

εσ

4
‖∇u‖4

2

+
∫

Ω

(∫ t

0
g(t− s) (u(s) − u(t)) ds

)2

dx

≤ ε + 1
2

‖ut‖2 +
εc2∗
2

‖∇u‖2
2 +

εσ

4
‖∇u‖4

2 +
c2∗(a − l)

2
(g ◦ ∇u) (t)

≤ c1

(
1
2
‖ut‖2

2 + c0

(
l ‖∇u‖2

2 + (g ◦ ∇u) (t) +
b

2
‖∇u‖4

2

))
,
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where c1 = max(ε+1, εc2∗
2c0l ,

c2∗(a−l)
2c0

, εσ
2bc0

). Employing (3.13) and selecting ε > 0 small
enough and M sufficiently large, there exist two positive constants β1 and β2 such that

β1E(t) ≤ G(t) ≤ β2E(t).

Lemma 3.6. Let (A1 ) and (1 .2 ) hold, then, for any t0 > 0, the functional G(t)
verifies, along solution of (1.1),

(3.18) G′(t) ≤ −c6E(t) + c7 (g ◦ ∇u) (t) − c5E(0)E ′(t),

where ci, i = 5, 6, 7 are some positive constants given in the proof.

Proof. In the following, we estimate the derivative of G(t). From (3.15) and (1.1),
we have

Φ′(t) = ‖ut‖2
2 −

(
a + b ‖∇u‖2

2

)
‖∇u‖2

2 +
∫

Ω
∇u(t)

∫ t

0
g(t − s)∇u(s)dsdx

− α

∫
Γ1

utudΓ + ‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ1
(3.19)

Utilizing Hölder’s inequality, Young’s inequality, (2.2) and (2.3), the third and fourth
terms on the right-hand side of (3.19) can be estimated as follows, for η, δ > 0,

(3.20)
∫

Ω
∇u(t)

∫ t

0
g(t − s)∇u(s)dsdx ≤ (η + a − l) ‖∇u‖2

2 +
a − l

4η
(g ◦ ∇u) (t),

and

(3.21)
∣∣∣∣α
∫

Γ1

utudΓ
∣∣∣∣ ≤ δαB2

∗ ‖∇u‖2
2 +

α

4δ
‖ut‖2

2,Γ1
.

A substitution of (3.20)-(3.21) into (3.19) yields

Φ′(t) ≤ ‖ut‖2
2 −

(−η + l − δαB2
∗
) ‖∇u‖2

2 +
a − l

4η
(g ◦ ∇u) (t) +

α

4δ
‖ut‖2

2,Γ1

+ ‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ1
.

Letting η = l
2 > 0 and δ = l

8αB2∗
in above inequality, we obtain

(3.22)
Φ′(t) ≤ ‖ut‖2

2 −
l

4
‖∇u‖2

2 +
a − l

2l
(g ◦ ∇u) (t) +

2αB2∗
l

‖ut‖2
2,Γ1

+ ‖u‖p+1
p+1 + ‖u‖k+1

k+1,Γ1
.
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Next, we estimate Ψ′(t). Taking the derivative of Ψ(t) in (3.16) and using (1.1),
we obtain

Ψ′(t) =
∫

Ω

(
a + b ‖∇u‖2

2

)
∇u(t)

∫ t

0
g(t− s) (∇u(t)−∇u(s)) dsdx

+
∫

Ω
σ

(∫
Ω
∇u∇utdx

)
∇u(t)

∫ t

0
g(t − s) (∇u(t) −∇u(s))dsdx

−
∫

Ω

(∫ t

0
g(t − s)∇u(s)ds

)(∫ t

0
g(t− s) (∇u(t) −∇u(s)) ds

)
dx

+ α

∫
Γ1

ut

∫ t

0
g(t− s) (u(t) − u(s)) dsdΓ(3.23)

−
∫

Γ1

|u|k−1 u

∫ t

0
g(t − s) (u(t)− u(s)) dsdΓ

−
∫

Ω

|u|p−1 u

∫ t

0

g(t − s) (u(t) − u(s))dsdx

−
∫

Ω
ut

∫ t

0
g′(t − s) (u(t) − u(s)) dsdx −

(∫ t

0
g(s)ds

)
‖ut‖2

2 .

Similar to deriving (3.22), in what follows we will estimate the right-hand side of
(3.23). Using Young’s inequality, Hölder’s inequality, l ‖∇u‖2

2 ≤ E(t)
c0

≤ E(0)
c0

by

(3.13), E ′(t) ≤ −σ
(

1
2

d
dt ‖∇u‖2

2

)2
by (3.3), (2.3) and (2.2), we have, for δ > 0,

∣∣∣∣
∫

Ω

(
a + b ‖∇u‖2

2

)
∇u(t)

∫ t

0
g(t− s) (∇u(t) −∇u(s)) dsdx

∣∣∣∣
≤
∣∣∣∣
∫

Ω

(
a +

b

c0l
E(0)

)
∇u(t)

∫ t

0
g(t − s) (∇u(t)−∇u(s)) dsdx

∣∣∣∣(3.24)

≤ δ ‖∇u‖2
2 +

a − l

4δ

(
a +

b

c0l
E(0)

)2

(g ◦ ∇u) (t),

∣∣∣∣
∫

Ω
σ

(∫
Ω
∇u∇utdx

)
∇u(t)

∫ t

0
g(t − s) (∇u(t) −∇u(s)) dsdx

∣∣∣∣
≤ σ2

(∫
Ω
∇u∇utdx

)2

l ‖∇u‖2
2+

1
4l

∫
Ω

(∫ t

0
g(t−s) (∇u(t)−∇u(s))ds

)2

dx(3.25)

≤ −σ

c0
E(0)E ′(t) +

a − l

4l
(g ◦ ∇u) (t),

(3.26)

∣∣∣∣
∫

Ω

(∫ t

0
g(t − s)∇u(s)ds

)(∫ t

0
g(t − s) (∇u(t) −∇u(s))ds

)
dx

∣∣∣∣
≤ 2δ (a − l)2 ‖∇u‖2

2 +
(

2δ +
1
4δ

)
(a − l) (g ◦ ∇u) (t),
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and

(3.27)

∣∣∣∣α
∫

Γ1

ut

∫ t

0

g(t − s) (u(t)− u(s)) dsdΓ
∣∣∣∣

≤ α

2
‖ut‖2

2,Γ1
+

(a − l)αB2∗
2

(g ◦ ∇u) (t)

As for the the fifth and sixth terms on the right-hand side of (3.23), using Hölder’s
inequality, Young’s inequality, (2.1)-(2.3) and (3.13), we obtain∫

Γ1

|u|k−1 u

∫ t

0
g(t − s) (u(t) − u(s)) dsdΓ

≤ δ ‖u‖2k
2k,Γ1

+
(a − l)B2∗

4δ
(g ◦ ∇u) (t)(3.28)

≤ δB2k
∗

(
E(0)
lc0

)k−1

‖∇u‖2
2 +

(a − l)B2∗
4δ

(g ◦ ∇u) (t),

and ∣∣∣∣
∫

Ω
|u|p−1 u

∫ t

0
g(t− s) (u(t) − u(s)) dsdx

∣∣∣∣
≤ δ ‖u‖2p

2p +
(a − l)c2∗

4δ
(g ◦ ∇u) (t)(3.29)

≤ δc2p
∗

(
E(0)
lc0

)p−1

‖∇u‖2
2 +

(a − l)c2∗
4δ

(g ◦ ∇u) (t).

Exploiting Hölder’s inequality, Young’s inequality and (A1) to estimate the seventh
term, we have

(3.30)
∣∣∣∣
∫

Ω

ut

∫ t

0

g′(t − s) (u(t) − u(s)) dsdx

∣∣∣∣ ≤ δ ‖ut‖2
2 −

g(0)c2∗
4δ

(
g′ ◦ ∇u

)
(t).

Then, combining these estimates (3.24)-(3.30), (3.23) becomes

(3.31)
Ψ′(t) ≤ −

(∫ t

0
g(s)ds− δ

)
‖ut‖2

2 + c2δ ‖∇u‖2
2 + c3 (g ◦ ∇u) (t)

+
α

2
‖ut‖2

2,Γ1
− g(0)c2∗

4δ

(
g′ ◦ ∇u

)
(t) − σ

c0
E(0)E ′(t),

where c2 = 1 + 2(a − l)2 + c
2p
∗
(

E(0)
lc0

)p−1
+ B2k∗

(
E(0)
lc0

)k−1
and c3 = (a − l)(

1+
(
a+ b

c0l
E(0)

)2

4δ + 2δ + 1
4l + αB2∗

2 + c2∗+B2∗
4δ

)
.
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Thus, we conclude from (3.14), (3.3), (3.22), and (3.31) that

G′(t)
= ME ′(t) + εΦ′(t) + Ψ′(t)

≤ −
(

M

2
− g(0)c2∗

4δ

)(−g′ ◦ ∇u
)
(t) − (g0 − δ − ε) ‖ut‖2

2 +
(

c2δ − εl

4

)
‖∇u‖2

2

− α2

(
M − 2B2∗

l
− 1

2

)
‖ut‖2

2,Γ1
+
(

c3 +
(a− l)ε

2l

)
(g ◦ ∇u) (t) − σ

c0
E(0)E ′(t)

+ ε
(
‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

)
,

where we have used the fact that for any t0 > 0,∫ t

0
g(s)ds ≥

∫ t0

0
g(s)ds = g0, ∀ t ≥ t0,

because g is positive and continuous with g(0) > 0. At this point, we choose ε > 0
small enough so that Lemma 3.5 holds and ε < g0

2 . Once ε is fixed, we choose δ to
satisfy

δ < min
{

εl

8c2
,
g0

4

}
,

and then pick M sufficiently large such that

M > max
{

g(0)c2∗
2δ

,
2B2∗

l
+

1
2

}
.

Hence, for all t ≥ t0, we arrive at

G′(t) ≤ −εl

8
‖∇u‖2

2 −
g0

4
‖ut‖2

2 + c4 (g ◦ ∇u) (t) − c5E(0)E ′(t)

+ ε
(
‖u‖p+1

p+1 + ‖u‖k+1
k+1,Γ1

)
,

which yields ( if needed, one can choose ε sufficiently small)

(3.32) G′(t) ≤ −c6E(t) + c7 (g ◦ ∇u) (t) − c5E(0)E ′(t),

where ci, i = 5, 6, 7 are all positive constants. This completes the proof.

Theorem 3.7. Let (A1 ) and (1 .2 ) hold. Assume that u0 ∈ H1
Γ0

, u1 ∈ L2 (Ω) ,
γ(0) < λ0 and E(0) < d. Then, there exist two positive constants K and k such that
the solution of (1.1) satisfies

(3.33) E(t) ≤ Ke
−k

∫ t
t0

ξ(s)ds
, for t ≥ 0.
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Proof. It follows from (3.32), (2.4) and (3.3) that

ξ(t)G′(t) ≤ −c6ξ(t)E(t) + c7ξ(t) (g ◦ ∇u) (t) − c5E(0)ξ(t)E ′(t)
≤ −c6ξ(t)E(t)− c7

(
g′ ◦ ∇u

)
(t)− c5E(0)ξ(0)E ′(t)

≤ −c6ξ(t)E(t)− c8E
′(t),

where c8 = 2c7 + c5E(0)ξ(0) and t ≥ t0. This infers that

(3.34) L′(t) ≤ −c6ξ(t)E(t) ≤ −kξ(t)L(t), for t ≥ t0,

where L(t) = ξ(t)G(t)+c8E(t) is equivalent to E(t) by Lemma 3.5 and k is a positive
constant. An integration of (3.34) leads to

L(t) ≤ L(t0)e
−k

∫ t
t0

ξ(s)ds
, for t ≥ t0.

Again, employing L(t) is equivalent to E(t) leads to

(3.35) E(t) ≤ Ke
−k
∫ t

t0
ξ(s)ds

, for t ≥ t0,

where K is a positive constant. Thus, (3.33) follows from (3.35) and by virture of
continuity and boundedness of E(t). This completes the proof.

Remark 3.8. We illustrate the energy decay rate given by Theorem 3.7 through
the following examples which are introduced in [10].
(i) If

ξ(t) = α, α > 0,

then (3.35) gives the exponential decay estimate

E(t) ≤ Ke−kαt.

Similarly, if
ξ(t) = α (1 + t)−1 , α > 0,

then we obtain the polynomial decay estimate

E(t) ≤ K (1 + t)−αk .

(ii) If
g(t) = αe−α1(ln(1+t))ν

,

with α, α1, ν > 1, then (2.4) holds for

ξ(t) =
α1ν (ln (1 + t))ν−1

1 + t
.
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Thus (3.35) gives the estimate

E(t) ≤ Ke−kα1(ln(1+t))ν

.

(iii) If
g(t) =

α

(2 + t)ν (ln(2 + t))α1
,

where α > 0 and ν > 1 and α1 ∈ R (or ν = 1 and α1 > 1) . Then for

ξ(t) =
ν (ln(2 + t)) + α1

(2 + t) (ln(2 + t))α1
,

we obtain from (3.35) that

E(t) ≤ K

[(2 + t)ν (ln(2 + t))α1]k
.
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