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NONLINEAR SCALARIZATION CHARACTERIZATIONS OF
E-EFFICIENCY IN VECTOR OPTIMIZATION

Ke-Quan Zhao*, Yuan-Mei Xia and Xin-Min Yang

Abstract. In this paper, two kinds of nonlinear scalarization functions are applied
to characterize E-efficient solutions and weak E-efficient solutions of vector opti-
mization problems and some nonlinear scalarization characterizations are obtained.
Some examples also are given to illustrate the main results.

1. INTRODUCTION

It is well known that approximate solutions have been playing an important role
in optimization theory and applications. One of the most important reasons is that ap-
proximate solutions can be obtained by using iterative algorithms or heuristic methods.
During the recent years, many scholars have been introduced several concepts of ap-
proximate solutions of vector optimization problems and studied some characterizations
of these approximate solutions. Especially, Gutiérrez et al. introduced a new kind of
concept of approximate solutions named as C(ε)-efficiency, which extends and unifies
some known different notions of approximate solutions in [1-2]. Gao et al. introduced
a new kind of approximate proper efficiency by means of co-radiant set and established
some linear and nonlinear scalarization characterizations of this kind of approximate
solutions in [3]. Flores-Bazán and Hernández introduced a kind of unified concept
of vector optimization problems and obtained some scalarization characterizations in a
unified frame in [4].

Recently, Chicoo et al. proposed the concept of E-efficiency by means of im-
provement sets in finite dimensional Euclidean space in [5]. E-efficiency unifies some
known exact and approximate solutions of vector optimization problems. Gutiérrez et
al. extended the notions of improvement sets and E-efficiency to a Hausdorff locally
convex topological linear space in [6]. Furthermore, Zhao and Yang proposed a unified
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stability result with perturbations by virtue of improvement sets under the convergence
of a sequence of sets in the sense of Wijsman in [7]. Zhao et al. established linear
scalarization theorem and Lagrange multiplier theorem of weak E-efficient solutions
under the nearly E-subconvexlikeness in [8]. Moreover, Zhao and Yang also intro-
duced a kind of proper efficiency, named as E-Benson proper efficiency which unifies
some proper efficiency and approximate proper efficiency, and obtained some linear
scalarization characterizations of the E-Benson proper efficiency in [9].

Motivated by the works of [5-6, 8, 10-11], by making use of two kinds of nonlinear
scalarization functions, we establish some nonlinear scalarization results of E-efficient
solutions and weak E-efficient solutions for a class of vector optimization problems.
We also give some examples to illustrate the main results.

2. PRELIMINARIES

Let X be a linear space and Y be a real Hausdorff locally convex topological
linear space. For a subset A of Y , we denote the topological interior, the closure, the
boundary and the complement of A by intA, clA, ∂A and Y \A, respectively. The cone
generated by A is defined as

coneA =
⋃
α≥0

αA.

A cone A ⊂ Y is pointed if A ∩ (−A) = {0}. Y ∗ denotes the topological dual space
of Y . The positive dual cone of a subset A ⊂ Y is defined as

A+ = {y∗ ∈ Y ∗|〈y∗, y〉 ≥ 0, ∀y ∈ A}.

Let K be a closed convex pointed cone in Y with nonempty topological interior. For
any x, y ∈ Y , we define

x ≤K y ⇔ y − x ∈ K.

Consider the following vector optimization problem:

(VP) min f(x)
s.t. x ∈ S,

where f : X → Y and ∅ = S ⊂ X .

Definition 2.1. ([5-6]). Let E ⊂ Y . If 0 /∈ E and E + K = E , then E is said to
be an improvement set with respect to K . We denote the set of improvement sets in
Y by TY .

Remark 2.1. Clearly, ∅ ∈ TY . Moreover, from Theorem 3.1 in [9], it follows that
intE = ∅ if E = ∅. In this paper, we assume that E = ∅.
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Definition 2.2. ([6]). Let E ∈ TY . A feasible point x ∈ S is said to be an
E-efficient solution of (VP) if

(f(x) − E) ∩ f(S) = ∅.

We denote this by x ∈ AE(f, S, E).

Definition 2.3. ([6]). Let E ∈ TY . A feasible point x ∈ S is said to be a weak
E-efficient solution of (VP) if

(f(x) − intE) ∩ f(S) = ∅.

We denote this by x ∈ WAE(f, S, E).
Consider the following scalar optimization problem

(P) min
x∈Z

φ(x),

where φ : X → R, ∅ = Z ⊂ X . Let ε ≥ 0 and x ∈ Z. If φ(x) ≥ φ(x) − ε, ∀x ∈ Z,
then x is called an ε-minimal solution of (P). The set of all ε-minimal solutions is
denoted by AMin(φ, ε). Moreover, If φ(x) > φ(x) − ε, ∀x ∈ Z, then x is called a
strictly ε-minimal solution of (P). The set of all strictly ε-minimal solutions is denoted
by SAMin(φ, ε).

Lemma 2.1. ([12]). Let Y be a Hausdorff topological linear space and A ⊂ Y

be a convex set with nonempty interior. Then

intA = {y ∈ Y |〈y∗, y〉 > 0, ∀y∗ ∈ A+ \ {0}}.

Lemma 2.2. ([12]). Let Y be a Hausdorff topological linear space and A ⊂ Y
be a convex set. If x ∈ A and there exists y∗ ∈ A+ \ {0} such that 〈y∗, x〉 = 0, then
x ∈ ∂A.

3. SCALARIZATION OF E-EFFICIENCY VIA ϕq,E

In this section, we characterize E-efficient solutions and weak E-efficient solutions
of (VP) via the nonlinear scalarization function ϕq,E proposed by Göpfert et al. in [10].
Assume that Y be a real Hausdorff locally convex topological linear space and E ∈ TY

be closed.
Let ϕq,E : Y → R ∪ {±∞} be defined by

ϕq,E(y) = inf{s ∈ R|y ∈ sq − E}, y ∈ Y,

with inf ∅ = +∞.
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Lemma 3.1. Let E ∈ TY and q ∈ intK. Then the function ϕq,E is continuous
such that

{y ∈ Y |ϕq,E(y) < c} = cq − intE, ∀c ∈ R,

{y ∈ Y |ϕq,E(y) = c} = cq − ∂E, ∀c ∈ R,

ϕq,E(−E) ≤ 0, ϕq,E(−∂E) = 0.

Proof. From E ∈ TY , q ∈ intK and Proposition 2.3.4 in [10], it follows that
(i) E + R++q ⊂ intE;
(ii) Y = Rq − E;
(iii) ∀y ∈ Y, ∃s ∈ R such that y + sq /∈ E .

Hence from (i)-(iii) and Theorem 2.3.1 in [10], the conclusion is obvious.

Consider the following scalar optimization problem

(Pq,y) min
x∈S

ϕq,E(f(x)− y),

where y ∈ Y, q ∈ intK. Denote ϕq,E(f(x)−y) by (ϕq,E,y◦f)(x), the set of ε-minimal
solutions of (Pq,y) by AMin(ϕq,E,y ◦ f, ε) and the set of strictly ε-minimal solutions of
(Pq,y) by SAMin(ϕq,E,y ◦ f, ε).

Lemma 3.2. Let E ∈ TY be a convex set. Then int(E ∩ K) = ∅.

Proof. We first prove E ∩ K = ∅. If E ∩ K = ∅, then from E and K are both
convex and by using the separation theorem, there exists y∗ ∈ Y ∗ \ {0} such that

(1) 〈y∗, e〉 ≥ 〈y∗, k〉, ∀e ∈ E, ∀k ∈ K.

Let k = 0 in (1), we have 〈y∗, e〉 ≥ 0, ∀e ∈ E . Hence, y∗ ∈ E+. From Proposition
2.6(a) in [6], it follows that y∗ ∈ K+, i.e.,

(2) 〈y∗, k〉 ≥ 0, ∀k ∈ K.

Furthermore, again from (1) and K is a cone, it follows that 〈y∗, k〉 ≤ 0, ∀k ∈ K . So,
by (2), we have

〈y∗, k〉 = 0, ∀k ∈ K.

By Lemma 2.2, K = ∂K, which contradicts to intK = ∅.
Next, we prove E ∩ K is an improvement set with respect to K . Since 0 /∈ E

and 0 ∈ K, then 0 /∈ E ∩ K and E ∩ K ⊂ E ∩ K + K . We only need to prove
E ∩ K + K ⊂ E ∩ K. Since K is a convex cone, then we have

(3) E ∩ K + K ⊂ K + K = K.
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From E ∈ TY , we obtain

(4) E ∩ K + K ⊂ E + K = E.

It follows from (3) and (4) that E∩K+K ⊂ E∩K. Hence from E∩K = ∅, intK = ∅
and Theorem 3.1 in [9], we have

int(E ∩K) = E ∩K + intK = ∅.

Remark 3.1. The assumption of convexity of improvement set E is only a sufficient
condition to ensure int(E ∩ K) = ∅. In fact, let Y = R

2, K = R
2
+ and

E = R
2
+\{(x1, x2)|0 ≤ x1 < 1, 0 ≤ x2 < 1}.

It is clear that E is a closed improvement set with respect to K and E is not a convex
set. However,

int(E ∩ K) = {(x1, x2)|x1 > 0, x2 > 0}\{(x1, x2)|0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1} = ∅.

According to Lemma 3.2, we can restrict q ∈ int(E ∩K) and establish a nonlinear
scalarization characterization of weak E-efficient solutions of (VP) via the nonlinear
scalarization function ϕq,E.

Theorem 3.1. Let E ∈ TY be a closed convex set, q ∈ int(E ∩ K) and

ε = inf{s ∈ R++|sq ∈ int(E ∩ K)}.

Then
x ∈ WAE(f, S, E) ⇔ x ∈ AMin(ϕq,E,f(x) ◦ f, ε).

Proof. Assume that x ∈ WAE(f, S, E). From Lemma 3.1, it follows that

(5) {y ∈ Y |ϕq,E(y) < 0} = −intE.

Since x ∈ WAE(f, S, E), then we have

(6) (f(S)− f(x)) ∩ (−intE) = ∅.

From (5) and (6), we deduce that

(f(S)− f(x)) ∩ {y ∈ Y |ϕq,E(y) < 0} = ∅.

Thus,

(7) (ϕq,E,f(x) ◦ f)(x) = ϕq,E(f(x) − f(x)) ≥ 0, ∀x ∈ S.
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In addition, since εq ∈ E ∩ K ⊂ E , then we have

(ϕq,E,f(x) ◦ f)(x) = ϕq,E(0) = inf{s ∈ R|sq ∈ E} ≤ ε.

It follows from (7) that

(ϕq,E,f(x) ◦ f)(x) ≥ (ϕq,E,f(x) ◦ f)(x) − ε.

Therefore, x ∈ AMin(ϕq,E,f(x) ◦ f, ε).
Conversely, assume that x ∈ AMin(ϕq,E,f(x) ◦ f, ε) and x /∈ WAE(f, S, E). Then

there exists x̂ ∈ S such that

(8) f(x̂)− f(x) ∈ −intE.

From (8) and Lemma 3.1, it follows that for any c ∈ R,

cq + f(x̂) − f(x) ∈ cq − intE = {y ∈ Y |ϕq,E(y) < c},
which implies that

(9) ϕq,E(cq + f(x̂)− f(x)) < c.

Let c = 0 in (9). Then

(10) ϕq,E(f(x̂)− f(x)) < 0.

On the other hand, x ∈ AMin(ϕq,E,f(x) ◦ f, ε) implies

(11) ϕq,E(f(x̂) − f(x)) ≥ ϕq,E(f(x)− f(x))− ε = ϕq,E(0)− ε.

We can prove

(12)

ϕq,E(0) = inf{s ∈ R|0 ∈ sq − E}
= inf{s ∈ R|sq ∈ E}
= inf{s ∈ R++|sq ∈ E}.

In fact, we only need to prove that for any s ≤ 0, sq /∈ E . Clearly, 0 /∈ E when s = 0.
Assume that there exists ŝ < 0 such that ŝq ∈ E . Since q ∈ int(E ∩ K) ⊂ K and
−ŝq ∈ K, then we have

0 = ŝq − ŝq ∈ E + K = E,

which contradicts to E ∈ TY . This implies that (12) holds. Furthermore, according to
the fact that q ∈ int(E ∩K) ⊂ K, we have for any s ∈ R++, sq ∈ K . It follows from
(12) that

ϕq,E(0) = inf{s ∈ R++|sq ∈ E ∩ K}.
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Hence,

ϕq,E(0)− ε = inf{s ∈ R++|sq ∈ E ∩ K} − inf{s ∈ R++|sq ∈ int(E ∩ K)} = 0.

By (11), we have
ϕq,E(f(x̂)− f(x)) ≥ 0,

which contradicts to (10) and so x ∈ WAE(f, S, E).

We also can characterize E-efficient solutions of (VP) via nonlinear scalarization
function ϕq,E and obtain the following nonlinear scalarization characterization. The
proof is similar with Theorem 3.1 and is omitted.

Theorem 3.2. Let E ∈ TY be a closed convex set, q ∈ int(E ∩ K) and

ε = inf{s ∈ R++|sq ∈ int(E ∩ K)}.

Then
x ∈ AE(f, S, E) ⇔ x ∈ SAMin(ϕq,E,f(x) ◦ f, ε).

4. SCALARIZATION OF E-EFFICIENCY VIA Δ−K

In this section, we characterize E-efficient solutions and weak E-efficient solutions
of (VP) via the nonlinear scalarization function Δ−K studied by Zaffaroni in [11]. We
assume that Y be a normed space and E ∈ TY .

Let A be a subset of Y , ΔA : Y → R ∪ {±∞} be defined by

ΔA(y) = dA(y)− dY \A(y),

where d∅(y) = +∞, dA(y) = inf
z∈A

‖z − y‖.

Lemma 4.1. ([11]). Let A be a proper subset of Y . Then the following statements
are true:

(i) ΔA(y) < 0 for y ∈ intA, ΔA(y) = 0 for y ∈ ∂A, and ΔA(y) > 0 for y /∈ clA;
(ii) If A is closed, then A = {y|ΔA(y) ≤ 0};
(iii) If A is a convex, then ΔA is convex;
(iv) If A is a cone, then ΔA is positively homogeneous.

Remark 4.1. If A is a convex cone, then from Lemma 4.1(iii) and (iv), it follows
that ΔA is a sublinear function.

Consider the following scalar optimization problem:

(Py) min
x∈S

Δ−K(f(x)− y),
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where y ∈ Y . Denote the set of ε-minimal solutions of (Py) by AMin(Δ−K(f(x) −
y), ε), and the set of strictly ε-minimal solutions of (Py) by SAMin(Δ−K(f(x)−y), ε).

Theorem 4.1. Let E ∈ TY . Then

x ∈ WAE(f, S, E) ⇒ x ∈ AMin(Δ−K(f(x)− f(x)), dE(0)).

Proof. From x ∈ WAE(f, S, E), it follows that

(f(x̄) − intE) ∩ f(S) = ∅.

Hence by Theorem 3.1 in [9], we have

(f(x̄) − E − intK) ∩ f(S) = ∅,

i.e.,
f(x) − f(x̄) + e /∈ −intK, ∀x ∈ S, ∀e ∈ E,

which implies that

Δ−K(f(x)− f(x̄) + e) ≥ 0, ∀x ∈ S, ∀e ∈ E.

Since K is a convex cone and by Remark 4.1, then we deduce that

0 ≤ Δ−K(f(x)− f(x) + e) ≤ Δ−K(f(x)− f(x)) + Δ−K(e),

i.e.,
Δ−K(f(x) − f(x)) + Δ−K(e) ≥ 0, ∀x ∈ S, ∀e ∈ E.

Therefore,

(13) Δ−K(f(x)− f(x)) + inf
e∈E

Δ−K(e) ≥ 0, ∀x ∈ S.

Now we calculate inf
e∈E

Δ−K(e). From the definition of Δ−K , we have

(14) Δ−K(e) = d−K(e)− dY \(−K)(e), ∀e ∈ E.

We can prove E ⊂ Y \(−K). On the contrary, assume that there exists ê ∈ E such
that ê /∈ Y \(−K), then −ê ∈ K. Hence from E ∈ TY , we have

0 = ê − ê ∈ E + K = E,

which contradicts to 0 /∈ E and so

dY \(−K)(e) = 0, ∀e ∈ E.
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It follows from (14) that

Δ−K(e) = d−K(e), ∀e ∈ E.

Therefore,

(15) inf
e∈E

Δ−K(e) = inf
e∈E

inf
k∈K

||e + k||.

Next, we prove

(16) inf
e∈E

inf
k∈K

||e + k|| = inf
e′∈E

||e′||.

Since E + K = E , then

{e + k|k ∈ K} ⊂ E, ∀e ∈ E,

which implies that
inf
k∈K

||e + k|| ≥ inf
e′∈E

||e′||, ∀e ∈ E.

So, inf
e′∈E

||e′|| is a lower bound of
{

inf
k∈K

||e + k||
}

e∈E

. Furthermore, from the definition

of infimum, for any given ε > 0, there exists e0 ∈ E such that

||e0|| < inf
e′∈E

||e′|| + ε.

From E + K = E , it follows that there exist e ∈ E and k ∈ K such that

e0 = e + k.

Therefore,
inf
k∈K

||e + k|| ≤ ||e + k|| = ||e0|| < inf
e′∈E

||e′|| + ε.

Hence, (16) holds and then from (15), we have

inf
e∈E

Δ−K(e) = inf
e′∈E

||e′|| = dE(0).

From (13), we can obtain that for any x ∈ S,

(17) Δ−K(f(x)− f(x)) + dE(0) = Δ−K(f(x) − f(x)) + inf
e∈E

Δ−K(e) ≥ 0.

Since 0 ∈ ∂K and from Lemma 4.1(i), then

(18) Δ−K(f(x) − f(x)) = Δ−K(0) = 0.
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Combine with (17) and (18), it follows that

Δ−K(f(x) − f(x)) ≥ Δ−K(f(x) − f(x))− dE(0), ∀x ∈ S.

Thus,

x ∈ AMin(Δ−K(f(x)− f(x)), dE(0)).

Remark 4.2. The converse of Theorem 4.1 may not be valid. The following
example can illustrates it.

Example 4.1. Let X = Y = R
2, ‖ · ‖ = ‖ · ‖2, K = R

2
+, f(x) = x and

E = {(x1, x2)|x1 + x2 ≥ 2, x1 ≥ 0, x2 ≥ 0},
S = {(x1, x2)| − 1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}.

Clearly, E ∈ TY and dE(0) =
√

2. Let x = (1, 1) ∈ S. Since

Δ−K(f(x)− f(x)) ≥ −1 > −
√

2 = −dE(0), ∀x ∈ S,

then
x ∈ AMin(Δ−K(f(x)− f(x)), dE(0)).

However,

(f(x)− intE) ∩ f(S) = {(x1, x2)|x1 < 1, x2 < 1, x1 + x2 < 0} ∩ f(S)

= {(x1, x2)|x1 + x2 < 0,−1 ≤ x1 < 0, x2 ≥ 0} = ∅,
which implies that

x /∈ WAE(f, S, E).

However, under suitable conditions, we can prove the converse of Theorem 4.1 is
valid.

Theorem 4.2. Let E ⊂ K, E ∈ TY and ε = inf
e∈E

d∂K(e). Then

x ∈ AMin(Δ−K(f(x)− f(x)), ε) ⇒ x ∈ WAE(f, S, E).

Proof. Assume that x /∈ WAE(f, S, E). Then there exists x̂ ∈ S such that
f(x̂)− f(x) ∈ −intE. From E ∈ TY and Theorem 3.1 in [9], there exists ê ∈ E such
that f(x̂)−f(x)+ ê ∈ −intK. It follows from Lemma 4.1(i) that Δ−K(f(x̂)−f(x)+
ê) < 0. From Remark 4.1,

Δ−K(f(x̂) − f(x)) ≤ Δ−K(f(x̂) − f(x) + ê) + Δ−K(−ê).
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Hence,

(19)
Δ−K(f(x̂) − f(x)) < Δ−K(−ê) = −dY \(−K)(−ê)

= −d−∂K(−ê) = −d∂K(ê) ≤ − inf
e∈E

d∂K(e) = −ε.

On the other hand, x ∈ AMin(Δ−K(f(x)− f(x)), ε) implies that

Δ−K(f(x̂)− f(x)) ≥ Δ−K(f(x)− f(x))− ε = −ε,

which contradicts to (19) and so x ∈ WAE(f, S, E).

We also can obtain a nonlinear scalarization characterizations of E-efficient solu-
tions of (VP) by means of the nonlinear scalarization function Δ−K . The proofs are
similar with Theorem 4.1 and Theorem 4.2 and are omitted.

Theorem 4.3. Let E ∈ TY . Then

x ∈ AE(f, S, E) ⇒ x ∈ SAMin(Δ−K(f(x) − f(x)), dE(0)).

Theorem 4.4. Let E ⊂ K, E ∈ TY and ε = inf
e∈E

d∂K(e). Then

x ∈ SAMin(Δ−K(f(x)− f(x)), ε) ⇒ x ∈ AE(f, S, E).

5. CONCLUDING REMARKS

E-efficient solutions and weak E-efficient solutions unify some known exact and
approximate solutions in vector optimization. In this paper, we employ two kinds
of classic nonlinear scalarization functions to characterize E-efficient solutions and
weak E-efficient solutions of vector optimization problems and obtain some nonlinear
scalarization characterizations. It remains one interesting question how to weaken or
drop the convexity of improvement set E in Theorem 3.1.
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