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ON EXISTENCE OF THREE SOLUTIONS FOR p(x)-KIRCHHOFF TYPE
DIFFERENTIAL INCLUSION PROBLEM VIA NONSMOOTH CRITICAL

POINT THEORY

Lian Duan, Lihong Huang* and Zuowei Cai

Abstract. In this paper, we study a class of differential inclusion problems driven
by the p(x)-Kirchhoff with non-standard growth depending on a real parameter.
Working within the framework of variable exponent spaces, a new existence result
of at least three solutions for the considered problem is established by using the
nonsmooth version three critical points theorem.

1. INTRODUCTION

In recent years, various Kirchhoff type problems have been extensively investigated
by many authors due to their theoretical and practical importance, such problems are
often referred to as being nonlocal because of the presence of the integral over the entire
domain Ω. It is well known that this problem is analogous to the stationary problem
of a model introduced by Kirchhoff [1]. More precisely, Kirchhoff proposed a model
given by the equation

(1.1) ρutt −
(
ρ0

h
+
E

2L

∫ L

0
u2

xdx

)
uxx = 0,

where ρ, ρ0, h, E, L are all positive constants. Equation (1.1) is an extension of the
classical D’Alembert wave equation by considering the changes in the length of the
string during the vibrations. For a bounded domain Ω, the problem

(1.2)

⎧⎨⎩ −
(
a+ b

∫
Ω
|∇u|2dx

)
�u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
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is related to the stationary analogue of (1.1). Nonlocal elliptic problems like (1.2) have
received a lot of attention due to the fact that they can model several physical and
biological systems and some interesting results have been established in, for example,
[2,3] and the references therein. Moreover, the study of the Kirchhoff type equation has
already been extended to the case involving the p-Laplacian operator or p(x)-Laplacian
operator. For instance, G. Dai and R. Hao in [4] were concerned with the existence
and multiplicity of solutions to the following Kirchhoff type equation involving the
p-Laplacian operator

(1.3)

⎧⎨⎩ −K
(

1
p

∫
Ω
|∇u|pdx

)
div(|∇u|p−2∇u) = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

they established conditions ensuring the existence and multiplicity of solutions for
the addressed problem by means of a direct variational approach and the theory of the
variable exponent Sobolev spaces. In [5], by using a direct variational approach, G. Dai
and R. Hao established conditions ensuring the existence and multiplicity of solutions
for the following problem

(1.4)

⎧⎨⎩ −K
(

1
p(x)

∫
Ω
|∇u|p(x)dx

)
div(|∇u|p(x)−2∇u) = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω.

Very recently, G. Dai and R. Ma in [6] studied the existence and multiplicity of solutions
to the following p(x)-Kirchhoff type problem

(1.5)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−K
(∫

Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx)
(
div(|∇u|p(x)−2∇u)

−|u|p(x)−2u

)
= f(x, u), x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω,

we refer the reader to, e.g., [7,8] for other interesting results and further research on
this subject.

However, the nonlinearity in the above mentioned Kirchhoff type problems is con-
tinuous or differentiable. As pointed out by K.C. Chang in [9-11], many free boundary
problems and obstacle problems arising in mathematical physics may be reduced to
partial differential equations with discontinuous nonlinearities, among these problems,
we have the obstacle problem [9], the seepage surface problem [10], and the Elenbaas
equation [11], and so forth. Associated with this development, the theory of nonsmooth
variational has been given extensive attention, for a comprehensive treatment, we refer
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to the monographs of [12,13], as well as for updated list of references [14-21] and
the references therein. Therefore, it is natural from both a physical and biological
standpoint as well as a theoretical view to give considerable attention to a synthesis
involving p(x)-Kirchhoff type differential inclusion problem.

Motivated by the above discussions, the main purpose of this paper is to establish
a new result for the existence of at least three solutions to the following differential
inclusion problem

(Pλ)

⎧⎨⎩
−K(t)

(
Δp(x)u− |u|p(x)−2u

) ∈ ∂F1(x, u) + λ∂F2(x, u), x ∈ Ω,

∂u

∂n
= 0, x ∈ ∂Ω,

where Δp(x)u = div(|∇u|p(x)−2∇u) is said to be p(x)-Laplacian operator, K(t) is a

continuous function with t :=
∫

Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx, λ > 0 is a parameter,

Ω ⊆ R
N (N > 2) is a nonempty bounded domain with a boundary ∂Ω of class C1,

p(x) > 0, p(x) ∈ C(Ω) with 1 < p− = inf
x∈Ω

p(x), p+ = sup
x∈Ω

p(x), F1(x, t) and F2(x, t)

are locally Lipschitz functions in the t-variable integrand, ∂F1(x, t) and ∂F2(x, t) are
the subdifferential with respect to the t-variable in the sense of Clarke [22], and n is
the outward unit normal on ∂Ω.

To study problem (Pλ), we should overcome the difficulties as follows: Firstly, the
p(x)-Laplacian possesses more complicated nonlinearities than p-Laplacian, in general,
the property of the first eigenvalue of p(x)-Laplacian is not the same as the p-Laplacian,
namely the first eigenvalue is not isolated (see [23]), therefore, the first difficulty is
that we cannot use the eigenvalue property of p(x)-Laplacian. Secondly, the lack of
differentiability of nonlinearity causes several technical obstructions, that is to say, we
can not use variational methods for C1 functional, because in our case, the energy func-
tional is only locally Lipschitz continuous, and so, our approach, which is variational,
is based on the nonsmooth critical point theory as was developed by K. C. Chang [9]
and S.A. Marano et al. [15]. On the other hand, to the best of our knowledge, there are
no papers concerning the problem (Pλ) by the nonsmooth three critical points theorem.
So even in the case of a constant exponent, our results are also new.

This paper is organized as follows. In Section 2, we present some necessary prelim-
inary knowledge on variable exponent Lebesgue and Sobolev spaces and generalized
gradient of locally Lipschitz function. In Section 3, we give the main result and its
proof of this paper.

2. PRELIMINARIES

2.1. Variable exponent spaces and p(x)-Kirchhoff-Laplacian operator
In this subsection, we recall some preliminary results about Lebesgue and Sobolev

variable exponent spaces and the properties of p(x)-Kirchhoff-Laplace operator, which
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are useful for discussing problem (Pλ). Set

C+(Ω) =
{
h|h ∈ C(Ω) : h(x) > 1 for all x ∈ Ω

}
,

for any h ∈ C+(Ω), we will denote

h− = min
x∈Ω

h(x), h+ = max
x∈Ω

h(x).

Let p ∈ C+(Ω), the variable exponent Lebesgue space is defined by

Lp(x)(Ω) =
{
u : Ω → R is measurable,

∫
Ω

|u(x)|p(x)dx < +∞
}

furnished with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf
{
λ > 0 :

∫
Ω

∣∣u
λ

∣∣p(x)
dx ≤ 1

}
,

and the variable exponent Sobolev space is defined by

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
equipped with the norm

‖u‖W 1,p(x)(Ω) = |u|p(x) + |∇u|p(x).

Proposition 2.1. (See [24]). The spaces Lp(x)(Ω) and W 1,p(x)(Ω) are separable
and reflexive Banach spaces.

Proposition 2.2. (See [24]). (1) If q(x) ∈ C+(Ω) and q(x) ≤ p∗(x), for all x ∈
Ω, then the embedding from W 1,p(x)(Ω) to Lq(x)(Ω) is continuous and if q(x) <
p∗(x), for all x ∈ Ω, the embedding from W 1,p(x)(Ω) to Lq(x)(Ω) is compact, where

p∗(x) =

⎧⎨⎩
Np(x)
N − p(x)

, p(x) < N,

+∞, p(x) ≥ N.

(2) If p1(x), p2(x) ∈ C+(Ω), and p1(x) ≤ p2(x), x ∈ Ω, then Lp2(x)(Ω) ↪→
Lp1(x)(Ω), and the embedding is continuous.

In the following, we will discuss the p(x)-Kirchhoff-Laplace operator

Jp(u) = −K
(∫

Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx
)(

div|∇u|p(x)−2∇u− |u|p(x)−2u
)
.
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Denote
J(u) := K̂

(∫
Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx
)

where K̂(t) =
∫ t

0

K(τ)dτ , K(t) satisfies the following condition:

(K0) K(t) : [0,+∞) → (k0, k1) is a continuous and increasing function with k1 >
k0 > 0.

For simplicity, we write X = W 1,p(x)(Ω), denote by ‖ ·‖X the norm of X , un ⇀ u
and un → u the weak convergence and strong convergence of sequence {un} in X ,
respectively. It is obvious that the functional J is a continuously Gâteaux differentiable
whose Gâteaux derivative at the point u ∈ X is the functional J ′(u) ∈ X∗, given by

〈J ′(u), v〉=K
(∫

Ω

1
p(x)

(|∇u|p(x)+|u|p(x))dx
)∫

Ω

(|∇u|p(x)−2∇u∇v+|u|p(x)−2uv
)
dx,

where 〈·, ·〉 is the duality pairing between X∗ and X . Therefore, the p(x)-Kirchhoff-
Laplace operator is up to the minus sign the derivative operator of J in the weak sense.
We have the following properties about the derivative operator of J .

Lemma 2.1. (See [6]). If (K0) holds, then
(i) J ′ : X → X∗ is a continuous, bounded and strictly monotone operator;
(ii) J ′ is a mapping of type (S+), i.e., if un ⇀ u in X and lim sup

n→+∞
〈J ′(un) −

J ′(u), un − u〉 ≤ 0, then un → u in X;
(iii) J ′ : X → X∗ is a homeomorphism;
(iv) J is weakly lower semicontinuous.

2.2. Generalized gradient

Let (X, ‖ · ‖) be a real Banach space and X∗ be its topological dual. A function
ϕ : X → R is called locally Lipschitz if each point u ∈ X possesses a neighborhood
U and a constant Lu > 0 such that

|ϕ(u1) − ϕ(u2)| ≤ Lu‖u1 − u2‖, for all u1, u2 ∈ U.

We know from convex analysis that a proper, convex and lower semicontinuous function
g : X → R = R

⋃{+∞} is locally Lipschitz in the interior of its effective domain
dom g = {u ∈ X : g(u) < +∞}. We define the generalized directional derivative of
a locally Lipschitz function φ at x ∈ X in the direction h ∈ X by

φ◦(x; h) = lim sup
x′→x
λ→0+

φ(x′ + λh) − φ(x′)
λ

.
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It is easy to see that the function h → φ◦(x; h) is sublinear and continuous on X , so by
Hahn-Banach Theorem, it is the support function of a nonempty, convex, w∗-compact
set

∂φ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ φ◦(x; h) for all h ∈ X}.
The multifunction x → ∂φ(x) is known as the generalized(or Clarke) subdifferential
of φ. Now, we list some fundamental properties of the generalized grandient and
directional derivative which will be used throughout this paper.

Proposition 2.3. (See [22]). (i) (−φ)◦(u; z) = φ◦(u;−z) for all u, z ∈ X;

(ii) φ◦(u; z) = max{〈x∗, z〉 : x∗ ∈ ∂φ(u)} for all u, z ∈ X;
(iii) Let κ be a locally Lipschitz function, (φ+ κ)◦(u; z) ≤ φ◦(u; z) + κ◦(u; z), for

all u, z ∈ X;
(iv) Let j : X → R be a continuously differentiable function. Then ∂j(u) =

{j ′(u)}, j◦(u; z) = 〈j ′(u), z〉, and (φ + j)◦(u; z) = φ◦(u; z) + 〈j ′(u), z〉 for
all u, z ∈ X;

(v) (Lebourg’s mean value theorem) Let u and v be two points in X . Then there
exists a point w in the open segment between u and v, and x∗w ∈ ∂φ(w) such
that

φ(u) − φ(v) = 〈x∗w, u− v〉;

(vi) The function (u, h) → φ◦(u; h) is upper semicontinuous.

Let I be a function on X satisfying the following structure hypothesis:
(H) I = Φ + Ψ, where Φ : X → R is locally Lipschitz while Ψ : X → R

⋃{+∞} is
convex, proper, and lower semicontinuous.

We say that u ∈ X is a critical point of I if it satisfies the following inequality

Φ◦(u; v− u) + Ψ(v) − Ψ(u) ≥ 0, for all v ∈ X.

Set
K := {u ∈ X |u is a critical point of I}

and
Kc = K

⋂
I−1(c).

A number c ∈ R such that Kc �= ∅ is called a critical value of I .

Definition 2.1. (See [15]). I = Φ+Ψ is said to satisfy the Palais-Smale condition
at level c ∈ R ((PS)c for short) if every sequence {un} in X satisfying I(un) → c
and

Φ◦(un; v − un) + Ψ(v)− Ψ(un) ≥ −εn‖v − un‖, for all v ∈ X,
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for a sequence {εn} in [0,∞) with εn → 0+, contains a convergent subsequence. If
(PS)c is verified for all c ∈ R, I is said to satisfy the Palais-Smale condition (shortly,
(PS)).

Finally, we recall a non-smooth version three critical points theorem due to S. A.
Marano and D. Motreanu, which represents the main tool to investigate problem (Pλ).

Theorem 2.1. (See [15]). Let X be a separable and reflexive Banach space, let
I1 := Φ1 + Ψ1 and I2 := Φ2 be like in (H), let Λ be a real interval. Suppose that

(b1) Φ1 is weakly sequentially lower semicontinuous while Φ2 is weakly sequentially
continuous.

(b2) For every λ ∈ Λ the function I1 + λI2 fulfills (PS)c, c ∈ R, together with
lim

‖u‖→+∞
(
I1(u) + λI2(u)

)
= +∞.

(b3) There exists a continuous concave function h : Λ → R satisfying

sup
λ∈Λ

inf
u∈X

(
I1(u) + λI2(u) + h(λ)

)
< inf

u∈X
sup
λ∈Λ

(
I1(u) + λI2(u) + h(λ)

)
.

Then there is an open interval Λ0 ⊆ Λ such that for each λ ∈ Λ0 the function I1 +λI2
has at least three critical points in X . Moreover, if Ψ1 ≡ 0, then there exist an open
interval Λ1 ⊆ Λ and a number σ > 0 such that for each λ ∈ Λ0 the function I1 + λI2
has at least three critical points in X having norms less than σ > 0.

Theorem 2.2. (See [25]). Let X be a non-empty set and Φ,Ψ two real functionals
on X . Assume that there are r > 0, u0, u1 ∈ X , such that

Φ(u0) = Ψ(u0) = 0, Φ(u1) > r,

and

sup
u∈Φ−1((−∞,r])

Ψ(u) < r
Ψ(u1)
Φ(u1)

.

Then, for each ρ satisfying

sup
u∈Φ−1((−∞,r])

Ψ(u) < ρ < r
Ψ(u1)
Φ(u1)

,

one has

sup
λ≥0

inf
u∈X

(
Φ(u) + λ(ρ− Ψ(u))

)
< inf

u∈X
sup
λ≥0

(
Φ(u) + λ(ρ− Ψ(u))

)
.
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3. MAIN RESULT

In this section, we shall prove the existence of at least three solutions to problem
(Pλ). Let us first introduce some notations. It is clear that (Pλ) is the Euler-Lagrange
equation of the functional ϕ : X → R defined by

(3.1)
ϕ(u) = K̂

(∫
Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx
)

−
∫

Ω
F1(x, u)dx− λ

∫
Ω
F2(x, u)dx,

where K̂(t) =
∫ t

0

K(τ)dτ . Set

J(u) = K̂

(∫
Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx
)
, F 1(u) = −

∫
Ω
F1(x, u)dx,

(3.2) F 2(u) = −
∫

Ω

F2(x, u)dx,

and

(3.3) h1 = J +F 1, h2 = F 2,

then, under these notations, ϕ = h1 + λh2. Let Vp(x) = {u ∈W 1,p(x)(Ω) :
∫

Ω
udx =

0}, then Vp(x) is a closed linear subspace of W 1,p(x)(Ω) with codimension 1, and we
have W 1,p(x)(Ω) = R ⊕ Vp(x) (see [23]). If we define the norm by

‖u‖′ = inf
{
λ > 0 :

∫
Ω

(∣∣∣∣∇uλ
∣∣∣∣p(x)

+
∣∣∣∣uλ

∣∣∣∣p(x))
dx ≤ 1

}
,

by Proposition 2.6 in [23], it is easy to see that ‖u‖′ is an equivalent norm in Vp(x).
Thereafter, we will also use ‖ · ‖ to denote the equivalent norm ‖u‖′ in Vp(x) and one
can easily see that when u ∈ Vp(x), we have

(i) if ‖u‖ < 1, then
k0

p+
‖u‖p+ ≤ J(u) ≤ k1

p−
‖u‖p+

;

(ii) if ‖u‖ > 1, then
k0

p+
‖u‖p− ≤ J(u) ≤ k1

p−
‖u‖p+

.

Moreover, let q+ < p(x) and denote

λ1 := inf
u∈Vp(x)\{0},‖u‖>1

∫
Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx∫
Ω
|u|q(x)dx

,
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by continuous embedding of W 1,p(x)(Ω) in Lp−(Ω) and, by Proposition 2.2(2), the
above inequalities of (i), (ii), one has λ1 > 0.

Now we are in a position to present our main result. In order to reduce our
statements, we need the following assumptions:
(A1): F1 : Ω×R → R is a function such that F1(x, t) satisfies F1(x, 0) = 0 and also
(A1)1 for all t ∈ R,Ω � x→ F1(x, t) ∈ R is measurable;
(A1)2 for almost all (shortly, a.a.) x ∈ Ω,R � t→ F1(x, t) ∈ R is locally Lipschitz;
(A1)3 for a.a. x ∈ Ω, all t ∈ R and all w ∈ ∂F1(x, t), there holds

|w| ≤ a(x)|t|p−−1, with a(x) ∈ L∞(Ω)+;

(A1)4 there exist q(x), s(x) ∈ C+(Ω) satisfying q+ < p(x) < s−, for all x ∈ Ω, such
that

lim sup
|t|→0

F1(x, t)
|t|q(x)

< −2λ1,

and

lim sup
|t|→+∞

F1(x, t)− â(x)|t|p−
|t|s− < 0, with â(x) ∈ L∞(Ω)+,

uniformly for a.a. x ∈ Ω.
(A2): F2 : Ω×R → R is a function such that F2(x, t) satisfies F2(x, 0) = 0 and also
(A2)1 for all t ∈ R,Ω � x→ F2(x, t) ∈ R is measurable;
(A2)2 for a.a. x ∈ Ω,R � t→ F2(x, t) ∈ R is locally Lipschitz;
(A2)3 for a.a. x ∈ Ω, all t ∈ R and all v ∈ ∂F2(x, t), there holds

|v| ≤ b(x)|t|p(x)−1, with b(x) ∈ L∞(Ω)+;

(A2)4 there exists R > 0, for all 0 < |t| < R, such that p(x)F2(x, t) > 0, and

p(x)F2(x, t) = o(|t|p+
) as |t| → 0,

and
lim sup
|t|→+∞

F2(x, t)
|t|p+ < 0,

uniformly for a.a. x ∈ Ω.

Remark 3.1. A simple example of nonsmooth locally Lipschitz function satisfying
hypothesis (A1) and (A2) is (for simplicity we drop the x-dependence):

F1(t) =
{

(−2λ1 − 1)|t|q(x), if |t| ≤ 1,
â(x)|t|p− − ln |t|s− , if |t| > 1,
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and

F2(t) =
{

2|t|p(x), if |t| ≤ 1,
− ln |t|p+

, if |t| > 1.

One can easily check that all conditions in (A1) and (A2) are satisfied.
The main result can be formulated as follows:

Theorem 3.1. Suppose that the assumptions (K0), (A1) and (A2) hold, then there
exists an open interval Λ1 ⊆ [0,+∞), such that for each λ ∈ Λ1, problem (Pλ) has
at least three nontrivial solutions in Vp(x).

Before proving Theorem 3.1, we give some preliminary lemmas which are useful
to prove the main result.

Lemma 3.1. Since Fi are locally Lipschitz functions which satisfy (Ai)3, then Fi

in (3.2) are well defined and they are locally Lipschitz. Moreover, let E be a closed
subspace of X and Fi |E the restriction of Fi to E , where i = 1 or 2. Then

(Fi |E)◦(u; v) ≤
∫

Ω
(−Fi)◦(x, u(x); v(x))dx, for all u, v ∈ E.

The proof of the above lemma is similar to that of [26, Lemma 4.2], we omit the
details here.

Lemma 3.2. For any ε > 0, and q(x) as mentioned in (A1)4, there exists a
uε ∈ Vp(x) with ‖uε‖ > 1, such that

k0

p+
‖uε‖p− + λ1

∫
Ω
|uε|q(x)dx ≥ (1 + k0)λ1 + k0ε

p+(λ1 + ε)
.

Proof. Since λ1 := inf
u∈Vp(x)\{0},‖u‖>1

∫
Ω

1
p(x)

(|∇u|p(x) + |u|p(x))dx∫
Ω
|u|q(x)dx

, then by the

definition of infimum, for any ε > 0, there exists a uε ∈ Vp(x) with ‖uε‖ > 1, such
that ∫

Ω

1
p(x)

(|∇uε|p(x) + |uε|p(x))dx∫
Ω
|uε|q(x)dx

< λ1 + ε,

which produces

λ1

λ1 + ε
<

λ1

∫
Ω

|uε|q(x)dx∫
Ω

1
p(x)

(|∇uε|p(x) + |uε|p(x))dx
≤
λ1

∫
Ω

|uε|q(x)dx

1
p+‖uε‖p−

.
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Consequently, we have

k0

p+
‖uε‖p− + λ1

∫
Ω

|uε|q(x)dx ≥ 1
p+

(
k0 +

λ1

λ1 + ε

)
‖uε‖p− .

Lemma 3.3. There exists a ū ∈ Vp(x) with ū �= 0 and r̄ > 0 such that h1(ū) > r̄,
where h1 = J + F 1 is as mentioned in (3.3).

Proof. In view of (A1)4, there exists a δ0 > 0 small enough (without loss of
generality we assume δ0 < 1), such that for a.a. x ∈ Ω, we have

(3.4) F1(x, t) ≤ −2λ1|t|q(x), for all |t| ≤ δ0,

we also know from (A1)4 that there exists τ > 0 such that

lim sup
|t|→+∞

F1(x, t)− â(x)|t|p−
|t|s− < −2τ,

uniformly for a.a. x ∈ Ω. Then we can find a M > 1 large enough such that for a.a.
x ∈ Ω, all |t| ≥M such that

lim sup
|t|→+∞

F1(x, t)− â(x)|t|p−
|t|s− < −τ,

which leads to

(3.5) F1(x, t) ≤ â(x)|t|p− − τ |t|s− , for all |t| > M.

On the other hand, since F1(x, 0) = 0 and (A1)3 holds, from Lebourg’s mean value
theorem, for a.a. x ∈ Ω , it follows that

(3.6) F1(x, t) ≤ a(x)|t|p−, for all δ0 < |t| ≤M.

Note that a(x) ∈ L∞(Ω)+, p− > q+ and, δ0 < 1 imply −2λ1

δp−
0

< −2λ1, for a.a.

x ∈ Ω, we obtain from (3.4) and (3.6) that

(3.7) F1(x, t) ≤ −2λ1|t|q(x) +
(
a(x) +

2λ1

δp−
0

)
|t|p−, for all |t| ≤M.

When |t| > M > δ0, since δ0 < 1 and p− > q+, then (
|t|
δ0

)p− > |t|q(x), which shows
that

(3.8) −2λ1|t|q(x) +
(
a(x) +

2λ1

δp−
0

)
|t|p− > 0.
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Thus, through (3.5), for a.a. x ∈ Ω, and (3.8), we have

(3.9) F1(x, t)≤
(
a(x)+â(x)+

2λ1

δp−
0

)
|t|p−−τ |t|s−−2λ1|t|q(x), for all |t| > M.

Due to q+ < p− < s−, it follows from (3.7) that

(3.10)

F1(x, t) ≤ −2λ1|t|q(x) +
(
a(x) +

2λ1

δp−
0

)
|t|p− − a(x)

Mp− |t|p−

− τ

M s− |t|s− + a(x)
∣∣ t
M

∣∣q(x) + τ
∣∣ t
M

∣∣q(x)

≤
(
− 2λ1 +

a(x) + τ

M q(x)

)
|t|q(x) − τ

M s− |t|s−

+
(
a(x)− a(x)

Mp− +
2λ1

δp−
0

)
|t|p−, for all |t| ≤M.

Therefore, note that M > 1, from (3.9) and (3.10), for a.a. x ∈ Ω and all t ∈ R, one
can derive

(3.11)
F1(x, t) ≤

(
− 2λ1 +

a(x) + τ

M q(x)

)
|t|q(x)

+
(
a(x) + â(x) +

2λ1

δp−
0

)
|t|p− − τ

M s− |t|s− ,

we take M0 > M sufficiently large such that
a(x) + τ

M
q(x)
0

< λ1, without loss of generality

we suppose that a(x) > â(x) > 0, for all x ∈ Ω, it follows from (3.11) that

(3.12) F1(x, t) ≤ −λ1|t|q(x) +
(

2a(x) +
2λ1

δp−
0

)
|t|p− − τ

M s−
0

|t|s− .

We now distinguish two cases to complete the proof.

Case 1. We claim that there exists a u1 ∈ Vp(x) with ‖u1‖ > 1 such that h1(u1) >
r1. In fact, for any u ∈ Vp(x) with ‖u‖ > 1, we obtain from (3.12) that

(3.13)

h1(u) = J(u) +F 1(u)

= K̂

(∫
Ω

1
p(x)

(|∇u|p(x) + |u|p(x)
)
dx

)
−

∫
Ω
F1(x, u)dx

≥ k0

p+
‖u‖p− + λ1

∫
Ω
|u|q(x)dx+

∫
Ω

τ

M s−
0

|u|s−dx

−
∫

Ω

(
2a(x) +

2λ1

δp−
0

)
|u|p−dx.
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Since the imbedding X ↪→ Lp− is compact, then there exists a constant C1 > 0, such
that |u|p− ≤ C1‖u‖, for all u ∈ X . By virtue of Lemma 3.2, taking a ε0 small enough,
we can reach

(3.14)
λ1

p+(λ1 + ε0)
>

(
2‖a‖∞ +

2λ1

δp−
0

)
C1.

Recall that a(x) ∈ L∞(Ω)+, where ‖ · ‖∞ denotes the norm of L∞(Ω), there exists a
uε0 ∈ Vp(x) with ‖uε0‖ > 1, combining (3.13) with (3.14) yields

h1(uε0) = J(uε0) + F 1(uε0)

≥ k0

(∫
Ω

1
p(x)

(|∇uε0 |p(x) + |uε0|p(x)
)
dx

)
+ λ1

∫
Ω
|uε0|q(x)dx

+
∫

Ω

τ

M s−
0

|uε0|s
−
dx−

∫
Ω

(
2a(x) +

2λ1

δp−
0

)
|uε0|p

−
dx

≥ 1
p+

(
k0 +

λ1

λ1 + ε0

)
‖uε0‖p− +

∫
Ω

τ

M s−
0

|uε0|s
−
dx

−
(

2‖a‖∞ +
2λ1

δp−
0

)
C1‖uε0‖p−

≥ k0

p+
‖uε0‖p− .

Taking u1 = uε0 and a constant 0 < r1 <
k0
p+ , we have h1(u1) > r1.

Case 2. We also claim that there exists a u2 ∈ Vp(x) with ‖u2‖ ≤ 1 such that
h1(u2) > r2. In fact, for any u ∈ Vp(x) with ‖u‖ ≤ 1, we know from (3.13) that

(3.15)

h1(u) ≥ k0

p+
‖u‖p+

+
∫

Ω

τ

M s−
0

|u|s−dx+ λ1

∫
Ω

|u|q(x)dx

−
∫

Ω

(
2‖a‖∞ +

2λ1

δp−
0

)
|u|p−dx.

Set

K =

{
t ∈

∣∣∣∣|t| < min
(

1,
(

λ1δ
p−
0

2‖a‖∞δp−
0 + 2λ1

) 1
p−−q−

)}
,

then we can choose a u2 ∈ K ∩ Vp(x) with ‖u2‖ < 1, satisfying

λ1|u2|q(x) −
(

2‖a‖∞ +
2λ1

δp−
0

)
|u2|p− > 0,
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which, together with (3.15), leads to

(3.16) h1(u2) ≥ k0

p+
‖u‖p+

+
∫

Ω

τ

M s−
0

|u|s−dx ≥ k0

p+
‖u‖p+

> 0.

We can easily see from (3.16) that there exists a r2 > 0 satisfying h1(u2) > r2.
Combining the above two cases, there exist a ū ∈ Vp(x) with ū �= 0 and a r̄ > 0 such
that h1(ū) > r̄. The proof of Lemma 3.3 is completed.

Remark 3.2. From the proof of Lemma 3.3, it is easy to see that h1 is coercive,
i.e., h1(u) → +∞ as ‖u‖ → +∞. In fact, since p− < s−, by Young inequality, we
have

(3.17)

(
2a(x) +

2λ1

δp−
0

)
|u|p− ≤ p−ε

s−
∣∣|u|p−∣∣ s−

p− +
s− − p−

s−
ε
− p−

s−−p− c
s−

s−−p−
1

≤ p−ε
s−

|u|s− + c2,

where c1 = 2‖a‖∞ + 2λ1

δp−
0

> 0, c2 = c2(c1, ε) > 0. Therefore, we know from (3.13)

that

h1(u) ≥ k0

p+
‖u‖p− + λ1

∫
Ω
|u|q(x)dx+

∫
Ω

τ

M s−
0

|u|s−dx−
∫

Ω

p−ε
s−

|u|s−dx− c2|Ω|.

Let ε < s−τ

p−Ms−
0

, one can easily get the coercivity of h1.

Lemma 3.4. There exists a r > 0 with r < r̄ such that

sup
u∈h−1

1 ((−∞,r])
⋂

Vp(x)

( − h2(u)
)
< r

−h2(ū)
h1(ū)

,

where ū, r̄ and h2 are as mentioned in Lemma 3.3 and (3.3), respectively.

Proof. Firstly, from the assumptions of (A2)4, for any ε > 0, there exists a δ′ > 0,
for any 0 < |t| ≤ δ1 = min{δ′, 1}, for a.a. x ∈ Ω, we have

(3.18) F2(t, x) ≤ ε

p(x)
|t|p+

.

By considering again (A2)4, for the above ε > 0, there exists a N > 1 large enough,
for a.a. x ∈ Ω, such that

(3.19) F2(t, x) ≤ ε|t|p+
, for all |t| > N.
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Secondly, since F2(x, 0) = 0 and taking into account (A2)3, for a.a. x ∈ Ω, by the
Lebourg mean value theorem, it follows that

(3.20) F2(x, t) ≤ c(x)|t|α(x), for all δ1 < |t| ≤ N,

where c(x) ∈ L∞(Ω)+ and p+ < α(x) < p∗(x), for all x ∈ Ω. Combining (3.19) and
(3.20), for a.a. x ∈ Ω, we have

(3.21) F2(x, t) ≤ ε|t|p+
+ c(x)|t|α(x), for all |t| > δ1,

we get from (3.18) and (3.21) that

(3.22) F2(x, t) ≤ ε

p(x)
|t|p+

+ ε|t|p+
+ c(x)|t|α(x), for all |t| ≤ δ1,

and

(3.23) F2(x, t) ≤ ε

p(x)
|t|p+

+ ε|t|p+
+ c(x)|t|α(x), for all |t| > δ1,

and hence, for a.a. x ∈ Ω and all t ∈ R, from (3.22) and (3.23), we have

(3.24) F2(x, t) ≤
(

1 +
1

p(x)

)
ε|t|p+

+ c(x)|t|α(x).

Define the function g : [0,+∞) → R by

g(t) = sup
{
− h2(u) : u ∈ Vp(x) with ‖u‖p+ ≤ ηt

}
,

where η is an arbitrary constant satisfying η > 1. Note that α(x) < p∗(x), for all
x ∈ Ω, due to the embedding X ↪→ Lα(x) is compact and the embedding X ↪→ Lp+ is
continuous, then there exist constants C2 > 0 and C3 > 0 such that

(3.25) |u|α(x) ≤ C2‖u‖, |u|p+ ≤ C3‖u‖, for all u ∈ X.

Since h2(u) = F 2(u), then from (3.24) and (3.25), we have

(3.26)
g(t) ≤

(
1 +

1
p−

)
ε|u|p+

p+ + c3 max
{|u|α+

α(x), |u|α
−

α(x)

}
≤

(
1 +

1
p−

)
εCp+

3 ηt+ c3 max
{
Cα+

2 η
α+

p+ t
α+

p+ , Cα−
2 η

α−
p+ t

α−
p+

}
where c3 = ‖c‖∞. On the other hand, by virtue of (A2)4, g(t) > 0 for t > 0.
Furthermore, due to α− > p+ and the arbitrariness of ε > 0, we deduce

(3.27) lim
t→0+

g(t)
t

= 0.
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By Lemma 3.3, we know h1(ū) > 0, it is obvious that ū �= 0. Thus, by (A2)4, it
shows that −h2(ū) > 0. In view of (3.27), for −h2(ū)

h1(ū)
> 0, there exists a t0 > 0 such

that
g(t)
t

<
−h2(ū)
h1(ū)

, for all t < t0,

that is,

(3.28) sup
u∈

{
‖u‖p+≤ηt

}⋂
Vp(x)

−h2(u) < t
−h2(ū)
h1(ū)

.

Now, we choose a constant r with 0 < r < min{t0, r̄}(where r̄ is the one in
Lemma 3.3). If h1(u) ≤ r, then by the coercivity of h1, there exists a constant c4 > 1
such that ‖u‖p+ ≤ c4r, therefore, we have

h−1
1

(
(−∞, r]

)⋂
Vp(x) ⊆

{
u ∈ Vp(x), ‖u‖p+ ≤ c4r

}
,

from which it follows that

(3.29) sup
u∈h−1

1

(
(−∞,r]

)⋂
Vp(x)

−h2(u) ≤ sup
u∈{‖u‖p+≤c4r}⋂

Vp(x)

−h2(u).

In view of the fact that r < t0 and c4 > 1, one can deduce from (3.28) and the
arbitrariness of η > 1 that

(3.30) sup
u∈{‖u‖p+≤c4r}⋂

Vp(x)

−h2(u) < r
−h2(ū)
h1(ū)

.

Therefore, by (3.29) and (3.30), the desired inequality of Lemma 3.4 is obtained. This
completes the proof of Lemma 3.4.

By a standard argument, one can easily show that h1 and h2 are locally Lipschitz
under the assumptions of (A1) and (A2). Here, we consider the indicator function of
closed subspace Vp(x), i.e., ψ1 : X → (−∞,+∞],

ψ1(u) =
{

0, if u ∈ Vp(x),

+∞, otherwise.

Obviously, ψ1 is convex, proper, and lower semicontinuous. Denote

I1(u) := h1(u) + ψ1(u), and I2(u) := h2(u), u ∈ X.

It is clear that I1 and I2 satisfy (H) in Section 2. Therefore, for every λ > 0 the
function I1 + λI2 complies with (H) as well.
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Lemma 3.5. If the assumptions of (A1) and (A2) hold, then for every λ > 0 the
function I1 + λI2 satisfies (PS)c in Vp(x), c ∈ R, and

lim
‖u‖→+∞

(
I1 + λI2

)|Vp(x)(u) = +∞, for all u ∈ Vp(x).

Proof. Firstly, we shall prove that I1 + λI2 is coercive in Vp(x), for every λ > 0.
Indeed, for every u ∈ Vp(x) and without loss of generality we assume ‖u‖ > 1, because
of the definition of ψ1 and (3.13), we obtain

(3.31)

(I1 + λI2)|Vp(x)(u) = K̂

(∫
Ω

1
p(x)

(|∇u|p(x) + |u|p(x)
)
dx

)
−

∫
Ω
F1(x, u)dx− λ

∫
Ω
F2(x, u)dx

≥ k0

p+
‖u‖p− + λ1

∫
Ω
|u|q(x)dx+

∫
Ω

τ

M s−
0

|u|s−dx

−
∫

Ω

(
2a(x) +

2λ1

δp−
0

)
|u|p−dx− λ

∫
Ω
F2(x, u)dx.

On the one hand, by assumption of (A2)4, there exists a M1 > 0, for a.a. x ∈ Ω and
all |t| > M1, such that

F2(x, t) < 0.

On the other hand, from the Lebourg mean value theorem, for a.a. x ∈ Ω and all
t ∈ R, one has

(3.32)
∣∣F2(x, t)− F2(x, 0)

∣∣ ≤ |v1||t|,
for some v1 ∈ ∂F2(x, θt), 0 < θ < 1. On account of (A2)3 and F2(x, 0) = 0, then for
a.a. x ∈ Ω and all t such that |t| ≤M1, it follows from (3.32) that∣∣F2(x, t)

∣∣ ≤ c5,

where c5 = c5(M1, ‖b‖∞) > 0. Then it follows that

(3.33)
∫

Ω
F2(x, u)dx =

∫
{|u|>M1}

F2(x, u)dx+
∫
{|u|≤M1}

F2(x, u)dx ≤ c5|Ω|.

By applying (3.17) and (3.33) to (3.31), we have

(I1 + λI2)|Vp(x)(u) ≥
k0

p+
‖u‖p− + λ1

∫
Ω
|u|q(x)dx

+
∫

Ω

τ

M s−
0

|u|s−dx− p−ε
s−

∫
Ω
|u|s−dx− (c2 + λc5)|Ω|.
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Let ε <
s−τ

p−M s−
0

, then it is easy from (3.33) to see that I1 + λI2 is coercive in Vp(x),

for every λ > 0.
Next, we prove that (I1 + λI2)|Vp(x)(u) satisfies (PS)c, c ∈ R. Let {un} ⊂ Vp(x)

be a sequence such that

(3.34) I1(un) + λI2(un) → c

and for every v ∈ Vp(x), we have

(3.35) (h1 + λh2)◦(un; v − un) + ψ1(v) − ψ1(un) ≥ −εn‖v − un‖,
for a sequence {εn} in [0,+∞) with εn → 0+. By the coerciveness of the function
I1+λI2 in Vp(x), (3.34) implies that the sequence {un} is bounded in Vp(x). Therefore,
there exists an element u ∈ Vp(x) such that

un ⇀ u in Vp(x).

Since J is a continuous differentiable function in (3.2), then by Proposition 2.3(iii) and
(iv) we have

(3.36)
(h1 + λh2)◦(un; v − un) ≤ h◦1(un; v − un) + λh◦2(un; v − un)

= 〈J ′(un), v − un〉X + F ◦
1(un; v − un) + λF ◦

2(un; v − un).

Choose in particular v = u in (3.35) and the definition of ψ1, (3.36) becomes

〈J ′(un), un − u〉X ≤ εn‖u− un‖ +F ◦
1(un; u− un) + λF ◦

2(un; u− un).

Since the embedding X ↪→ Lp−(Ω) and X ↪→ Lp(x)(Ω) are compact, passing to a
subsequence if necessary, we may assume that {un} converges strongly to u in Lp− and
Lp(x). By Lemma 3.1, Proposition 2.3, (A1)3 and Hölder inequality, one can deduce
that

F ◦
1(un; u− un) ≤

∫
Ω
(−F1)◦(x, un; u− un)dx

=
∫

Ω
(F1)◦(x, un; un − u)dx

=
∫

Ω

max
{〈ζn(x), un − u〉X : ζn(x) ∈ ∂F1(x, un(x))

}
dx

≤
∫

Ω
a(x)|un|p−−1|un − u|dx

≤‖a‖∞|un|p
−−1

p− |un − u|p−.
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Because {un} is bounded in X , it follows that {un} is bounded in Lp−(Ω), and recall
that {un} converges strongly to u in Lp− . Thus,

|un − u|p− → 0, as n→ +∞

and so

(3.37) F ◦
1(un; u− un) → 0, as n→ +∞.

By a similar argument as above, it follows from Lemma 3.1, Proposition 2.3, (A2)3
and Hölder inequality that

F ◦
2(un; u− un) ≤

∫
Ω
(−F2)◦(x, un; u− un)dx

=
∫

Ω
(F2)◦(x, un; un − u)dx

=
∫

Ω

max
{〈ξn(x), un − u〉X : ξn(x) ∈ ∂F2(x, un(x))

}
dx

≤
∫

Ω
b(x)|un|p(x)−1|un − u|dx

≤‖b‖∞|un|p(x)−1
p(x) |un − u|p(x),

also by the compact embedding of X ↪→ Lp(x), we get

(3.38) F ◦
2(un; u− un) → 0, as n→ +∞.

Because of the sequence εn → 0 as n → +∞, together with (3.37) and (3.38), we
conclude that

(3.39) lim sup
n→+∞

〈J ′(un), un − u〉X ≤ 0.

From un ⇀ u, one can easily see that

lim
n→+∞〈J ′(u), un − u〉X = 0,

which, together with (3.39), implies that

lim sup
n→+∞

〈J ′(un) − J ′(u), un − u〉X ≤ 0.

We know from Lemma 2.1 that un → u as n → +∞, which implies that I1 + λI2
satisfies (PS)c in Vp(x), c ∈ R.
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We are now in a position to prove the main result of this section.

Proof of Theorem 3.1. Firstly, from Lemma 2.1 (iv) and a standard argument,
the function h1 is locally Lipschitz and weakly sequentially lower semicontinuous.
Since (A2)3 holds and X is compactly embedded in Lp(x)(Ω), the assertion remains
true regarding h2 as well, thus (b1) of Theorem 2.1 is satisfied. Secondly, it is clear
from Lemma 3.5 that (b2) in Theorem 2.1 holds. Finally, by Lemmas 3.3 and 3.4,
and the definition of ψ1, we know that there exist a r > 0 and ū ∈ Vp(x) such that
I1(ū) > r. Moreover, keep in mind that F1(x, 0) = F2(x, 0) = 0, then we have
I1(0) = −I2(0) = 0. Choose ρ satisfying

sup
u∈I−1

1 ((−∞,r])
⋂

Vp(x)

( − I2(u)
)
< ρ < r

−I2(ū)
I1(ū)

,

by Theorem 2.2, one has

(3.40) sup
λ≥0

inf
u∈Vp(x)

(
I1(u) + λ(ρ+ I2(u))

) ≤ inf
u∈Vp(x)

sup
λ≥0

(
I1(u) + λ(ρ+ I2(u))

)
,

it is easy to see from Lemma 3.4 that ρ > 0. If we define h : [0,+∞) → R by
h(λ) = ρλ and Λ = [0,+∞), then h and (3.40) satisfy the condition (b3) in Theorem
2.1 . Therefore, all conditions in Theorem 2.1 are satisfied, then there is an open
interval Λ0 ⊆ Λ such that for each λ ∈ Λ0 the function I1 + λI2 has at least three
critical points in Vp(x), then the energy function ϕ = h1+λh2 corresponding to problem
(Pλ) possesses at least three critical points in Vp(x), which implies that problem (Pλ)
has at least three nontrivial solutions in Vp(x). The proof of Theorem 3.1 is completed.
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26. A. Kristály, Multiplicity results for an eigenvalue problem for hemi-variational inequal-
ities in strip-like domains, Set-Valued Anal., 13 (2005), 85-103.

Lian Duana, Lihong Huanga,b and Zuowei Caib
aCollege of Mathematics and Econometrics

Hunan University
Changsha, Hunan 410082
P. R. China

bDepartment of Information Technology
Hunan Women’s University
Changsha, Hunan 410004
P. R. China

E-mail: lianduan0906@163.com
huanglihong1234@126.com
caizuowei01@126.com


