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NEW VERSIONS OF REVERSE YOUNG AND HEINZ MEAN
INEQUALITIES WITH THE KANTOROVICH CONSTANT

Wenshi Liao*, Junliang Wu and Jianguo Zhao

Abstract. We show new versions of reverse Young inequalities by virtue of the
Kantorovich constant, and utilizing the new reverse Young inequalities we give
the reverses of the weighted arithmetic-geometric and geometric-harmonic mean
inequalities for two positive operators. Also, new versions of reverse Young and
Heinz mean inequalities for unitarily invariant norms are established.

1. INTRODUCTION

In what follows, let Mn(C) be the space of all n × n complex matrices. For
Hermitian matrices A, B ∈ Mn(C), we write that A ≥ 0 if A is positive semidefinite,
A > 0 if A is positive definite, and A ≥ B if A − B ≥ 0. The Hilbert-Schmidt

(or Frobenius) norm of A = [aij] ∈ Mn(C) is denoted by ‖A‖F =

(
n∑

j=1
s2
j (A)

) 1
2

,

where s1(A) ≥ s2(A) ≥ · · · ≥ sn(A) are the singular values of A. It is known that
the Hilbert-Schmidt norm is unitarily invariant. For convenience, we often use the
following notations:

a∇µb = (1 − μ)a + μb, a!µb =
(
(1 − μ)a−1 + μb−1

)−1
,

A∇µB = (1 − μ)A + μB, A#µB = A
1
2 (A− 1

2 BA− 1
2 )µA

1
2 ,

A!µB =
(
(1− μ)A−1 + μB−1

)−1
, Hµ(A, B) =

A#µB + A#1−µB

2
,

where A, B are positive operators on a Hilbert space. When μ = 1
2 , we write A∇B,

A#B, A!B, a∇b, a!b and H(A, B) for brevity, respectively.
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As is known to all, the famous Young inequality for scalars says that if a, b > 0
and μ ∈ [0, 1], then

(1.1) a1−µbµ ≤ a∇µb

with equality if and only if a = b. The inequality (1.1) is also called μ-weighted
arithmetic-geometric mean inequality. Replacing a, b by a−1, b−1 in the Young in-
equality, respectively, we get the μ-weighted geometric-harmonic mean inequality

a1−µbµ ≥ a!µb.

Tominaga [8] had proved a reverse Young inequality with the Specht’s ratio

(1.2) a∇µb ≤ S(h)a1−µbµ,

where a, b > 0, μ ∈ [0, 1], h =
b

a
, and the Specht’s ratio [6] is denoted by

S(t) =
t

1
t−1

e ln t
1

t−1

, for t > 0, t �= 1, andS(1) = lim
t→1

S(t) = 1,

which has properties S(t) = S
(

1
t

)
> 1, and S(t) is monotone increasing on (1,∞)

and monotone decreasing on (0, 1).
Zou et. al.[4] refined Young inequality with the Kantorovich constant, and obtained

the following results:

(1.3) a∇µb ≥ K(h, 2)ra1−µbµ,

(1.4) a1−µbµ ≥ K(h, 2)ra!µb

for all μ ∈ [0, 1], where r = min {μ, 1− μ} and h =
b

a
. It admits two operator

extensions

(1.5) A∇µB ≥ K(h, 2)rA#µB,

(1.6) A#µB ≥ K(h, 2)rA!µB

for positive operators A, B on a Hilbert space and the Kantorovich constant is denoted
by

K(t, 2) =
(t + 1)2

4t
, for t > 0, andK(1, 2) = 1,
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which has properties K(t, 2) = K
(

1
t
, 2
)

≥ 1(t > 0), and K(t, 2) is monotone

increasing on [1,∞) and monotone decreasing on (0, 1].
Kittaneh and Manasrah [1, 2] improved the Young inequality, and obtained the

following inequalities:

(1.7) a∇µb − r(
√

a −
√

b)2 ≥ a1−µbµ,

(1.8) a∇µb − R(
√

a −
√

b)2 ≤ a1−µbµ.

where a, b > 0, μ ∈ [0, 1], R = max{1 − μ, μ} and r = min{μ, 1 − μ}.
Hirzallah and Kittaneh [9] obtained another refinement of the inequality (1.1):

(1.9) (a∇µb)2 − r2(a − b)2 ≥ (a1−µbµ)2.

The Heinz mean is defined as

Hµ(a, b) =
a1−µbµ + aµb1−µ

2
for a, b ≥ 0 and μ ∈ [0, 1]. It’s easy to see that

√
ab ≤ Hµ(a, b) ≤ a + b

2
.

The research of the Young and Heinz mean inequalities is interesting. For more
results on the Young and Heinz mean inequalities, see[7], [11]and [12].

In this paper, we will present reverse of the improved Young inequalities (1.3) and
(1.4) and obtain new versions of reverse ratio Young inequality with the Kantorovich
constant. By virtue of these reverse inequalities, new versions of reverse Young and
Heinz mean inequalities for operators and unitarily invariant norms are established.

2. NEW VERSIONS OF THE REVERSE YOUNG INEQUALITIES

In this section, we present reverses of the improved Young inequalities (1.3) and
(1.4) and establish new versions of reverse ratio Young inequalities with the Kantorovich
constant which are different from the improved inequalities (1.7) and (1.8). We also
obtain some refinements of the Heinz mean inequalities.

Firstly, we will need the following lemma due to Mitroi [3, Corollary 3.1] to obtain
our results. For more related work see [5].

Lemma 2.1. For i = 1, 2, · · · , n, we consider xi belong to a fixed closed interval
I , pi ≥ 0 with

n∑
i=1

pi = 1 and p̄ = max{p1, p2, · · · , pn}. If f is a convex function on

I , then
n∑

i=1

pif(xi) − f(
n∑

i=1

pixi) ≤ np̄

[
n∑

i=1

1
n

f(xi) − f(
n∑

i=1

1
n

xi)

]
.



470 Wenshi Liao, Junliang Wu and Jianguo Zhao

If we take f(x) = − logx in Lemma 2.1, then we have the following:

Corollary 2.1. If xi ∈ I ⊆ (0,∞), pi ≥ 0 (i = 1, 2, · · · , n) with
n∑

i=1
pi = 1 and

p̄ = max{p1, p2, · · · , pn}, then

n∑
i=1

pixi

n∏
i=1

xpi
i

≤

⎛
⎜⎜⎝

1
n

n∑
i=1

xi

n∏
i=1

x
1
n
i

⎞
⎟⎟⎠

np̄

.

We can get a special form when n = 2 in the above inequality, which is an extension
of (1.2).

Corollary 2.2. If a, b > 0, μ ∈ [0, 1], then

(2.1) a∇µb ≤ K(h, 2)Ra1−µbµ,

where R = max{1 − μ, μ} and h =
b

a
.

Remark 2.1. It is easy to see that the right-hand side of the inequality (2.1) and
the corresponding side of the inequality (1.2) can not be compared, because the value
of K(

√
h, 2)R will change with R, neither the inequality (2.1) nor (1.2) is uniformly

better than the other.

Replacing a, b by a−1, b−1 in the inequality (2.1), respectively, we have the coun-
terpart of the inequality (2.1).

Corollary 2.3. If a, b > 0, μ ∈ [0, 1], then

(2.2) a1−µbµ ≤ K(h, 2)Ra!µb.

We now show the reverse ratio inequality of the refined Young inequality (1.7).

Theorem 2.1. If a, b > 0, then for any μ ∈ [0, 1
2 ) ∪ ( 1

2 , 1], the inequality

(2.3) (1− μ) a + μb − r(
√

a −
√

b)2 ≤ K(
√

h, 2)R′
a1−µbµ

holds, where h =
b

a
, r = min {μ, 1 − μ} and R′ = max {2r, 1− 2r}.

Proof. Firstly, we consider the case μ ∈ [0, 1
2

)
, by the inequality (2.1), we have

(1 − μ) a + μb − μ(
√

a −
√

b)2 = (1 − 2μ) a + 2μ
√

ab

≤ K(
√

h, 2)R′
a1−µbµ.
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Conversely, if μ ∈ (1
2 , 1
]
, then we have

(1 − μ) a + μb − (1 − μ) (
√

a −
√

b)2 = (2μ − 1) b + 2 (1 − μ)
√

ab

≤ K(
√

h, 2)R′
a1−µbµ.

From what has been discussed above, for any μ ∈ [0, 1
2 ) ∪ ( 1

2 , 1], the inequality

(1− μ) a + μb − r(
√

a −
√

b)2 ≤ K(
√

h, 2)R′
a1−µbµ

always holdes.

Similar to Theorem 2.1, by the inequality (1.2), it’s easy to get the following

Theorem 2.2. If a, b > 0, then for any μ ∈ [0, 1
2 ) ∪ ( 1

2 , 1], then

(2.4) (1 − μ) a + μb − r(
√

a −
√

b)2 ≤ S(
√

h)a1−µbµ.

The inequality (2.4) was obtained by S. Furuichi with a different technique, but
our method is more transparent and simpler than the one given in [10].

Remark 2.2. It is easy to see that the right-hand side of the inequality (2.3) and the
corresponding side of the inequality (2.4) can not be compared, because the value of
K(

√
h, 2)R′ will change with R′, so neither the inequality (2.3) nor (2.4) is uniformly

better than the other (But the inequality (2.3) is indeed a new version of reverse ratio
Young inequality).

The reverse ratio inequality (2.3) can be presented as

(1 − μ) a + μb ≤ K(
√

h, 2)R′
a1−µbµ + r(

√
a −

√
b)2.

So K(
√

h, 2)R′
a1−µbµ + r(

√
a − √

b)2 can be considered as the upper bound of
μ-weighted arithmetic mean. The reverse Young inequality (1.8) can also be considered
as the upper bound of μ-weighted arithmetic mean. But the two upper bounds cannot
be compared.

Next, we will prove reverse ratio inequality of the refined Young inequality (1.9).

Theorem 2.3. If a, b > 0, then for any μ ∈ [0, 1
2 ) ∪ ( 1

2 , 1], the inequality

(2.5) ((1 − μ) a + μb)2 − r2(a − b)2 ≤ K(h, 2)R′ (
a1−µbµ

)2
holds, where h =

b

a
, r = min{μ, 1− μ} and R′ = max {2r, 1− 2r}.
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Proof. The proof is similar to Theorem 2.1, so we omit it.

If we replace a by a2 and b by b2, the inequality (2.3) can be rewritten as the
following form

(2.6) (1 − μ) a2 + μb2 − r(a− b)2 ≤ K(h, 2)R′ (
a1−µbµ

)2
.

A reverse of the Heinz mean inequality can be sated as follows:

Theorem 2.4. If a, b > 0 and μ ∈ [0, 1
2 ) ∪ ( 1

2 , 1], then

(2.7) K(h, 2)R′ (
a1−µbµ + aµb1−µ

)2 + 2r(a − b)2 ≥ (a + b)2 .

where h =
b

a
, r = min{μ, 1− μ} and R′ = max {2r, 1− 2r}.

Proof. By the inequality (2.6) and K(h, 2)R′ ≥ 1, we have

(a + b)2 − K(h, 2)R′ (
a1−µbµ + aµb1−µ

)2
= a2 + b2 + 2ab − K(h, 2)R′ (

(a1−µbµ)2 + (aµb1−µ)2 + 2ab
)

= (1 − μ) a2 + μb2 − K(h, 2)R′
(a1−µbµ)2 + μa2 + (1 − μ) b2

−K(h, 2)R′
(aµb1−µ)2 +

(
1 − K(h, 2)R′)

2ab

≤ r(a − b)2 + r(a− b)2 + 0
= 2r(a− b)2.

Hence

K(h, 2)R′ (
a1−µbµ + aµb1−µ

)2+2r(a−b)2 ≥ (a + b)2 .

3. REVERSE YOUNG AND HEINZ MEAN INEQUALITIES FOR OPERATORS

In this section, the operator versions of these inequalities proved in section 2 are
established.

Theorem 3.1. Suppose two invertible positive operators A and B, I represents an
identity operator and positive real number m, m′, M, M ′ satisfy either of the following
conditions:

(i) 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤ MI.
(ii) 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤ MI.

then

(3.1) A∇µB ≤ K(h, 2)RA#µB
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for all μ ∈ [0, 1
2 ) ∪ ( 1

2 , 1], where R = max{1 − μ, μ}, h = M
m and h′ = M ′

m′ .

Proof. From the inequality (2.1), we have

(1 − μ) + μx ≤ K(x, 2)Rxµ

for any x > 0, and hence

(1− μ) I + μX ≤ max
h′≤x≤h

K(x, 2)RXµ

for the positive operator X such that 0 < h′I ≤ X ≤ hI .
Substituting A− 1

2 BA− 1
2 for X in the above inequality:

In the case of i), I < h′I = M ′
m′ I ≤ A− 1

2 BA− 1
2 ≤ M

m I = hI , we have

(1 − μ) I + μA− 1
2 BA− 1

2 ≤ max
h′≤x≤h

K(x, 2)R(A− 1
2 BA− 1

2 )µ.

Since the Kantorovich constant K(t, 2) =
(t + 1)2

4t
is an increasing function for t > 1,

then

(3.2) (1 − μ) I + μA− 1
2 BA− 1

2 ≤ K(h, 2)R(A− 1
2 BA− 1

2 )µ.

In the case of ii), 0 < 1
hI ≤ A− 1

2 BA− 1
2 ≤ 1

h′ I < I , we have

(1 − μ) I + μA− 1
2 BA− 1

2 ≤ max
1
h
≤x≤ 1

h′
K(x, 2)R(A− 1

2 BA− 1
2 )µ.

Since the Kantorovich constant K(t, 2) =
(t + 1)2

4t
is an decreasing function for 0 <

t < 1, then

(3.3) (1 − μ) I + μA− 1
2 BA− 1

2 ≤ K(
1
h

, 2)R(A− 1
2 BA− 1

2 )µ,

Multiplying both sides by A
1
2 to the inequalities (3.2) and (3.3) and using K( 1

h , 2) =
K(h, 2) for h > 0, we can deduce

A∇µB ≤ K(h, 2)RA#µB.

By replacing A, B by A−1, B−1 in the inequality (3.1), respectively, then the reverse
weighted geometric-harmonic operator mean inequality can be obtained.

Corollary 3.1. Assume the conditions as in Theorem 3.1, then

A#µB ≤ K(h, 2)RA!µB.
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By virtue of Theorem 2.1, we have the reverse ratio inequality of the refined Young
inequality (1.7) for positive operators.

Theorem 3.2. Suppose two invertible positive operators A and B, I represents an
identity operator and positive real number m, m′, M, M ′ satisfy either of the following
conditions:

(i) 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤ MI.

(ii) 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤ MI.

then

(3.4) (1 − μ)A + μB − 2r(A∇B − A#B) ≤ K(
√

h, 2)R′
A#µB

for all μ ∈ [0, 1
2 )∪ ( 1

2, 1], where r = min{μ, 1− μ} , R′ = max {2r, 1− 2r} , h = M
m

and h′ = M ′
m′ .

Proof. From Theorem 2.1, we have

(1− μ) + μx − r(1 −√
x)2 ≤ K(

√
h, 2)R′

xµ

for any x > 0, hence

(1 − μ) I + μX − r(I − X
1
2 )2 ≤ K(

√
h, 2)R′

Xµ

and
(1 − μ) I + μX − r(I − 2X

1
2 + X) ≤ K(

√
h, 2)R′

Xµ

for the positive operator X such that 0 < h′I ≤ X ≤ hI .
Substituting A− 1

2 BA− 1
2 for X in the above inequality, by the similar process of

Theorem 3.1, we have

(3.5)
(1 − μ) I + μA− 1

2 BA− 1
2 − r[I − 2(A− 1

2 BA− 1
2 )

1
2 + A− 1

2 BA− 1
2 ]

≤ K(
√

h, 2)R′
(A− 1

2 BA− 1
2 )µ.

Multiplying both sides by A
1
2 to the inequality (3.5), we can deduce

(1− μ) A + μB − 2r(A∇B − A#B) ≤ K(
√

h, 2)R′
A#µB.

Based on the inequality (2.4), we have

Corollary 3.2. Assume the conditions as in Theorem 3.2, then

(1− μ)A + μB − 2r(A∇B − A#B) ≤ S(
√

h)A#µB.
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As direct consequences of Corollary 2.2 and Corollary 2.3, we have several in-
equalities with respect to the Heinz mean

(3.6) K(h, 2)ra!µb + b!µa

2
≤ Hµ(a, b) ≤ K(h, 2)−r a + b

2
,

(3.7) K(h, 2)−Ra + b

2
≤ Hµ(a, b) ≤ K(h, 2)Ra!µb + b!µa

2
,

where R = max{1− μ, μ}, r = min{1− μ, μ} and h =
b

a
.

Theorem 3.3. Suppose two invertible positive operators A and B, I represents an
identity operator and positive real number m, m′, M, M ′ satisfy either of the following
conditions:
(i) 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤ MI.
(ii) 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤ MI.

then

(3.8) K(h, 2)r A!µB + B!µA

2
≤ Hµ(A, B) ≤ K(h, 2)−r A + B

2
,

(3.9) K(h, 2)−R A + B

2
≤ Hµ(A, B) ≤ K(h, 2)RA!µB + B!µA

2

for all μ ∈ [0, 1
2 )∪ ( 1

2 , 1], where R = max{1− μ, μ}, r = min{1− μ, μ}, h = M
m and

h′ = M ′
m′ .

Proof. We consider the second one of the inequalities (3.9), from the corresponding
one of (3.7), we have

Hµ(1, x) ≤ K(h, 2)R

(
(1 − μ) + μx−1

)−1 +
(
(1− μ)x−1 + μ

)−1

2

for any x > 0, and hence

Hµ(I, X) ≤ K(h, 2)R

(
(1− μ)I + μX−1

)−1 +
(
(1− μ)X−1 + μI

)−1

2

for the positive operator X such that 0 < h′I ≤ X ≤ hI .
Substituting A− 1

2 BA− 1
2 for X in the above inequality, through the similar process

of Theorem 3.1, we have

(3.10)
Hµ(I, A− 1

2 BA− 1
2 )

≤ K(h, 2)R

(
(1−μ)I+μ(A− 1

2 BA− 1
2 )−1

)−1

+
(
(1−μ)(A− 1

2 BA− 1
2 )−1+μI

)−1

2
.
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Multiplying both sides by A
1
2 to the inequality (3.10), we can deduce the second

inequality of (3.9).
The rest of the inequalities (3.8) and (3.9) can be proven through the similar method,

so we omit it.

As a direct consequence of Theorem 2.1, we have

K(
√

h, 2)R′ (
a1−µbµ + aµb1−µ

)
+ 2r(

√
a −

√
b)2 ≥ a + b,

and so

(3.11) K(
√

h, 2)R′
Hu(a, b) + r(

√
a −

√
b)2 ≥ a + b

2
.

Theorem 3.4. Suppose two invertible positive operators A, B, I represents an
identity operator and positive real number m, m′, M, M ′ satisfy either of the following
conditions:

(i) 0 < mI ≤ A ≤ m′I < M ′I ≤ B ≤ MI.

(ii) 0 < mI ≤ B ≤ m′I < M ′I ≤ A ≤ MI.

then
K(

√
h, 2)R′

Hu(A, B) + 2r(A∇B − A#B) ≥ A + B

2
for all μ ∈ [0, 1

2 ) ∪ ( 1
2 , 1], where R

′
= max{1 − 2r, 2r}, r = min{1 − μ, μ}, h = M

m

and h′ = M ′
m′ .

Proof. By the inequality (3.11) or Theorem 3.2, we can obtain the consequence
directly by the similar method.

4. REVERSE RATIO YOUNG AND HEINZ MEAN INEQUALITIES FOR

UNITARILY INVARIANT NORMS

In the last section, we will discuss the reverse ratio Young inequality (2.5) and
Heinz mean inequality (2.7) for unitarily invariant norms.

Based on the refined Young inequality (2.2) and Heinz mean inequality (2.4) in [2],
Kittaneh and Manasrah have showed that if A, B, X ∈ Mn(C) with A and B positive
semidefinite matrices and μ ∈ [0, 1], then

(4.1) ‖(1− μ)AX + μXB‖2
F ≤ ∥∥A1−µXBµ

∥∥2

F
+ R2 ‖AX − XB‖2

F ,

(4.2) ‖AX + XB‖2
F ≤ ∥∥A1−µXBµ + AµXB1−µ

∥∥2

F
+ 2R ‖AX − XB‖2

F .

Two new refined forms of inequalities (4.1) and (4.2) for the Hilbert-Schmidt norm
are presented.
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Theorem 4.1. Suppose A, B, X ∈ Mn(C) such that A and B are two positive
definite matrices and satisfy 0 < mI ≤ A, B ≤ MI , where I represents an identity
matrix and m, M ∈ R. For any μ ∈ [0, 1

2 ) ∪ ( 1
2 , 1], then we have

‖(1− μ)AX + μXB‖2
F ≤ K(h, 2)R′ ∥∥A1−µXBµ

∥∥2

F
+ r2 ‖AX − XB‖2

F ,

where h = M
m , r = min {μ, 1 − μ} and R′ = max {2r, 1− 2r}.

Proof. Since A and B are positive definite, it follows by the spectral theorem
that there exist unitary matrices U, V ∈ Mn(C) such that

A = UΛ1U
∗, B = V Λ2V

∗,

where Λ1 = diag(λ1, λ2, · · · , λn), Λ2 = diag(ν1, ν2, · · · , νn), λi, νi ≥ 0, i =
1, 2, · · · , n.

Let Y = U∗XV = [yij], i, j = 1, 2, ..., n. Then

(1−μ)AX + μXB = U((1− μ)Λ1Y + μY Λ2)V ∗

= U [((1− μ)λi + μνj)yij ]V ∗,

AX − XB = U [(λi − νj)yij ]V ∗,

and
A1−µXBµ = U(λ1−µ

i νµ
j yij)V ∗.

Now by the inequality (2.5) and the unitarily invariant of the Hilbert-Schmidt norm,
we have

‖(1−μ)AX + μXB‖2
F =

n∑
i,j=1

((1− μ)λi + μνj)2|yij |2

≤
n∑

i,j=1

(
maxK(tij , 2)R′

(λ1−µ
i νµ

j )2 + r2(λi − νj)2
)
|yij|2,

where tij = λi/νj .

According to the conditions 0 < mI ≤ A, B ≤ MI ,
m

M
=

1
h
≤ tij =

λi

νj
≤ h =

M

m
and the properties of the Kantorovich constant, we can get

‖(1−μ)AX + μXB‖2
F ≤

n∑
i,j=1

(
K(h, 2)R′

(λ1−µ
i ν

µ
j )2 + r2(λi − νj)2

)
|yij |2

= K(h, 2)R′
n∑

i,j=1

(λ1−µ
i νµ

j )2|yij|2 + r2
n∑

i,j=1

(λi − νj)2|yij|2

= K(h, 2)R′ ∥∥A1−µXBµ
∥∥2

F
+ r2 ‖AX − XB‖2

F .
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This completes the proof.

Theorem 4.2. Suppose A, B, X ∈ Mn(C) such that A and B are two positive
definite matrices and satisfy 0 < mI ≤ A, B ≤ MI , where I represents an identity
matrix and m, M ∈ R. For any μ ∈ [0, 1

2 ) ∪ ( 1
2 , 1], then we have

‖AX + XB‖2
F ≤ K(h, 2)R′ ∥∥A1−µXBµ + AµXB1−µ

∥∥2

F
+ 2r ‖AX − XB‖2

F ,

where h = M
m , r = min {μ, 1 − μ} and R′ = max {2r, 1− 2r}.

Proof. Since A and B are positive definite, it follows by the spectral theorem
that there exist unitary matrices U, V ∈ Mn(C) such that

A = UΛ1U
∗, B = V Λ2V

∗,

where Λ1 = diag(λ1, λ2, · · · , λn), Λ2 = diag(ν1, ν2, · · · , νn), λi, νi ≥ 0, i =
1, 2, · · · , n.

Let Y = U∗XV = [yij], i, j = 1, 2, ..., n. Then

A1−µXBµ + AµXB1−µ = U(Λ1−µ
1 Y Λµ

2 + Λµ
1Y Λ1−µ

2 )V ∗.

Therefore,
∥∥A1−µXBµ + AµXB1−µ

∥∥2

F
=

n∑
i,j=1

(λ1−µ
i νµ

j + λµ
i ν1−µ

j )2|yij|2.

Now by the inequality (2.7) and the unitarily invariant of the Hilbert- Schmidt
norm, we have

‖AX + XB‖2
F =

n∑
i,j=1

(λi + νj)2|yij|2

≤
n∑

i,j=1

(
max K(tij, 2)R′

(λ1−µ
i νµ

j + λµ
i ν1−µ

j )2 + 2r(λi − νj)2
)
|yij|2,

where tij = λi/νj .

According to the conditions 0 < mI ≤ A, B ≤ MI ,
m

M
=

1
h
≤ tij =

λi

νj
≤ h =

M

m
and the properties of the Kantorovich constant, we can get

‖(1− μ)AX + μXB‖2
F

≤
n∑

i,j=1

(
K(h, 2)R′

(λ1−µ
i νµ

j + λµ
i ν1−µ

j )2 + 2r(λi − νj)2
)
|yij |2

= K(h, 2)R′
n∑

i,j=1

(λ1−µ
i νµ

j + λµ
i ν1−µ

j )2|yij|2 + 2r

n∑
i,j=1

(λi − νj)2|yij |2

= K(h, 2)R′ ∥∥A1−µXBµ + AµXB1−µ
∥∥2

F
+ 2r ‖AX − XB‖2

F .
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This completes the proof.
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