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THE PROX-TIKHONOV-LIKE FORWARD-BACKWARD METHOD
AND APPLICATIONS

D. R. Sahu, Q. H. Ansari and J. C. Yao*

Abstract. It is known, by Rockafellar [SIAM J. Control Optim., 14 (1976), 877-
898], that the proximal point algorithm (PPA) converges weakly to a zero of a
maximal monotone operator in a Hilbert space, but it fails to converge strongly.
Lehdili and Moudafi [Optimization, 37(1996), 239-252] introduced the new prox-
Tikhonov regularization method for PPA to generate a strongly convergent se-
quence and established a convergence property for it by using the technique of
variational distance in the same space setting. In this paper, the prox-Tikhonov
regularization method for the proximal point algorithm of finding a zero for an ac-
cretive operator in the framework of Banach space is proposed. Conditions which
guarantee the strong convergence of this algorithm to a particular element of the
solution set is provided. An inexact variant of this method with non-summable
error sequence is also discussed.

1. INTRODUCTION

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉
and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H . The class of
all proper, lower semicontinuous, convex functions from C to (−∞,∞] is denoted by
Γ0(C). The normal cone for C at a point u ∈ C is

NC(u) = {z ∈ H : 〈u− v, z〉 ≥ 0 for all v ∈ C}.
Let A : C → 2H and B : C → H be monotone operators. The inclusion problem

is to find z ∈ C such that

(1.1) 0 ∈ (A+ B)z.
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Many nonlinear problems arising in applied areas such as image recovery, signal
processing, and machine learning can be mathematically modeled in form of inclusion
problem (1.1). For instance, a stationary solution to the initial value problem of the
evolution equation

0 ∈ ∂u

∂t
+ Fu, u0 = u(0)

can be recast as (1.1) when the governing maximal monotone F is of the form F =
A+B, see, for example, [10].

Consider ψ ∈ Γ0(H), and set A = ∂ψ. Then, the inclusion problem (1.1) is
equivalent to the mixed variational inequality problem (in short, MVI) of finding x∗ ∈ C
such that

(1.2) 〈Bx∗, v − x∗〉 + ψ(v)− ψ(x∗) ≥ 0, for all v ∈ C.

The central problem is to iteratively find the solution of the inclusion problem (1.1)
when A and B are two monotone operators in a Hilbert space H . One method for
finding solutions of problem (1.1) is splitting method. A splitting method for (1.1)
means an iterative method for which each iteration involves only with the individual
operators A and B, but not the sum A+B. Splitting methods for linear equations were
introduced by Peaceman and Rachford [11] and Douglas and Rachford [12]. Extensions
to nonlinear equations in Hilbert spaces were carried out by Kellogg [8] and Lions and
Mercier [10] (see also [15]).

In this paper, we are interested in the following variational inclusion problem:

(P ) Find z ∈ C such that 0 ∈ Az +Bz,

in the framework of a Banach space X , where C is a nonempty closed convex subset
of X , B : C → X is a monotone operator and A ⊆ X ×X an accretive operator such
that D(A) ⊆ C ⊆ ⋂

t>0R(I + tA). In the sequel, we assume that Zer(A+B), the set
of solutions of problem (P ) is nonempty. The inclusion problem (P ) is more general
in nature. For instance, if B is the operator constantly zero, the problem (P ) reduces

(1.3) to find z ∈ C such that 0 ∈ Az.
One popular method for solving inclusion problem (1.3) is the proximal point

algorithm of Rockafellar [17]. The proximal point like methods for finding solutions
of problem (1.3) have been studied by Lehdili and Moudafi [9] and Tossings [20] in
Hilbert spaces and by Sahu and Yao [16] in Banach spaces.

The purpose of this paper is to introduce a novel prox-Tikhonov-like forward-
backward method to solve the accretive inclusion problem (P ) in general Banach
spaces like the spaces Lp (1 < p < ∞) without using the technique of variational
distance [9]. We also discuss inexact version of our prox-Tikhonov-like forward-
backward method. We prove strong convergence of iterative sequences generated by
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our algorithms. To the best of our knowledge, it is among the first algorithm to tackle the
case where A is not necessarilym-accretive operator. In section 2 we give geometry of
Banach spaces, nonexpansive type mappings and their properties and accretive operators
and their properties. We introduce the property (N ) for nonexpansivity of operators
in Banach spaces. The property (N ) of certain classes of nonlinear operators shall
be central tool for our splitting methods for solving inclusion problem (P ). Section 3
introduces a new prox-Tikhonov-like forward-backward method and its inexact version
and states main theoretical results of the paper. We derive several known and unknown
results in the context of the property (N ). Section 4 deals algorithms in general Banach
spaces. In Section 5, we discuss applications of our algorithms to mixed variational
inequalities and nonsmooth convex minimization problems. Our iterative methods unify,
improve and generalize the corresponding results of fixed point problems, solutions of
problems (1.2)-(1.3) and inclusion problem (P ).

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, all vector spaces are real and we denote by N the set of
natural numbers. Let X be a Banach space and M ⊆ X . We denote Fix(T ) the
set of fixed points of a mapping T : M → M. In the sequel, we always use ΠM
to denote the collection of all contractions on M and SX to denote the unit sphere
SX = {x ∈ X : ‖x‖ = 1}.

2.1. Geometry of Banach spaces

A Banach space X is said to be strictly convex if

x, y ∈ SX with x 
= y ⇒ ‖(1− λ)x+ λy‖ < 1 for all λ ∈ (0, 1).

The modulus of convexity of X is defined by

δX(ε) = inf {1 − ‖x+ y‖/2 : ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε} ,

for all ε ∈ [0, 2]. X is said to be uniformly convex if δX(0) = 0, and δX(ε) > 0
for all 0 < ε ≤ 2. The space X is said to be p-uniformly convex if there a constant
cp > 0 such that δX(ε) ≥ cpε

p. Every Hilbert space is 2-uniformly convex, while Lp
is max{p, 2}-uniformly convex for every p > 1.

A Banach space X is said to be smooth provided the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists

for each x and y in SX . In this case, the norm of X is said to be Gâteaux differentiable.
It is said to be uniformly Gâteaux differentiable if for each y ∈ SX , this limit is attained
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uniformly for x ∈ SX . Let ρX : [0,∞) → [0,∞) be the modulus of smoothness of X
defined by

ρX(t) = sup
{

1
2
(||x+ y‖ + ‖x− y‖)− 1 : x ∈ SX , ‖y‖ ≤ t

}
.

A Banach space X is said to be uniformly smooth if
ρX(t)
t

→ 0 as t→ 0. A Banach
space X is said to be q-uniformly smooth if there exists a fixed constant c > 0 such
that ρX(t) ≤ ctq . It is well-known that X is uniformly smooth if and only if the norm
of X is uniformly Fréchet differentiable. If X is q-uniformly smooth, then q ≤ 2 and
X is uniformly smooth, and hence the norm of X is uniformly Fréchet differentiable,
in particular, the norm of X is Fréchet differentiable. Typical example of uniformly
smooth Banach spaces is Lp, where p > 1. More precisely, Lp is min{p, 2}-uniformly
smooth for every p > 1. It is well known that every uniformly smooth space (e.g., Lp
space, 1 < p <∞) has uniformly Gâteaux differentiable norm (see, e.g., [1]).

Lemma 2.1. [24]. Let p > 1 be a given real number and X be a Banach space.
Then, X is p-uniformly convex if and only if there exists a constant cp > 0 such that

‖tx + (1 − t)y‖p ≤ t‖x‖p + (1 − t)‖y‖p − cpWp(t)‖x− y‖p,
for all x, y ∈ X and t ∈ [0, 1], where Wp(t) = (1 − t)tp + t(1 − t)p.

2.2. Accretive operators

Let X be a real Banach space with dual space X∗. We denote by J the normalized
duality mapping from X into 2X

∗ defined by

J(x) :=
{
f∗ ∈ X∗ : 〈x, f∗〉 = ||x||2 = ||f∗||2} , for all x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing. For an operator A : X → 2X , we
define its domain, range and graph as follows:

D(A) = {x ∈ X : Ax 
= ∅},

R(A) =
⋃

{Az : z ∈ D(A)},
and

G(A) = {(x, y) ∈ X ×X : x ∈ D(A), y ∈ Ax},
respectively. Thus, we write A : X → 2X as follows: A ⊆ X ×X. The inverse A−1

of A is defined by
x ∈ A−1y if and only if y ∈ Ax.

The operator A is said to be accretive if for each xi ∈ D(A) and yi ∈ Axi (i = 1, 2),
there exists j ∈ J(x1 −x2) such that 〈y1 −y2, j〉 ≥ 0. An accretive operator A is said
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to be maximal accretive if there is no proper accretive extension of A and m-accretive
if R(I + A) = X , where I stands for the identity operator on X (It follows that
R(I + rA) = X for all r > 0). If A is m-accretive, then it is maximal accretive,
but the converse is not true in general. If A is accretive, then we can define, for each
λ > 0, a nonexpansive single-valued mapping JAλ : R(1 + λA) → D(A) by

JAλ = (I + λA)−1.

It is called the resolvent of A. It is well known that if A is an m-accretive operator
on a Banach space X , then for each λ > 0, the resolvent JAλ = (I + λA)−1 is a
single-valued nonexpansive mapping whose domain is entire space X . An accretive
operator A defined on a Banach space X is said to satisfy the range condition if
D(A) ⊂ R(1 + λA) for all λ > 0, where D(A) denotes the closure of the domain
of A. It is well known that for an accretive operator A which satisfies the range
condition, A−1(0) = Fix(JAλ ) for all λ > 0. We also define the Yosida approximation
Ar by Ar = (I − JAr )/r. We know that Arx ∈ AJAr x for all x ∈ R(I + rA) and
‖Arx‖ ≤ |Ax| = inf{‖y‖ : y ∈ Ax} for all x ∈ D(A) ∩ R(I + rA). We also know
the following [19]: For each λ, μ > 0 and x ∈ R(I + λA) ∩R(I + μA), it holds that

(2.1)
∥∥JAλ x− JAμ x

∥∥ ≤ |λ− μ|
λ

‖x− JAλ x‖.
Let C be a nonempty subset of a smooth Banach space X . An operator T : C → X

is said to be strongly accretive if there exists η > 0 such that

(2.2) 〈Tx− Ty, J(x− y)〉 ≥ ν‖x− y‖2, for all x, y ∈ C.

For η > 0, an operator T : C → X is said to be ν-inverse strongly accretive [2] if

(2.3) 〈Tx− Ty, J(x− y)〉 ≥ η‖Tx− Ty‖2, for all x, y ∈ C.

Remark 2.1. An inspection of (2.2) and (2.3) shows that every Lipschitzian strongly
accretive operator is inverse strongly accretive.

The following results will be the key in the proof of our results.

Proposition 2.1. [5]. Let X be a Banach space and A : X → 2X be an m-
accretive operator. Then, A is maximal accretive. If H is a Hilbert space, then
A : H → 2H is maximal accretive if and only if it is m-accretive.

Proposition 2.2. Let C be a nonempty closed convex subset of a Banach space X
and A ⊆ X ×X an accretive operator such that D(A) ⊆ C ⊆ ⋂

t>0 R(I + tA). Let
c > 0, λ > 0, x ∈ C and B : C → X an operator such that (I − cB)x ∈ C. Then,∥∥JAc (I − cB)x− JAλ (I − λB)x

∥∥
≤ |c− λ|‖Bx‖ +

|c− λ|
c

∥∥JAc (I − λB)x− (I − λB)x
∥∥ .
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Proof. From (2.1), we have∥∥∥JAc (I − cB)x − JAλ (I − λB)x
∥∥∥

≤ ∥∥JAc (I − cB)x − JAc (I − λB)x
∥∥ +

∥∥JAc (I − λB)x− JAλ (I − λB)x
∥∥

≤ ‖(I − cB)x− (I − λB)x‖ +
|c− λ|
c

∥∥JAc (I − λB)x− (I − λB)x
∥∥

= |c− λ|‖Bx‖ +
|c− λ|
c

∥∥JAc (I − λB)x− (I − λB)x
∥∥ .

2.3. Nonexpansive type mappings

The notion of κ-strict pseudocontractive mapping was introduced by Browder and
Petryshyn [4] as follows: Let C be a nonempty subset of a Hilbert spaceH . A mapping
T : C → C is called κ-strict pseudocontractive if there exists a constant κ ∈ [0, 1)
such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + κ‖x− Tx− (y − Ty)‖2, for all x, y ∈ C.

Let C be a nonempty subset of a Banach space X . A mapping T : C → C is called κ-
strict pseudocontractive with respect to p ∈ (1,∞) if there exists a constant κ ∈ [0, 1)
such that

‖Tx− Ty‖p ≤ ‖x− y‖p + κ‖x− Tx− (y − Ty)‖p, for all x, y ∈ C.

Thus, T is nonexpansive if and only if T is 0-strict pseudocontractive. The class
of κ-strict pseudocontractive mappings is essentially wider than that of nonexpansive
mappings.

A closed convex subset C of a Banach space X is said to have the fixed-point
property for nonexpansive mappings if every nonexpansive mapping of a nonempty
closed convex bounded subset M of C into itself has a fixed point in M .

A subset C of a Banach space X is said to be a retract of X if there exists a
continuous mapping P from X onto C such that Px = x for all x in C. We call
such P a retraction of X onto C. It follows that if a mapping P is a retraction,
then Py = y for all y in the range of P . A retraction P is said to be sunny if
P (Px+ t(x− Px)) = Px for each x in X and t ≥ 0. If a sunny retraction P is also
nonexpansive, then C is said to be a sunny nonexpansive retract of X .

Let C be a nonempty subset of a Banach space X and x ∈ X . An element y0 ∈ C
is said to be a best approximation to x if ‖x − y0‖ = d(x, C), where d(x, C) =
inf
y∈C

‖x− y‖. The set of all best approximations from x to C is denoted by

ProjC(x) = {y ∈ C : ‖x− y‖ = d(x, C)}.
This defines a mapping ProjC from X into 2C and is called the nearest point

projection mapping (metric projection mapping) onto C. It is well known that if C is
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a nonempty closed convex subset of a Hilbert space H , then the nearest point projection
ProjC from H onto C is the unique sunny nonexpansive retraction of H onto C. It is
also known that ProjCx ∈ C and

〈x− ProjC(x), ProjC(x)− y〉 ≥ 0, for all x ∈ H, y ∈ C.

We need the following facts for proving our main results.

Lemma 2.2. [7, Lemma 13.1]. Let C be a convex subset of a smooth Banach
space X , D a nonempty subset of C and P a retraction from C onto D. Then, the
following statements are equivalent:

(a) P is a sunny and nonexpansive.
(b) 〈x− Px, J(z − Px)〉 ≤ 0 for all x ∈ C, z ∈ D.
(c) 〈x− y, J(Px− Py)〉 ≥ ‖Px − Py‖2 for all x, y ∈ C.

Lemma 2.3. [21, Corollary 3.4]. Let X be a reflexive Banach space with a
uniformly Gâteaux differentiable norm and C a nonempty closed convex subset of
X with fixed point property for nonexpansive self-mappings. Let T : C → C be a
nonexpansive mapping such that Fix(T ) 
= ∅. Then, the following statements hold:

(a) Fix(T ) is a sunny nonexpansive retract of C.
(b) For each fixed f ∈ ΠC and every t ∈ (0, 1), there exists a unique fixed point

vt ∈ C of the contraction C � v �→ tfv + (1− t)Tv defined by

vt = tfvt + (1− t)Tvt,(2.4)

converges strongly as t → 0 to x∗ ∈ Fix(T ), where x∗ = Qfx∗ and Q is a
sunny nonexpansive retraction from C onto Fix(T ).

Lemma 2.4. [2, Lemma 2.8]. Let C be a nonempty closed convex subset of a 2-
uniformly smooth Banach space X . Let ν > 0 and A : C → X be ν-inverse strongly
accretive operator. If 0 < λ ≤ ν/K2, then I − λA is a nonexpansive mapping of C
into X , where K is the 2-uniformly smoothness constant of X .

Lemma 2.5. [13]. Let C be a nonempty closed convex subset of a Hilbert spaceH .
Let ν > 0 and A : C → H be ν-inverse strongly monotone operator. If 0 < λ ≤ 2ν,
then I − λA is a nonexpansive mapping of C into X .

Proposition 2.3. Let p > 1 be a given real number. Let C be a nonempty closed
convex subset of a p-uniformly convex Banach space X , T : C → C be a λ-strictly
pseudocontractive with λ < min

{
1, cp

2(p−2)

}
and B = I − T . Let γX,B = 1 − cpλ

2(p−2) .
Then, Tw = (1 − w)I + wT is a nonexpansive mapping from C into itself for each
w ∈ (0, γX,B).
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Proof. Let w ∈ (0, γX,B). Note Wp(w) = (1 − w)wp + w(1 − w)p ≥ w(1 −
w)/2(p−2). Let x, y ∈ C. From Lemma 2.1, we have

‖Twx− Twy‖p

= ‖(1− w)(x− y) + w(Tx− Ty)‖p

≤ (1 −w)‖x− y‖p + w‖Tx− Ty‖p − cpWp(w)‖x− y − (Tx− Ty)‖p

≤ (1 −w)‖x− y‖p + w[‖x− y‖p + λ‖x− y − (Tx− Ty)‖p]
−cpWp(w)‖x− y − (Tx− Ty)‖p

≤ ‖x− y‖p + wλ‖x− y − (Tx− Ty)‖p − cpw(1−w)
2(p−2)

‖x− y − (Tx− Ty)‖p

= ‖x− y‖p − w

[
cp

2(p−2)
(1 −w) − λ

]
‖x− y − (Tx− Ty)‖p.

Since w ∈ (0, γX,B) implies that cp
2(p−2) (1 − w) − λ > 0. Therefore, Tw is

nonexpansive.

2.4. The property (N )

We introduce the property (N ) for nonexpansivity of operators.
Let C be a nonempty closed convex subset of a Banach space X . An operator

B : C → X is said to satisfy the property (N ) on (0, γX,B) if there exists γX,B ∈
(0,∞], depends on X and B, such that I − ξB : C → C is nonexpansive for each
ξ ∈ (0, γX,B).

Remark 2.2. For a nonexpansive mapping T : C → C with B = I − T , the
average mapping Tw = I −wB is always nonexpansive for each w ∈ (0, γX,B), where
γX,B = 1.

It turns out that the constant γX,B closely depends upon geometric properties of
the Banach spaces and operators B under consideration. We collect some examples of
operators satisfying the property (N ) on (0, γX,B) in a variety of Banach spaces.

Example 2.1. Let C be a nonempty closed convex subset of a 2-uniformly smooth
Banach space X . Let ν > 0 and B : C → X be ν-inverse strongly accretive operator.
If R(I − λB) ⊆ C for each λ ∈ (0, γX,B), where γX,B = ν/K2 and K is the
2-uniformly smoothness constant of X , then B has the property (N ) on (0, γX,B).

Proof. Let K be the 2-uniformly smoothness constant of X and λ ∈ (0, γX,B).
Here γX,B = ν/K2. Suppose that R(I − λB) ⊆ C. It follows from Lemma 2.4 that
I − λB is a nonexpansive mapping from C into C.
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Example 2.2. Let p > 1 be a given real number. Let C be a nonempty closed
convex subset of a p-uniformly convex Banach space X , T : C → C be a λ-strictly
pseudocontractive with λ < min

{
1, cp

2(p−2)

}
, B = I−T and γX,B = 1− cpλ

2(p−2) . Then,
B has the property (N ) on (0, γX,B).

Proof. Lemma 2.3 shows that Tw = I − wB is a nonexpansive mapping from
C into itself for each w ∈ (0, γX,B). It follows that B has the property (N ) on
(0, γX,B).

The property (N ) alludes to the fact that in order to solve the inclusion problem
(P ), it suffices to find a fixed point of a nonexpansive mapping JA,Br defined by (2.5).

Proposition 2.4. Let C be a nonempty closed convex subset of a Banach space
X , A ⊆ X ×X an accretive operator such that D(A) ⊆ C ⊆ ⋂

t>0R(I + tA) and
B : C → X an operator such that Zer(A+B) 
= ∅ and B has the property (N ) on
(0, γX,B), where γX,B is a constant depends on X and B. For r ∈ (0, γX,B), define
an operator JA,Br : C → C by

(2.5) JA,Br x = JAr (I − rB)x, x ∈ C.

Then, the following statements hold.
(a) JA,Br is nonexpansive.

(b) Fix(JA,Br ) = Zer(A+B).

Proof. Let r ∈ (0, γX,B). By the property (N ), I − rB is a nonexpansive
mapping from C into itself.

(a) Since JAr is nonexpansive, one can see that JA,Br is nonexpansive.

(b) From the definition of JA,Br , we have

z = JA,Br z ⇔ z = JAr (I − rB)z
⇔ z = (I + rA)−1(I − rB)z
⇔ z − rBz ∈ (I + rA)z
⇔ 0 ∈ Az + Bz.

2.5. Approximating fixed point sequence

Let (X, d) be a metric space and T : X → X a mapping. A bounded sequence {xn}
in X is said to an approximating fixed point sequence of T if limn→∞ d(xn, Txn) = 0.

The following auxiliary results will be needed in the sequel for the proof of our
main results:
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Proposition 2.5. Let (X, d) be a metric space, T : X → X a uniformly continuous
mapping and {xn} ⊂ X be an approximating fixed point sequence of T . Then, {yn}
is an approximating fixed point sequence of T whenever {yn} is in X such that
limn→∞ d(xn, yn) = 0.

Proof. Let {zn} be a sequence in X such that limn→∞ d(xn, zn) = 0. Since {xn}
is an approximating fixed point sequence of T and T is uniformly continuous, we have

d(zn, T zn) ≤ d(zn, xn) + d(xn, Txn) + d(Txn, T zn) → 0 as n→ ∞.

Lemma 2.6. [21, Lemma 2.12]. Let X be a Banach space with a uniformly
Gâteaux differentiable norm, C a nonempty closed convex subset of X , f : C → C
a continuous mapping, T : C → C a nonexpansive mapping and {xn} a bounded
sequence in C such that limn→∞ ‖xn − Txn‖ = 0. Suppose that {zt} is a path in C
defined by

zt = tfzt + (1− t)Tzt, t ∈ (0, 1),

such that zt → z as t→ 0. Then, lim supn→∞〈fz − z, J(xn − z)〉 ≤ 0.

3. ALGORITHMS ON BANACH SPACES WITH UNIFORMLY GÂTEAUX

DIFFERENTIABLE NORMS

Let C be a nonempty closed convex subset of a Banach space X . Let A ⊆ X×X
be an accretive operator such that D(A) ⊆ C ⊆ ⋂

t>0 R(I + tA), B : C → X an
operator such that Zer(A + B) 
= ∅ and B has the property (N ) on (0, γX,B), i.e.,
I − ξB is nonexpansive from C into itself for each ξ ∈ (0, γX,B), where γX,B is a
constant depends on X and B.

Noticing that JA,Br defined by (2.5) is already split. Therefore, a fixed point iterative
algorithm for JA,Br on C corresponds to a splitting algorithm for inclusion problem
(P ). Motivated by above fact and prox-Tikhonov method [9, 16], our prox-Tikhonov-
like forward-backward splitting method is then defined to generate a sequence {xn}
in C according to the recursive formula: Starting with x1 ∈ C and after xn ∈ C is
defined, we define the next iterate xn+1 as follows:

(3.1) xn+1 = JAcn(I − cnB)((1 − αn)xn + αnfxn), for all n ∈ N,

where f ∈ ΠC , {αn} is a sequence in (0, 1] and {cn} is a regularization sequence in
(0, γX,B).

We shall study our prox-Tikhonov-like forward-backward splitting method under
the following conditions:

(C1) lim
n→∞αn = 0,

∑∞
n=1 αn = ∞ and either

∑∞
n=1

∣∣αn − αn+1

∣∣ <∞ or lim
n→∞

∣∣1 −
αn
αn+1

∣∣ = 0,
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(C2) 0 < ε ≤ cn for all n ∈ N and
∑∞

n=1

∣∣cn − cn+1

∣∣ <∞.

Now we are ready to prove a main result of this section for solving problem (P )
in the framework of Banach space with a uniformly Gâteaux differentiable norm.

Theorem 3.1. Let X be a reflexive Banach space with a uniformly Gâteaux dif-
ferentiable norm. Let C be a nonempty closed convex subset of X such that C has
the fixed-point property for nonexpansive mappings. Let A ⊆ X ×X be an accretive
operator such that D(A) ⊆ C ⊆ ⋂

t>0R(I + tA), B : C → X an operator such that
Zer(A+ B) 
= ∅ and B has the property (N ) on (0, γX,B). For given f ∈ ΠC and
x1 ∈ C, let {xn} be a sequence in C generated by (3.1), where {αn} is a sequence in
(0, 1] and {cn} is a regularization sequence in (0, γX,B) satisfying conditions (C1)–
(C2). Then, {xn} converges strongly to x∗ ∈ Zer(A+ B), where x∗ = Qfx∗ and Q
is a sunny nonexpansive retraction of C onto Zer(A+ B).

Proof. By assumptions for regularization sequence {cn}, we have limn→∞ cn = c

for some c ≥ ε. Define Tn := JAcn(I − cnB) and T := JAc (I − cB). From Proposition
2.4, we obtain that Tn and T are nonexpansive with Fix(Tn) = Fix(T ) = Zer(A +
B). For t ∈ (0, 1), invoking Lemma 2.3, there exists a path {vt} in C defined by
(2.4) which is strongly convergent as t → 0 to x∗ ∈ Fix(T ) = Zer(A + B), where
x∗ = Qfx∗ and Q is a sunny nonexpansive retraction of C onto Zer(A + B). Set
yn := (1−αn)xn+αnfxn. Let κf denote the Lipschitz constant of f. We now proceed
with the following steps:

Step 1. {xn} and {yn} are bounded.
Let κf be the contraction constant of f . Note that

‖yn − x∗‖ ≤ (1− αn)‖xn − x∗‖ + αn‖fxn − x∗‖.(3.2)

Invoking (3.1), we have

‖xn+1 − x∗‖ = ‖Tnyn − x∗‖
≤ (1− αn)‖xn − x∗‖ + αn‖fxn − x∗‖
≤ (1− αn)‖xn − x∗‖ + αn(‖fxn − fx∗‖+ ‖fx∗ − x∗‖)
≤ (1− (1− κf )αn)‖xn − x∗‖ + αn‖fx∗ − x∗‖
≤ max{‖xn − x∗‖, ‖fx∗ − x∗‖/(1− κf )}
...
≤ max{‖x1 − x∗‖, ‖fx∗ − x∗‖/(1− κf )}.

Thus, {xn} is bounded and hence, from (3.2), {yn} is bounded.

Step 2. {xn} is asymptotically regular, i.e., ‖xn+1 − xn‖ → 0 as n→ ∞.
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LetK1 be a constant such thatK1 = max {supn∈N ‖xn‖, supn∈N ‖fxn‖}. Observe
that

||yn − yn−1||
= ||(1− αn)xn + αnfxn − (1 − αn−1)xn−1 − αn−1fxn−1‖
= ||(1− αn)xn − (1− αn)xn−1 + (1 − αn)xn−1 + αn(fxn − fxn−1)

+αnfxn−1 − (1 − αn−1)xn−1 − αn−1fxn−1‖
≤ (1 − αn)||xn− xn−1‖ + αnκf‖xn − xn−1‖ + |αn − αn−1|(‖xn−1‖+ ‖fxn−1‖)
≤ (1 − (1 − κf )αn)||xn − xn−1‖ + 2|αn − αn−1|K1.

It follows from (3.1) that

||xn+1 − xn||
= ||Tnyn − Tn−1yn−1||
≤ ||Tnyn − Tnyn−1‖ + ‖Tnyn−1 − Tn−1yn−1||
≤ ||yn − yn−1‖ + ‖Tnyn−1 − Tn−1yn−1||
≤ [1 − (1 − κf )αn]||xn − xn−1‖ + 2|αn − αn−1|K1 + ‖Tnyn−1 − Tn−1yn−1||.

From the definition of Tn and Proposition 2.2, we have

‖Tn+1yn − Tnyn‖
= ‖JAcn+1

(I − cn+1B)yn − JAcn(I − cnB)yn‖

≤ |cn+1 − cn|‖Byn‖ +
|cn+1 − cn|

ε
‖JAcn+1

(I − cnB)yn − (I − cnB)yn‖
≤ 2|cn+1 − cn|K2,

where K2 = supn∈N

{
‖Byn‖ + 1

ε‖JAcn+1
(I − cnB)yn − (I − cnB)yn‖

}
. Hence,

||xn+1 − xn|| ≤ [1− (1− κf )αn]||xn− xn−1‖+2|αn− αn−1|K1 + 2|cn − cn−1|K2.

By conditions (C2)–(C2) and [23, Lemma 2.5], we obtain that ‖xn+1 − xn‖ → 0 as
n→ ∞.

Step 3. ||yn − Tyn|| → 0 as n→ ∞.

Noticing that ‖yn − xn‖ = αn‖xn − fxn‖ → 0 as n→ ∞. From (3.1), we have

‖xn+1 − Tnxn‖ = ‖Tnyn − Tnxn‖ ≤ ‖yn − xn‖ → 0 as n→ ∞.

and

(3.3) ‖xn − Tnxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Tnxn‖ → 0 as n→ ∞.
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From Proposition 2.2, we have

‖Tnxn − Txn‖
= ‖JAcn(I − cnB)xn − JAc (I − cB)xn‖
≤ |cn − c|‖Bxn‖ +

|cn − c|
c

‖(I − cB)xn − JAc (I − cB)xn‖
≤ 2|cn − c|K3,

where K3 = supn∈N

{‖Bxn‖ + 1
ε‖(I − cB)xn − JAc (I − cB)xn‖

}
. Hence,

‖xn+1 − Txn+1‖ ≤ ‖xn+1 − Tnxn‖ + ‖Tnxn − Txn‖+ ‖Txn − Txn+1‖
≤ ‖xn+1 − Tnxn‖ + 2|cn − c|K3 + ‖xn − xn+1‖ → 0 as n→ ∞,

i.e., {xn} is an approximating fixed point sequence of T. Since ||yn − xn|| → 0, it
follows from Proposition 2.5 that {yn} is an approximating fixed point sequence of T.

Step 4. {xn} converges strongly to x∗.
Noticing that T is nonexpansive with Fix(T ) = Zer(A + B). Set σn := 〈fx∗ −

x∗, J(yn − x∗)〉. Since ||yn − Tyn|| → 0 as n → ∞ and path {vt} in C defined by
(2.4) is strongly convergent, as t→ 0, to x∗ ∈ Fix(T ), it follows from Lemma 2.6 that
lim supn→∞ σn ≤ 0. From (3.1), we have

‖xn+1 − x∗‖2

= ‖JAcn(I − cnB)yn − x∗‖2

≤ ‖yn − x∗‖2 = ‖(1 − αn)(xn − x∗) + αn(fxn − fx∗ + fx∗ − x∗)‖2

≤ ‖(1− αn)(xn − x∗) + αn(fxn − fx∗)‖2 + 2αn〈f(x∗)− x∗, J(yn − x∗)〉
≤ (1− (1− κf)αn)2‖xn − x∗‖2 + 2αn〈f(x∗) − x∗, J(yn − x∗)〉
≤ (1− (1− κf)αn)‖xn − x∗‖2 + 2αn〈f(x∗) − x∗, J(yn − x∗)〉.

Noticing that lim supn→∞〈f(x∗)−x∗, J(yn−x∗)〉 ≤ 0 and
∑∞

n=1 αn = ∞. Therefore,
we conclude from [23, Lemma 2.5] that {xn} converges strongly to x∗.

We now consider inexact variant of algorithm (3.1) for solution of problem (P ).

Let X be a Banach space, A ⊆ X ×X an m-accretive operator and B : X → X

an operator such that Zer(A + B) 
= ∅ and B has the property (N ) on (0, γX,B).
Our inexact prox-Tikhonov regularized generalized forward-backward splitting method
is then defined to generate a sequence {zn} in X according to the recursive formula:
Starting with z1 ∈ X and after zn ∈ X is defined, we define the next iterate zn+1 as
follows:

(3.4)

{
un = (1− αn)zn + αnfzn;

zn+1 = JAcn(un − cn(Bun + bn)) + en for all n ∈ N,
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where f ∈ ΠX , αn is a relaxation parameter in (0, 1], {cn} is a regularization sequence
in (0, γX,B) and {bn} and {en} are sequences of errors in X .

Next, we apply Theorem 3.1 to establish a strong convergence theorem for algorithm
(3.4) with error sequence which may not be sumable.

Theorem 3.2. Let X be a reflexive Banach space with a uniformly Gâteaux dif-
ferentiable norm such that X has the fixed point property for nonexpansive mappings.
Let A ⊆ X ×X be an m-accretive operator and B : X → X be an operator such
that B has the property (N ) on (0, γX,B). For given f ∈ ΠX and z1 ∈ X, let {zn}
be a sequence in X generated by (3.4), where {αn} is a sequence in (0, 1], {cn} is a
regularization sequence in (0, γX,B) and {bn} and {en} are sequences of errors in X
satisfying conditions (C1)–(C4):
(C3)

∑∞
n=1 ‖en‖ <∞ or lim

n→∞ ‖en‖/αn = 0,

(C4)
∑∞

n=1 ‖bn‖cn <∞ or lim
n→∞(‖bn‖cn)/αn = 0.

Then, {zn} converges strongly to x∗ ∈ Zer(A + B), where x∗ = Qfx∗ and Q is a
sunny nonexpansive retraction of X onto Zer(A+ B).

Proof. For x1 = z1 ∈ X , let {xn} be the iterative sequence in X defined by
(3.1). It follows from Theorem 3.1 that {xn} converges strongly to x∗ ∈ Zer(A+B),
where x∗ = Qfx∗ and Q is a sunny nonexpansive retraction of X onto Zer(A+ B).
Set yn := (1 − αn)xn + αnfxn. From (3.1) and (3.4), we have

‖zn+1 − xn+1‖ = ‖JAcn(un − cn(Bun + bn)) + en − JAcn(yn − cnByn)‖
≤ ‖(I − cnB)un − bncn − (I − cnB)yn‖ + ‖en‖
≤ ‖(I − cnB)un − (I − cnB)yn‖ + cn‖bn‖ + ‖en‖
≤ ‖un − yn‖+ cn‖bn‖ + ‖en‖
= ‖(1− αn)(zn − xn) + αn(fzn − fzn)‖+ cn‖bn‖+ ‖en‖
≤ (1 − (1− κf )αn)‖zn − xn‖ + cn‖bn‖ + ‖en‖ for all n ∈ N.

By [23, Lemma 2.5], we have ‖zn − xn‖ → 0. Therefore, {zn} converges strongly to
x∗.

As we have discussed in section 2.4 that there are some classes of nonlinear opera-
tors which enjoy the property (N ) in suitable Banach spaces. Therefore, we are able
to derive the some new and known results from Theorems 3.1 and 3.2.

Corollary 3.1. Let X be a reflexive Banach space with a uniformly Gâteaux
differentiable norm. Let C be a closed convex subset of X , A ⊆ X ×X an accretive
operator such that D(A) ⊆ C ⊆ ⋂

t>0 R(I+ tA), and T : C → C be a nonexpansive
mapping with B = I − T such that Zer(A+ B) 
= ∅. Suppose that C has the fixed
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point property for nonexpansive mappings. For given f ∈ ΠC and x1 ∈ C, let {xn}
be a sequence in C defined by

(3.5) xn+1 = JAcn((1− cn)I + cnT )[(1− αn)xn + αnfxn], for all n ∈ N,

where {αn} is a sequence in (0, 1] and {cn} is a sequence in (0, 1) satisfying conditions
(C1)–(C2), where γX,B = 1. Then, {xn} converges strongly to x∗ ∈ Zer(A+B), where
x∗ = Qfx∗ and Q is a sunny nonexpansive retraction of C onto Zer(A+B).

Proof. Note T is nonexpansive with B = I−T . It follows from Remark 2.2 that
the average mapping Tw = I − wB is always nonexpansive for each w ∈ (0, γX,B),
where γX,B = 1.

Remark 3.3. If T = I , then algorithm (3.5) reduces proximal point algorithm
studied by Sahu and Yao [16] in the framework of a reflexive Banach space. In case
of Hilbert space H , if fx = u and T = I , then (3.5) reduces to the proximal point
algorithm studied in Song and Yang [18] and Xu [22]. Therefore, Corollary 3.1 extends
results of [9, 16, 18, 22] in the context of the inclusion problem (P ) in the Banach
space setting.

The following result is a generalization of those results concerning with approxi-
mation of fixed points of inverse strongly accretive operators.

Corollary 3.2. Let C be a nonempty closed convex subset of a 2-uniformly smooth
Banach space X . Let ν > 0 and B : C → X be ν-inverse strongly accretive operator
such that R(I − λB) ⊆ C for each λ ∈ (0, γX,B), where γX,B = ν/K2 and K is the
2-uniformly smoothness constant of X . Let A ⊆ X × X an accretive operator such
that D(A) ⊆ C ⊆ ⋂

t>0 R(I+tA) such that Zer(A+B) 
= ∅. Suppose that C has the
fixed-point property for nonexpansive mappings. For given f ∈ ΠC and x1 ∈ C, let
{xn} be a sequence in C defined by (3.1), where {αn} is a sequence in (0, 1] and {cn}
is a sequence in (0, 1) satisfying conditions (C1)-(C2). Then, {xn} converges strongly
to x∗ ∈ Zer(A+B), where x∗ = Qfx∗ and Q is a sunny nonexpansive retraction of
C onto Zer(A+ B).

Proof. It follows from Example 2.1 that B has the property (N ) on (0, γX,B),
where γX,B = ν/K2.

Noticing that, for a λ-strictly pseudocontractive mapping T : C → C with B =
I − T , the average mapping Tw = I − wB is nonexpansive under some geometric
conditions. From Example 2.2, we are able to derive the following result.

Corollary 3.3. Let p > 1 be a given real number and X be a p-uniformly convex
Banach space with a uniformly Gâteaux differentiable norm. Let C be a nonempty
closed convex subset of X and A ⊆ X ×X an accretive operator such that D(A) ⊆
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C ⊆ ⋂
t>0R(I + tA). Let T : C → C be λ-strictly pseudocontractive with λ <

min
{
1, cp

2(p−2)

}
and B = I − T such that Zer(A+ B) 
= ∅. Let γX,B = 1 − cpλ

2(p−2) .
For given f ∈ ΠC and x1 ∈ C, let {xn} be a sequence in C defined by (3.5), where
{αn} is a sequence in (0, 1] and {cn} is a sequence in (0, γX,B) satisfying conditions
(C1)–(C2). Then {xn} converges strongly to x∗ ∈ Zer(A+B), where x∗ = Qfx∗ and
Q is a sunny nonexpansive retraction of C onto Zer(A+ B).

If A is the operator constantly zero, then Corollary 3.3 yields

Corollary 3.4. Let p > 1 be a given real number and X be a p-uniformly convex
Banach space with a uniformly Gâteaux differentiable norm. Let C be a nonempty
closed convex subset of X and let T : C → C be λ-strictly pseudocontractive with
λ < min

{
1, cp

2(p−2)

}
and B = I − T such that Fix(T ) 
= ∅. Let γX,B = 1 − cpλ

2(p−2) .
For given f ∈ ΠC and x1 ∈ C, let {xn} be a sequence in C defined by

xn+1 = (I − cnB)((1− αn)xn + αnfxn), for all n ∈ N,

where {αn} is a sequence in (0, 1] and {cn} is a sequence in (0, γX,B) satisfying
conditions (C1)–(C2). Then, {xn} converges strongly to x∗ ∈ Fix(T ), where x∗ =
Qfx∗ and Q is a sunny nonexpansive retraction of C onto Fix(T ).

Corollary 3.5. Let X be a reflexive Banach space with a uniformly Gâteaux
differentiable norm such thatX has the fixed point property for nonexpansive mappings
and A ⊆ X ×X be an m-accretive operator such that A−10 
= ∅. For given f ∈ ΠX

and x1 ∈ X, let {xn} be a sequence in X generated by

xn+1 = JAcn((1− αn)xn + αnfxn), for all n ∈ N,

where {αn} is a sequence in (0, 1] and {cn} is a regularization sequence in (0, γX)
satisfying conditions (C1)–(C2), where γX = ∞. Then, {xn} converges strongly to
x∗ ∈ A−10, where x∗ = Qfx∗ and Q is a sunny nonexpansive retraction of X onto
A−10.

4. ALGORITHMS ON GENERAL BANACH SPACES

Let X be a Banach space. Recall that a mapping T : D(T ) → X is said to be
φ-expansive if there exists a continuous or nondecreasing function φ : R

+ → R
+ with

φ(0) = 0 and φ(t) > 0 for t > 0 such that

‖Tx− Ty‖ ≥ φ(‖x− y‖), for all x, y ∈ D(T ).

Here we shall use the following result, which can be found in [6].
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Theorem 4.1. [6, Theorem 3.2]. Let C be a nonempty closed convex subset of a
Banach space X and T : C → C be a mapping such that

(i) T is a Φ-1-set contraction,
(ii) there exist R > 0 and x0 ∈ C such that Tx−x0 
= λ(x−x0) for all x∩SR(x0)

and for all λ > 1,

where SR(x0) is the closed ball with radius R and center x0 ∈ X . Then, there exists
an approximating fixed point sequence {xn} of T . Furthermore, if
(iii) I − T : C → R(I − T ) is φ-expansive,

then, T has a unique fixed point x∗ ∈ C and xn → x∗ as n→ ∞.

Now our purpose is to establish strong convergence theorems for the unique solution
of inclusion problem (P ) in general Banach spaces.

Theorem 4.2. Let C be a nonempty closed convex subset of a Banach space X .
Let A ⊆ X × X be an accretive operator such that D(A) ⊆ C ⊆ ⋂

t>0R(I + tA)
and B : C → X an operator such that Zer(A+B) 
= ∅ and B has the property (N )
on (0, γX,B). Let r ∈ (0, γX,B) and JA,Br : C → C be an operator defined by (2.5)
such that JA,Br satisfies the following conditions:
(R1) I − JA,Br : C → R(I − JA,Br ) is φ-expansive,
(R2) there exist R > 0 and x0 ∈ C such that JA,Br x − x0 
= λ(x − x0) for all

x ∩ SR(x0) and for all λ > 1.

For given u, x1 ∈ C, let {xn} be a sequence in C generated by

(4.1) xn+1 = JA,Br ((1− αn)xn + αnu), for all n ∈ N,

where {αn} is a sequence in (0, 1] satisfying condition (C1). Then, {xn} converges
strongly to the unique solution of inclusion problem (P ).

Proof. Since JA,Br is nonexpansive, then JA,Br is 1-set contractive for the Kura-
towskii measure of noncompactness. Thus, JA,Br satisfies the assumptions of Theorem
4.1. Therefore, there exists a unique fixed point x∗ ∈ C for JA,Br . It is easy to see from
(3.3) that ||xn− J

A,B
r xn|| → 0, i.e., {xn} is an approximating fixed point sequence of

JA,Br . Therefore, from Theorem 4.1 the sequence {xn} converges to the unique fixed
point x∗ of JA,Br .

Theorem 4.3. Let X be a Banach space, A ⊆ X ×X be an accretive operator
and B : X → X an operator such that Zer(A + B) 
= ∅ and B has the property
(N ) on (0, γX,B). Let r ∈ (0, γX,B) and JA,Br : X → X be an operator defined by
JA,Br = JAr (I − rB) such that JA,Br satisfies the following conditions:
(R1) I − JA,Br : X → R(I − JA,Br ) is φ-expansive,
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(R2) there exist R > 0 and x0 ∈ X such that JA,Br x − x0 
= λ(x − x0) for all
x ∩ SR(x0) and for all λ > 1.

For given u, z1 ∈ X, let {zn} be a sequence in X generated by

(4.2)
{
un = (1 − αn)zn + αnu;
zn+1 = JAr (un − r(Bun + bn)) + en for all n ∈ N,

where {αn} is a sequence in (0, 1] satisfying conditions (C1), (C3) and (C4)′:

(C4)′
∑∞

n=1 ‖bn‖ <∞ or lim
n→∞ ‖bn‖/αn = 0.

Then, {zn} converges strongly to the unique solution of inclusion problem (P ).

Proof. For x1 = z1 ∈ X , let {xn} be the iterative sequence in X defined by
(4.1). It follows from Theorem 4.2 that {xn} converges strongly to x∗ ∈ X , which is
a unique solution of inclusion problem (P ). Set yn := (1−αn)xn +αnu. From (4.1)
and (4.2), we have

‖zn+1 − xn+1‖ = ‖JAr (un − r(Bun + bn)) + en − JAr (yn − rByn)‖
≤ ‖(I − rB)un − bnr − (I − rB)yn‖ + ‖en‖
≤ ‖(I − rB)un − (I − rB)yn‖ + r‖bn‖ + ‖en‖
≤ ‖un − yn‖+ r‖bn‖ + ‖en‖
= (1− αn)‖zn − xn‖+ r‖bn‖ + ‖en‖ for all n ∈ N.

By [23, Lemma 2.5], we have ‖zn − xn‖ → 0. Therefore, {zn} converges strongly to
x∗.

Note that if T is a nonexpansive mapping from a nonempty closed convex subset
C of a Banach space X into itself and if B = I − T , then, from Remark 2.2, we
conclude B has the property (N ) on (0, γX,B), where γX,B = 1.

Corollary 4.6. Let C be a nonempty closed convex subset of Banach space X
and A ⊆ X ×X an accretive operator such that D(A) ⊆ C ⊆ ⋂

t>0 R(I + tA). Let
T : C → C be a nonexpansive mapping with B = I − T such that Zer(A +B) 
= ∅.
Let r ∈ (0, 1) and JA,Br : C → C be an operator defined by (2.5) such that JA,Br

satisfies the following conditions:
(R1) I − J

A,B
r : C → R(I − J

A,B
r ) is φ-expansive,

(R2) there exist R > 0 and x0 ∈ C such that JA,Br x − x0 
= λ(x − x0) for all
x ∩ SR(x0) and for all λ > 1.

For given u, x1 ∈ C, let {xn} be a sequence in C generated by (4.1), where {αn} is
a sequence in (0, 1] satisfying condition (C1). Then, {xn} converges strongly to the
unique solution of inclusion problem (P ).
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Recently, Falset and Prez [6] proved that the sequence {xn} defined by

xn+1 = αnx1 + (1 − αn)Txn for all n ∈ N,

converges strongly to the unique fixed point of a nonexpansive mapping T in a general
Banach space under suitable mapping conditions. In order to find the unique solution
of the inclusion problem (P ) when A ⊆ X × X is an accretive operator and T is
nonexpansive with B = I − T , we infer that Corollary 4.6 is new and a more general
result in an arbitrary Banach space.

5. APPLICATIONS

5.1. Application to mixed variational inequalities

The following basic result of subdifferentials can be found in [25].

Lemma 5.7. [25, Theorem 3.1.11]. Let ψ ∈ Γ0(H). Then, ∂ψ is maximal mono-
tone.

Let ψ ∈ Γ0(H) with subdifferential ∂ψ. It is well known that

(5.1) ψ(z) = min
x∈H

ψ(x) ⇔ 0 ∈ ∂ψ(z).

Noticing that ∂ψ is maximal monotone and proxψ = ∂ψ is Moreau’s proximity operator
[14]. Thus, (I + c∂ψ1)−1 = proxcψ for some c > 0.

As a special case of problem (1.1), the mixed variational inequality problem (1.2),
can be solved via Lemma 5.7 and algorithm (3.5) as follows.

Theorem 5.1. Let C be a nonempty closed convex subset of Hilbert space H and
ψ ∈ Γ0(H) such thatD(∂ψ) ⊆ C ⊆ ⋂

h>0 R(I+h∂ψ). Let ν > 0 andB : C → H be
ν-inverse strongly monotone operator such that (∂ψ+B)−10 
= ∅ and R(I−ξB) ⊆ C
for each ξ ∈ (0, 2ν). Let {xn} be a sequence in C generated by

xn+1 = proxcnψ(I − cnB)((1 − αn)xn + αnfxn), for all n ∈ N,

where {αn} is a sequence in (0, 1] and {cn} is a regularization sequence in (0, γX,B)
satisfying conditions (C1)–(C2), where γX,B = 2ν. Then, {xn} converges strongly to
x∗, where x∗ = Proj(proxψ+B)−10fx

∗.

Proof. Note B is ν-inverse-strongly monotone. It follows from Lemma 2.5 that
B has the property (N ) on (0, γX,B), where γX,B = 2ν. Therefore, result follows
from Theorem 3.1.

5.2. Application to nonsmooth convex optimization

Let C be a nonempty closed convex subset of a real Hilbert space H . It is well
known that if ψ ∈ Γ0(H) is Gâteaux differentiable at x ∈ H with gradient ∇ψ(x),
then ∂ψ(x) = {∇ψ(x)}.
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Consider the convex optimization problem:

(5.2) min
x∈C

(ψ1(x) + ψ2(x)),

where ψ1 ∈ Γ0(H) such that ψ1 is not essentially smooth function and ψ2 : H → R

is a convex and differentiable with a L-Lipschitz continuous gradient ∇ψ2. Denote by
Ω the solution set of problem (5.2); that is,

Ω = {z ∈ C : ψ1(z) + ψ2(z) = min
x∈C

(ψ1(x) + ψ2(x))}.

Assume that Ω 
= ∅.

It is known that if ψ : H → (−∞,∞] is proper, lower semicontinuous and convex
and ϕ : H → R is continuous and convex, then

(5.3) ∂(ψ + ϕ) = ∂ψ + ∂ϕ.

It follows from (5.1) and (5.3) that

z ∈ Ω ⇔ 0 ∈ (∂ψ1 + ∂ψ2)z

Noticing, from [3], that L-Lipschitz condition of the gradient ∇ψ2 implies that ∇ψ2 is
(1/L)-inverse-strongly monotone. The operator JA,Br defined by (2.5) is a composition
of two nonexpansive self-mappings. Hence, for any c ∈ (0, 2/L), solutions of problem
(5.7) are characterized by the fixed point equation

x = proxcψ1︸ ︷︷ ︸ (I − c∇ψ2)︸ ︷︷ ︸ x.
We now apply Theorem 5.1 for finding numerical solutions of nonsmooth convex

optimization problem (5.2).

Theorem 5.2. Let C be a nonempty closed convex subset of Hilbert space H .
Let ψ1 ∈ Γ0(H) and ψ2 : H → R a convex and differentiable with a L-Lipschitz
continuous gradient B = ∇ψ2 such that R(I − ξ∇ψ2) ⊆ C for each ξ ∈ (0, 2/L).
Assume that D(∂ψ1) ⊆ C ⊆ ⋂

h>0 R(I+h∂ψ1) and (∂ψ1 +∇ψ2)−10 
= ∅. Let {xn}
be a sequence in C generated by

xn+1 = proxcnψ1(I − cn∇ψ2)((1− αn)xn + αnfxn) for all n ∈ N,

where {αn} is a sequence in (0, 1] and {cn} is a regularization sequence in (0, γX,B)
satisfying conditions (C1)–(C2), where γX,B = 2/L. Then, {xn} converges strongly
to x∗, where x∗ = Proj(proxψ1

+∇ψ2)−10fx
∗
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Proof. Note ∇ψ2 is (1/L)-inverse-strongly monotone. It follows from Lemma
2.5 that B = ∇ψ2 has the property (N ) on (0, γX,B), where γX,B = 2/L. Therefore,
result follows from Theorem 5.1.
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cycliquement monotones, Israel J. Math., 26 (1977), 137-150

4. F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings,
J. Math. Anal. Appl., 20 (1967), 197-228.

5. I. Cioranescu, Geometry of Banach Spaces, Duality Mapping and Nonlinear Problems,
Kluwer Academic Publishers, Amsterdam (1990).
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