REPRESENTATIONS FOR THE PSEUDO DRAZIN INVERSE OF ELEMENTS IN A BANACH ALGEBRA

Huihui Zhu, Jianlong Chen* and Pedro Patrício

Abstract

In this paper, we investigate the pseudo Drazin invertibility of the sum and the product of elements in a Banach algebra.$/$. Given pseudo Drazin invertible elements a and b such that $a^{2} b=a b a$ and $b^{2} a=b a b$, it is shown that $a b$ is pseudo Drazin invertible and $a+b$ is pseudo Drazin invertible if and only if so is $1+a^{\ddagger} b$, and the related formulae are provided.

1. Introduction

Representations for the pseudo Drazin inverse (abbr. p-Drazin inverse) of the sums and the products of two elements in certain algebras have attracted wide interest. In general, it is a challenging task to characterize the p-Drazin inverses of $a+b$ and $a b$ without additional hypothesis. For instance, given a and b in a Banach algebra \mathscr{d} with p-Drazin inverses a^{\ddagger} and b^{\ddagger}, respectively. If $a b=b a=0$ then it follows that $a+b$ is p -Drazin invertible with $(a+b)^{\ddagger}=a^{\ddagger}+b^{\ddagger}$ (see [8, Theorem 2.5]). Further, if $a b=b a$, the authors proved that $a+b$ is p-Drazin invertible if and only if $1+a^{\ddagger} b$ is p-Drazin invertible. In this case, the representations of $(a+b)^{\ddagger}$ and $1+a^{\ddagger} b$ are given (see [8, Theorem 2.7]). Note that the condition that $a b=b a$ implies $a^{2} b=a b a$ and $b^{2} a=b a b$. However, the reverse statement may not be true, such as, take $a=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), b=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ in the ring of 2×2 matrices.

Motivated by the aforementioned work, we investigate the representations for the pDrazin inverse of the sum and product of two elements under the conditions $a^{2} b=a b a$ and $b^{2} a=b a b$ in a Banach algebra. Some results on p-Drazin inverses in [8] are extended. Representations on Drazin inverse (see [1]) of the sum and the product of elements in various sets can be referred to mathematical literature $[2,3,4,6,7,9]$.

Recently, the authors [5] introduced a new kind of generalized inverse, that is pDrazin inverse, whose properties and related expressions are obtained in associative

[^0]rings and Banach algebras. Throughout this paper, let $\mathscr{\mathscr { }}$ be a Banach algebra with unity 1 and $J(\mathscr{\mathscr { \prime }}$) denote the Jacobson radical of $\mathscr{\mathscr { }}$. For any $a \in \mathscr{\mathscr { V }}$, the commutant and double commutant of a are defined by $\operatorname{comm}(a)=\{x \in \mathscr{A}: a x=x a\}$ and $\operatorname{comm}^{2}(a)=\{x \in \mathscr{\mathscr { O }}: x y=y x$ for all $y \in \operatorname{comm}(a)\}$. An element $a \in \mathscr{\mathscr { O }}$ is said to have a p-Drazin inverse if there exists $b \in \mathscr{I}$ such that the following conditions hold [5]:
$$
b \in \operatorname{comm}(a), b a b=b, a^{k}-a^{k+1} b \in J(\mathscr{\wedge})
$$
for some integer $k \geqslant 1$. If such a b exists, it is unique and is denoted by a^{\ddagger}. In a Banach algebra, the condition $b \in \operatorname{comm}(a)$ in the above definition is equivalent to $b \in \operatorname{comm}^{2}(a)$. According to [5], $a^{\ddagger} \in \operatorname{comm}(a)$. By $a^{\Pi}=1-a a^{\ddagger}$ and $\mathscr{A}^{p D}$ we denote the strongly spectral idempotent of a and set of p-Drazin invertible elements of © , respectively. Note that some techniques such as matrix decompositions, orthogonal decomposition of Hilbert space, and spectral theory are not used in this article. The results in this paper are proved by a purely ring theoretical method.

2. Main Results

In this section, we start with some lemmas which play an important role in the sequel. We will freely use the fact that $a^{\ddagger} a^{\Pi}=a^{\Pi} a^{\ddagger}=0$ and $a^{\ddagger} x=x a^{\ddagger}$ for every $x \in \operatorname{comm}(a)$ in the context (see [5]).

Lemma 2.1. Let $a, b \in \mathscr{A}$ with $a^{2} b=a b a$ and $b^{2} a=b a b$. If $a \in \mathscr{A}^{p D}$, then
(1) $\left(a^{\ddagger}\right)^{2} b=a^{\ddagger} b a^{\ddagger}$,

$$
\begin{equation*}
b^{2} a^{\ddagger}=b a^{\ddagger} b . \tag{2.1}
\end{equation*}
$$

Proof. (1) As $a^{2} b=a b a$, that is $a(a b)=(a b) a$, then $a b \in \operatorname{comm}\left(a^{\ddagger}\right)$.
Hence, $\left(a^{\ddagger}\right)^{2} b=\left(a^{\ddagger}\right)^{2} a^{\ddagger} a b=\left(a^{\ddagger}\right)^{2} a b a^{\ddagger}=a^{\ddagger} b a^{\ddagger}$.
(2) Again $a b \in \operatorname{comm}\left(a^{\ddagger}\right)$ implies $b^{2} a^{\ddagger}=b^{2} a\left(a^{\ddagger}\right)^{2}=b a b\left(a^{\ddagger}\right)^{2}=b\left(a^{\ddagger}\right)^{2} a b=$ $b a^{\ddagger} b$.

Lemma 2.2. Let $a, b \in \mathscr{A}^{p D}$ with $a^{2} b=a b a$ and $b^{2} a=b a b$. Then
(1) $\quad\left\{a b, a^{\ddagger} b, a b^{\ddagger}, a^{\ddagger} b^{\ddagger}\right\} \subseteq \operatorname{comm}(\mathrm{a})$,
(2) $\left\{b a, b^{\ddagger} a, b a^{\ddagger}, b^{\ddagger} a^{\ddagger}\right\} \subseteq \operatorname{comm}(b)$.

Proof. (1) As $a b \in \operatorname{comm}\left(a^{\ddagger}\right)$, then

$$
a a^{\ddagger} b=\left(a^{\ddagger}\right)^{2} a^{2} b=\left(a^{\ddagger}\right)^{2} a b a=a^{\ddagger} b a .
$$

Similarly, $b a \in \operatorname{comm}\left(b^{\ddagger}\right)$ guarantees that

$$
a b^{\ddagger} a=a\left(b^{\ddagger}\right)^{2} b a=a b a\left(b^{\ddagger}\right)^{2}=a^{2} b\left(b^{\ddagger}\right)^{2}=a^{2} b^{\ddagger} .
$$

By $a b^{\ddagger} \in \operatorname{comm}(a)$, we obtain

$$
a a^{\ddagger} b^{\ddagger}=\left(a^{\ddagger}\right)^{2} a^{2} b^{\ddagger}=\left(a^{\ddagger}\right)^{2} a b^{\ddagger} a=a^{\ddagger} b^{\ddagger} a .
$$

(2) can be obtained in a similar way of (1).

By Lemmas 2.1 and 2.2, we can get the following result.
Lemma 2.3. Let $a, b \in \mathscr{A}^{p D}$ with $a^{2} b=a b a$ and $b^{2} a=b a b$. If $\xi=1+a^{\ddagger} b$, then

$$
\begin{equation*}
\left\{a, a b, a^{\ddagger} b, a b^{\ddagger}, a^{\ddagger} b^{\ddagger}\right\} \subseteq \operatorname{comm}(\xi) . \tag{2.5}
\end{equation*}
$$

Lemma 2.4. Let $a, b \in \mathscr{A}^{p D}$ with $a^{2} b=a b a$ and $b^{2} a=b a b$. Then
(1) $a b^{\ddagger} b^{\ddagger} a=\left(a b^{\ddagger}\right)^{2}=a^{2}\left(b^{\ddagger}\right)^{2}$,
(2) $\left(a b^{\ddagger}\right)^{i+1}=a b^{\ddagger}\left(b^{\ddagger} a\right)^{i}=a^{i+1}\left(b^{\ddagger}\right)^{i+1}$ for any positive integer i,
(3) $\left(a^{\ddagger} b\right)^{i+1}=a^{\ddagger} b\left(b a^{\ddagger}\right)^{i}=\left(a^{\ddagger}\right)^{i+1} b^{i+1}$ for any positive integer i

Proof. (1) It follows from Lemma 2.2 that $a b^{\ddagger}\left(b^{\ddagger} a\right)=a\left(b^{\ddagger} a\right) b^{\ddagger}=\left(a b^{\ddagger}\right) a b^{\ddagger}=$ $a\left(a b^{\ddagger}\right) b^{\ddagger}$.
(2) It suffices to show the inductive step. Suppose $\left(a b^{\ddagger}\right)^{i+1}=a b^{\ddagger}\left(b^{\ddagger} a\right)^{i}=$ $a^{i+1}\left(b^{\ddagger}\right)^{i+1}$ then one can see that

$$
\left(a b^{\ddagger}\right)^{i+2}=a b^{\ddagger}\left(a b^{\ddagger}\right)^{i+1}=a b^{\ddagger} a b^{\ddagger}\left(b^{\ddagger} a\right)^{i} \stackrel{(2.6)}{=} a b^{\ddagger} b^{\ddagger} a\left(b^{\ddagger} a\right)^{i}=a b^{\ddagger}\left(b^{\ddagger} a\right)^{i+1}
$$

and
$\left(a b^{\ddagger}\right)^{i+2}=a b^{\ddagger}\left(a b^{\ddagger}\right)^{i+1}=a b^{\ddagger} a^{i+1}\left(b^{\ddagger}\right)^{i+1}=a^{i+1} a b^{\ddagger}\left(b^{\ddagger}\right)^{i+1}=a^{i+2}\left(b^{\ddagger}\right)^{i+2}$.
(3) Use a similar way of (2).

In Lemma 2.4, one can substitute ($a, b, a^{\ddagger}, b^{\ddagger}$) for ($b, a, b^{\ddagger}, a^{\ddagger}$) and get the next result.

Corollary 2.5. Let $a, b \in \mathscr{A}^{p D}$ with $a^{2} b=a b a$ and $b^{2} a=b a b$. Then
(1) $b a^{\ddagger} a^{\ddagger} b=\left(b a^{\ddagger}\right)^{2}=b^{2}\left(a^{\ddagger}\right)^{2}$,
(2) $\left.b a^{\ddagger}\right)^{i+1}=b a^{\ddagger}\left(a^{\ddagger} b\right)^{i}=b^{i+1}\left(a^{\ddagger}\right)^{i+1}$ for any positive integer i,
(3) $\left(b^{\ddagger} a\right)^{i+1}=b^{\ddagger} a\left(a b^{\ddagger}\right)^{i}=\left(b^{\ddagger}\right)^{i+1} a^{i+1}$ for any positive integer i.

Lemma 2.6. Let $a, b \in \mathscr{A}$ with $a^{2} b=a b a$ and $b^{2} a=b a b$. Then following hold for any integer $k \geq 0$, we have
(1) $(a b)^{k}=a^{k} b^{k}$,
(2) $(a+b)^{k}=\sum_{i=0}^{k-1}\left(a^{k-i} b^{i}+b^{k-i} a^{i}\right)$.

Proof. (1) It is obvious for $k=1$.
Assume $(a b)^{n}=a^{n} b^{n}$. For $n+1$ case, we have

$$
(a b)^{n+1}=a b(a b)^{n}=a b a^{n} b^{n}=a^{n}(a b) n^{n}=a^{n+1} b^{n+1}
$$

(2) By induction.

Lemma 2.7. Let $a, b \in \mathscr{C}$. Then
(1) If $a \in J(. /)$ or $b \in J(\varnothing)$, then $a b, b a \in J(\varnothing)$,
(2) If $a \in J(\mathscr{C})$ and $b \in J(\mathscr{C})$, then $(a+b)^{k} \in J(\mathscr{A})$ for integer $k \geqslant 1$.

Let $/$ be a Banach algebra. Given p-Drazin invertible elements $a, b \in \mathscr{A}$ such that $a b=b a$, the authors [5] proved that $a b$ is p-Drazin invertible and $(a b)^{\ddagger}=b^{\ddagger} a^{\ddagger}=a^{\ddagger} b^{\ddagger}$. The following theorem extends the result in [5, Proposition 5.2].

Theorem 2.8. Let $a, b \in \mathscr{A}^{p D}$. If $a^{2} b=a b a$ and $b^{2} a=b a b$, then $a b \in \mathscr{A}^{p D}$ and

$$
(a b)^{\ddagger}=a^{\ddagger} b^{\ddagger} .
$$

Proof. We prove that $x=a^{\ddagger} b^{\ddagger}$ is the p-Drazin inverse of $a b$, i.e., the following conditions hold: (1) $(a b) x=x(a b)$; (2) $x(a b) x=x$; (3) $(a b)^{k}-(a b)^{k+1} x \in J(\mathscr{A})$.
(1) Since $(a b) a^{\ddagger}=a^{\ddagger}(a b)$, we have

$$
\begin{aligned}
(a b) x & =(a b) a^{\ddagger} b^{\ddagger}=a^{\ddagger} a b b^{\ddagger} \\
& =a\left(a^{\ddagger} b^{\ddagger}\right) b=a^{\ddagger} b^{\ddagger} a b \\
& =x(a b) .
\end{aligned}
$$

(2) We have

$$
\begin{aligned}
x(a b) x & =a^{\ddagger} b^{\ddagger} a b a^{\ddagger} b^{\ddagger}=a\left(a^{\ddagger} b^{\ddagger}\right) b a^{\ddagger} b^{\ddagger}=a a^{\ddagger} b\left(b^{\ddagger} a^{\ddagger}\right) b^{\ddagger} \\
& =a a^{\ddagger}\left(b^{\ddagger} a^{\ddagger}\right) b b^{\ddagger}=a\left(a^{\ddagger} b^{\ddagger}\right) a^{\ddagger} b b^{\ddagger}=a a^{\ddagger}\left(a^{\ddagger} b^{\ddagger}\right) b b^{\ddagger} \\
& =x .
\end{aligned}
$$

(3) Note that equality $(a b)^{k}=a^{k} b^{k}$ in Lemma 2.6 (1). We can prove $a^{k+1} a^{\ddagger} b^{k+1} b^{\ddagger}$ $=(a b)^{k+1} a^{\ddagger} b^{\ddagger}$ by induction.

For $k=0$, we have $a a^{\ddagger} b b^{\ddagger}=a^{\ddagger}(a b) b^{\ddagger}=a b a^{\ddagger} b^{\ddagger}$.

For the case of $k+1$, we obtain

$$
\begin{aligned}
a^{k+1} a^{\ddagger} b^{k+1} b^{\ddagger} & =a a^{k} a^{\ddagger} b^{k} b^{\ddagger} b=a(a b)^{k} a^{\ddagger} b^{\ddagger} b \\
& =(a b)^{k} a^{\ddagger} a b b^{\ddagger}=(a b)^{k} a b a^{\ddagger} b^{\ddagger} \\
& =(a b)^{k+1} a^{\ddagger} b^{\ddagger} .
\end{aligned}
$$

Since $a, b \in \mathscr{A}^{p D}$, there exist integers k_{1}, k_{2} such that $a^{k_{1}}-a^{k_{1}+1} a^{\ddagger} \in J(\mathscr{C})$ and $b^{k_{2}}-b^{k_{2}+1} a^{\ddagger} \in J(\mathscr{C})$.

Take $k=\max \left\{k_{1}, k_{2}\right\}$, it follows that

$$
\begin{aligned}
(a b)^{k}-(a b)^{k+1} x= & a^{k} b^{k}-a^{k+1} b^{k+1} a^{\ddagger} b^{\ddagger}=a^{k} b^{k}-a^{k+1} a^{\ddagger} b^{k+1} b^{\ddagger} \\
= & \left(a^{k}-a^{k+1} a^{\ddagger}\right)\left(b^{k}-b^{k+1} b^{\ddagger}\right)+a^{k+1} a^{\ddagger}\left(b^{k}-b^{k+1} b^{\ddagger}\right) \\
& \quad+\left(a^{k}-a^{k+1} a^{\ddagger}\right) b^{k+1} b^{\ddagger}
\end{aligned}
$$

It follows from Lemma 2.7 (2) that $(a b)^{k}-(a b)^{k+1} x \in J(\mathscr{A})$.
Therefore, $a b \in \mathscr{A}^{p D}$ and $(a b)^{\ddagger}=a^{\ddagger} b^{\ddagger}$.
Remark 2.9. It is well known that the reverse-order law holds for commutative p-Drazin invertible elements a, b in a Banach algebra $/$ with identity 1. More precisely, $(a b)^{\ddagger}=b^{\ddagger} a^{\ddagger}=a^{\ddagger} b^{\ddagger}$ for commutative p-Drazin invertible elements a and b in \mathscr{C}. However, Under the conditions $a^{2} b=a b a$ and $b^{2} a=b a b,(a b)^{\ddagger}$ may not be equal to $b^{\ddagger} a^{\ddagger}$. For instance, take $a=\left(\begin{array}{cc}1 & 0 \\ 1 & 0\end{array}\right)$ and $b=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ in the ring of 2×2 matrices. It follows that $(a b)^{\ddagger}=\left(\begin{array}{cc}1 & 0 \\ 1 & 0\end{array}\right)$ while $b^{\ddagger} a^{\ddagger}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.

The following theorem presents a necessary and sufficient condition for the existence of $(a+b)^{\ddagger}$ in a Banach algebra.

Theorem 2.10. Let $a, b \in \mathscr{A}^{p D}$ with $a^{2} b=a b a$ and $b^{2} a=b a b$. Then $a+b \in \mathscr{A} D$ and only if $1+a^{\ddagger} b \in . \rho^{p D}$. In this case, we have

$$
\begin{aligned}
(a+b)^{\ddagger}= & a^{\ddagger}\left(1+a^{\ddagger} b\right)^{\ddagger}+a^{\Pi} b\left[a^{\ddagger}\left(1+a^{\ddagger} b\right)^{\ddagger}\right]^{2}+\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
& +b^{\Pi} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi}
\end{aligned}
$$

and

$$
\left(1+a^{\ddagger} b\right)^{\ddagger}=a^{\Pi}+a^{2} a^{\ddagger}(a+b)^{\ddagger}
$$

Proof. Assume $a+b \in \mathscr{A}^{p D}$. Write $1+a^{\ddagger} b=a_{1}+b_{1}$ with $a_{1}=a^{\Pi}$ and $b_{1}=a^{\ddagger}(a+b)$.

Lemma 2.2 implies $\left(a^{\ddagger}\right)^{2}(a+b)=a^{\ddagger}(a+b) a^{\ddagger},(a+b)^{2} a^{\ddagger}=(a+b) a^{\ddagger}(a+b)$ and $a_{1} b_{1}=b_{1} a_{1}=0$. Since $\left(a^{\ddagger}\right)^{\ddagger}=a^{2} a^{\ddagger}$, it follows from Theorem 2.8 that b_{1} is p-Drazin invertible and

$$
\left(b_{1}\right)^{\ddagger}=\left[a^{\ddagger}(a+b)\right]^{\ddagger}=a^{2} a^{\ddagger}(a+b)^{\ddagger} .
$$

According to [8, Theorem 2.5], it follows that $\left(1+a^{\ddagger} b\right)^{\ddagger}=a^{\Pi}+a^{2} a^{\ddagger}(a+b)^{\ddagger}$. Conversely, let $\xi=1+a^{\ddagger} b$ be p-Drazin invertible and

$$
\begin{aligned}
x & =a^{\ddagger} \xi^{\ddagger}+a^{\Pi} b\left(a^{\ddagger} \xi^{\ddagger}\right)^{2}+\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+b^{\Pi} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi} \\
& =x_{1}+x_{2},
\end{aligned}
$$

where $x_{1}=a^{\ddagger} \xi^{\ddagger}+a^{\Pi} b\left(a^{\ddagger} \xi^{\ddagger}\right)^{2}$ and $x_{2}=\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+b^{\Pi} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}$ $(-a)^{i} a^{\Pi}$.

We prove x is the p-Drazin inverse of $a+b$ by three steps.
Step 1. We prove that $(a+b) x=x(a+b)$.
First, we give the following equalities.
By Lemma 2.3 and Corollary 2.5, it follows that $(a+b) a^{\Pi} b\left(a^{\ddagger}\right)^{2}=0$ and hence $(a+b) a^{\Pi} b\left(a^{\ddagger} \xi^{\ddagger}\right)^{2}=0$.

Similarly, $(a+b) b^{\Pi} a\left(b^{\ddagger}\right)^{2}=0$, so $(a+b) b^{\Pi} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi}=0$.
Let $y_{1}=(a+b) a^{\ddagger} \xi^{\ddagger}$ and $y_{2}=(a+b) \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}$. Then

$$
\begin{aligned}
(a+b) x & =(a+b)\left[a^{\ddagger} \xi^{\ddagger}+\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}\right] \\
& =y_{1}+y_{2} .
\end{aligned}
$$

To prove $x(a+b)=y_{1}+y_{2}$, we check that $x_{1}(a+b)=y_{1}$ and $x_{2}(a+b)=y_{2}$.
By Lemma 2.3, we have $a^{\ddagger} \xi^{\ddagger}=\xi^{\ddagger} a^{\ddagger}$ and hence

$$
\begin{aligned}
x_{1}(a+b) & =\left[a^{\ddagger} \xi^{\ddagger}+a^{\Pi} b\left(a^{\ddagger}\left(\xi^{\ddagger}\right)^{2}\right](a+b)\right. \\
& \stackrel{(2.5)}{=} a^{\ddagger}(a+b) \xi^{\ddagger}+a^{\Pi} b\left(a^{\ddagger}\right)^{2}(a+b)\left(\xi^{\ddagger}\right)^{2} \\
& =a^{\ddagger}(a+b) \xi^{\ddagger}+\left(a^{\Pi} b a^{\ddagger}+a^{\Pi} b a^{\ddagger} a^{\ddagger} b\right)\left(\xi^{\ddagger}\right)^{2} \\
& =a^{\ddagger}(a+b) \xi^{\ddagger}+a^{\Pi} b a^{\ddagger} \xi\left(\xi^{\ddagger}\right)^{2} \\
& =a^{\ddagger}(a+b) \xi^{\ddagger}+a^{\Pi} b a^{\ddagger} \xi^{\ddagger} \\
& =y_{1} .
\end{aligned}
$$

According to $b^{\ddagger} a^{\Pi} b=b^{\ddagger}\left(1-a a^{\ddagger}\right) b=b b^{\ddagger}-\left(b^{\ddagger} a^{\ddagger}\right) b a=b b^{\ddagger}-b b^{\ddagger} a^{\ddagger} a=b b^{\ddagger} a^{\Pi},(2.12)$ we obtain

$$
\begin{aligned}
& x_{2}(a+b)= {\left[\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+b^{\Pi} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi}\right](a+b) } \\
&=-\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i+1} a^{\Pi}+\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} b \\
&-b^{\Pi} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i+1} a^{\Pi}+b^{\Pi} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi} b \\
&=-\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi}+\sum_{i=0}^{\infty} b^{\ddagger}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} b-b^{\Pi} a b^{\ddagger} \sum_{i=0}^{\infty}(i+1)\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi} \\
&+b^{\Pi} a b^{\ddagger} \sum_{i=0}^{\infty}(i+1)\left(-b^{\ddagger} a\right)^{i} b^{\ddagger} a^{\Pi} b \\
&=-\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi}+\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b^{\ddagger} a^{\Pi} b-b^{\Pi} a b^{\ddagger} \sum_{i=0}^{\infty}(i+1)\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi} \\
&+b^{\Pi} a b^{\ddagger} \sum_{i=0}^{\infty}(i+1)\left(-b^{\ddagger} a\right)^{i} b b^{\ddagger} a^{\Pi} \\
&=-\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi}+\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b b^{\ddagger} a^{\Pi}-b^{\Pi} a b^{\ddagger} \sum_{i=1}^{\infty} i\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \\
&+b^{\Pi} a b^{\ddagger} b b^{\ddagger} \sum_{i=0}^{\infty}(i+1)\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \\
&=-\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi}+\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b b^{\ddagger} a^{\Pi}-b^{\Pi} a b^{\ddagger} \sum_{i=1}^{\infty} i\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \\
&+b^{\Pi} a b^{\ddagger} \sum_{i=1}^{\infty} i\left(-b^{\ddagger} a\right)^{i} a^{\Pi}+b^{\Pi} a b^{\ddagger} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \\
&=-\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi}+\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b b^{\ddagger} a^{\Pi}+a b^{\ddagger} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \\
&-b b^{\ddagger} a b^{\ddagger} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \\
&\left.-\sum_{i=0}^{\infty} a \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi}+b_{i=0}^{\ddagger} a\right)^{i} a^{\Pi} \\
&\left(-b^{\ddagger} a\right)^{i} b b^{\ddagger} a^{\Pi}+a b^{\ddagger} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =a b^{\ddagger} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi}+b b^{\ddagger} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \\
& =a \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+b \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
& =y_{2} .
\end{aligned}
$$

Hence, $x(a+b)=(a+b) x$.
Step 2. We have $x(a+b) x=x$. Indeed,

$$
\begin{aligned}
x(a+b) x= & x(a+b)\left[a^{\ddagger} \xi^{\ddagger}+\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}\right] \\
= & (a+b)\left[a^{\ddagger} \xi^{\ddagger}+\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}\right]\left[a^{\ddagger} \xi^{\ddagger}+\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}\right] \\
= & (a+b)\left(a^{\ddagger} \xi^{\ddagger}\right)^{2}+(a+b) a^{\ddagger} \xi^{\ddagger} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
& +(a+b) \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
= & z_{1}+z_{2}+z_{3},
\end{aligned}
$$

where $z_{1}=(a+b)\left(a^{\ddagger} \xi^{\ddagger}\right)^{2}, z_{2}=(a+b) a^{\ddagger} \xi^{\ddagger} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}$ and

$$
z_{3}=(a+b) \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} .
$$

Further, we have

$$
\begin{aligned}
z_{1} & =(a+b)\left(a^{\ddagger} \xi^{\ddagger}\right)^{2}=\left(a \xi+a^{\Pi} b\right)\left(a^{\ddagger} \xi^{\ddagger}\right)^{2} \\
& =a \xi\left(a^{\ddagger} \xi^{\ddagger}\right)^{2}+a^{\Pi} b\left(a^{\ddagger} \xi^{\ddagger}\right)^{2} \\
& \stackrel{(2.5)}{=} a^{\ddagger} \xi^{\ddagger}+a^{\Pi} b\left(a^{\ddagger} \xi^{\ddagger}\right)^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
z_{2} & =(a+b) a^{\ddagger} \xi^{\ddagger} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
& =\xi^{\ddagger} a a^{\ddagger} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+b \xi^{\ddagger} a^{\ddagger} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}
\end{aligned}
$$

$$
\begin{aligned}
& =\xi^{\ddagger} \sum_{i=0}^{\infty} a^{\ddagger} a b^{\ddagger}\left(-b^{\ddagger} a\right)^{i} a^{\Pi}+b \xi^{\ddagger} \sum_{i=0}^{\infty}\left(a^{\ddagger}\right)^{2} a b^{\ddagger}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \\
& \stackrel{(2.7)}{=}-\xi^{\ddagger} \sum_{i=0}^{\infty} a^{\ddagger}\left(-a b^{\ddagger}\right)^{i+1} a^{\Pi}-b \xi^{\ddagger} \sum_{i=0}^{\infty}\left(a^{\ddagger}\right)^{2}\left(-a b^{\ddagger}\right)^{i+1} a^{\Pi} \\
& \stackrel{(2.3)}{=}-\xi^{\ddagger} \sum_{i=0}^{\infty}\left(-a b^{\ddagger}\right)^{i+1} a^{\ddagger} a^{\Pi}-b \xi^{\ddagger} \sum_{i=0}^{\infty}\left(-a b^{\ddagger}\right)^{i+1}\left(a^{\ddagger}\right)^{2} a^{\Pi} \\
& =0 .
\end{aligned}
$$

Next, we show that $z_{3}=\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+b^{\Pi} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi}$.
One can see that

$$
\begin{aligned}
z_{3}= & (a+b) \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
= & b \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+a \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
= & {\left[b b^{\ddagger} a^{\Pi}+\sum_{i=1}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi}\right] \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+a \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} } \\
= & b b^{\ddagger} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}-b b^{\ddagger} a a^{\ddagger} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+\sum_{i=1}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
& +a \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
= & \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}-b b^{\ddagger} a a^{\ddagger} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+\sum_{i=1}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
& +a \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
= & \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+b b^{\ddagger} \sum_{i=0}^{\infty}\left(-a b^{\ddagger}\right)^{i+1} a^{\ddagger} a^{\Pi}+\sum_{i=1}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
& +a \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+\sum_{i=1}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
& +a \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \\
= & \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+d_{1}+d_{2},
\end{aligned}
$$

where

$$
d_{1}=\sum_{i=1}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}
$$

and

$$
d_{2}=a \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} .
$$

Noting equality (2.13). We only need to prove

$$
d_{1}+d_{2}=b^{\Pi} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi} .
$$

Note that

$$
\begin{aligned}
& b^{\Pi} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi} \\
= & a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi}-b b^{\ddagger} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi} .
\end{aligned}
$$

We next prove that

$$
d_{1}=-b b^{\ddagger} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi} \text { and } d_{2}=a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi} \text {. }
$$

As $b b^{\ddagger}$ commutes with $b^{\ddagger} a$, then

$$
\begin{aligned}
d_{1} & =\sum_{i=1}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \stackrel{(2.11)}{=} \sum_{i=1}^{\infty}\left(-b b^{\ddagger} b^{\ddagger} a\right)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b^{\ddagger} a^{\Pi} \\
& =b b^{\ddagger} \sum_{i=1}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b^{\ddagger} a^{\Pi}=-b b^{\ddagger} \sum_{i=1}^{\infty}\left(-b^{\ddagger} a\right)^{i-1} b^{\ddagger} a a^{\Pi} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b^{\ddagger} a^{\Pi} \\
& \stackrel{(2.4)}{=}-b b^{\ddagger} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i}\left(b^{\ddagger} a a^{\Pi}\right) b^{\ddagger} a^{\Pi}=-b b^{\ddagger} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b^{\ddagger}\left(b^{\ddagger} a a^{\Pi}\right) a^{\Pi} \\
& =-b b^{\ddagger} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i}\left(b^{\ddagger}\right)^{2} a a^{\Pi} \stackrel{(2.4)}{=}-b b^{\ddagger}\left(b^{\ddagger}\right)^{2} a \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(2.4)}{=}-b\left(b^{\ddagger}\right)^{2} a b^{\ddagger} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} a \stackrel{\Pi}{\stackrel{(2.4)}{=}-b b^{\ddagger} a\left(b^{\ddagger}\right)^{2} \sum_{i=0}^{\infty}(i+1)\left(-b^{\ddagger} a\right)^{i} a^{\Pi}} \\
& \stackrel{(2.11)}{=}-b b^{\ddagger} a\left(b^{\ddagger}\right)^{2} \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i}(-a)^{i} a^{\Pi} \\
& =-b b^{\ddagger} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& d_{2}=a \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} \stackrel{(2.11)}{=} a \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b^{\ddagger} a^{\Pi} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b^{\ddagger} a^{\Pi} \\
& \stackrel{(2.4)}{=} a \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b^{\ddagger} a^{\Pi} b^{\ddagger} a \stackrel{\left(\stackrel{(2.4)}{=} a \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b^{\ddagger} b^{\ddagger} a^{\Pi} a^{\Pi}\right.}{ } \\
&=a \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i}\left(b^{\ddagger}\right)^{2} a^{\Pi} \stackrel{(2.4)}{=} a\left(b^{\ddagger}\right)^{2} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} \\
&=a\left(b^{\ddagger}\right)^{2} \sum_{i=0}^{\infty}(i+1)\left(-b^{\ddagger} a\right)^{i} a \stackrel{\Pi}{(2.11)}=a\left(b^{\ddagger}\right)^{2} \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i}(-a)^{i} a^{\Pi} \\
&=a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi} .
\end{aligned}
$$

Hence $z_{3}=\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}+b^{\Pi} a \sum_{i=0}^{\infty}(i+1)\left(b^{\ddagger}\right)^{i+2}(-a)^{i} a^{\Pi}$.
Step 3. We show that $(a+b)^{k}-(a+b)^{k+1} x \in J(\mathscr{C})$ for some integer $k \geqslant 1$. We have

$$
\begin{aligned}
& (a+b)-(a+b)^{2} x \\
= & (a+b)-\left[a^{\ddagger} \xi^{\ddagger}+\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}\right](a+b)^{2} \\
\stackrel{(2.5)}{=} & (a+b)-\xi^{\ddagger} a^{\ddagger}(a+b)^{2}-\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}(a+b)^{2} \\
= & (a+b)-\xi^{\ddagger} a\left(a^{\ddagger}(a+b)\right)^{2}-\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi}\left(a^{2}+a b+b a+b^{2}\right) \\
= & a \xi+a^{\Pi} b-\xi^{\ddagger} a\left(\xi-a^{\Pi}\right)^{2}-\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} a^{2}-\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} a b \\
& -\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} b a-\sum_{i=0}^{\infty}\left(b^{\ddagger}\right)^{i+1}(-a)^{i} a^{\Pi} b^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(2.11)}{=} a \xi+a^{\Pi} b-\xi^{\ddagger} a\left(\xi^{2}-a^{\Pi}\right)+\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i+1} a a^{\Pi}+\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi} b \\
&-\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b b^{\ddagger} a a^{\Pi}-\sum_{i=0}^{\infty} b^{\ddagger}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} b^{2} \\
&= a \xi+a^{\Pi} b-\xi^{\ddagger} a\left(\xi^{2}-a^{\Pi}\right)-b b^{\ddagger} a a^{\Pi}+\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi} b \\
&-\sum_{i=0}^{\infty} b^{\ddagger}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} b^{2} \\
& \quad-\sum_{i=0}^{(2.4)}\left(-b^{\ddagger} a\right)^{i} b^{\ddagger} a^{\Pi} b^{2} \\
& a \xi+a^{\Pi} b-\xi^{\ddagger} a\left(\xi^{2}-a^{\Pi}\right)-b b^{\ddagger} a a^{\Pi}+\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi} b \\
& \stackrel{(2.12)}{=} a \xi+a^{\Pi} b-\xi^{\ddagger} a\left(\xi^{2}-a^{\Pi}\right)-b b^{\ddagger} a a^{\Pi}+\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi} b \\
&-\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} b b^{\ddagger} a^{\Pi} b \\
& \stackrel{(2.4)}{=} a \xi+a^{\Pi} b-\xi^{\ddagger} a\left(\xi^{2}-a^{\Pi}\right)-b b^{\ddagger} a a^{\Pi}+\sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i+1} a^{\Pi} b \\
&-\sum_{i=0}^{\infty} b b^{\ddagger}\left(-b^{\ddagger} a\right)^{i} a^{\Pi} b \\
&= a \xi+a^{\Pi} b-\xi^{\ddagger} a \xi^{2}+\xi^{\ddagger} a a^{\Pi}-b b^{\ddagger} a a^{\Pi}-b b^{\ddagger} a^{\Pi} b \\
&=\left(a \xi-\xi^{\ddagger} a \xi^{2}\right)+\xi^{\ddagger} a a^{\Pi}+\left(a^{\Pi} b-b b^{\ddagger} a^{\Pi} b\right)-b b^{\ddagger} a a^{\Pi} \\
&= a \xi \xi^{\Pi}+\xi^{\ddagger} a a^{\Pi}+b^{\Pi} a^{\Pi} b-b b^{\ddagger} a a^{\Pi} .
\end{aligned}
$$

Next, we show $\left[(a+b)-(a+b)^{2} x\right]^{k} \in J(\Omega)$.
Firstly, We prove $\left(a \xi \xi^{\Pi}+\xi^{\ddagger} a a^{\Pi}\right)^{m_{1}} \in J\left(\mathscr{)}\right.$ for some integer $m_{1} \geq 1$.
By Lemma 2.3, it follows that $\left(a \xi \xi^{\Pi}\right)^{k_{1}}=a^{k_{1}}\left(\xi \xi^{\Pi}\right)^{k_{1}} \in J(\mathscr{C})$ and $\left(\xi^{\ddagger} a a^{\Pi}\right)^{k_{2}}=$ $\left(\xi^{\ddagger}\right)^{k_{2}}\left(a a^{\Pi}\right)^{k_{2}} \in J(. /)$.

Again, Lemma 2.3 guarantees that $a \xi \xi^{\Pi}$ commutes with $\xi^{\ddagger} a a^{\Pi}$. Take $m_{1}=k_{1}+k_{2}$, it follows from Lemma 2.7 (2) that $\left(a \xi \xi^{\Pi}+\xi^{\ddagger} a a^{\Pi}\right)^{m_{1}}=a^{k_{1}}\left(\xi \xi^{\Pi}\right)^{k_{1}}+\left(\xi^{\ddagger}\right)^{k_{2}}\left(a a^{\Pi}\right)^{k_{2}} \in$ $J(. /)$.

Secondly, we present $\left(b^{\Pi} a^{\Pi} b-b b^{\ddagger} a a^{\Pi}\right)^{m_{2}} \in J(\mathscr{A})$ for some $m_{2} \geq 1$.
By induction, we obtain $\left(b^{\Pi} a^{\Pi} b\right)^{k_{3}}=b^{\Pi} a^{\Pi}\left(b b^{\Pi}\right)^{k_{3}-1} a^{\Pi} b \in J(. /)$ and $\left(b b^{\ddagger} a a^{\Pi}\right)^{k_{4}}$ $=b b^{\ddagger}\left(a a^{\Pi}\right)^{k_{4}} \in J(\mathscr{\Omega})$. One can see that

$$
\left(b b^{\ddagger} a a^{\Pi}\right)^{2} b^{\Pi} a^{\Pi} b=b b^{\ddagger} a a^{\Pi} b^{\Pi} a^{\Pi} b b b^{\ddagger} a a^{\Pi}=0
$$

and

$$
\left(b^{\Pi} a^{\Pi} b b b^{\ddagger} a a^{\Pi}\right)^{2}=b^{\Pi} a^{\Pi} b\left(b b^{\ddagger} a a^{\Pi}\right) b^{\Pi} a^{\Pi} b=0 .
$$

It follows from Lemma 2.6 (2) that

$$
\begin{aligned}
& \left(b^{\Pi} a^{\Pi} b-b b^{\ddagger} a a^{\Pi}\right)^{m_{2}} \\
= & \sum_{i=0}^{m_{2}-1} C_{m_{2}-1}^{i}\left[\left(b^{\Pi} a^{\Pi} b\right)^{m_{2}-i}\left(-b b^{\ddagger} a a^{\Pi}\right)^{i}+\left(-b b^{\ddagger} a a^{\Pi}\right)^{m_{2}-i}\left(b^{\Pi} a^{\Pi} b\right)^{i}\right] \in J(\cdot \mathscr{)})
\end{aligned}
$$

for $m_{2}=k_{3}+k_{4}$.
Pose $a_{1}=a \xi \xi^{\Pi}+\xi^{\ddagger} a a^{\Pi}$ and $a_{2}=b^{\Pi} a^{\Pi} b-b b^{\ddagger} a a^{\Pi}$. By virtue of Lemma 2.3 and Corollary 2.5 , it is straight forward to check

$$
\left(a_{1}\right)^{2} a_{2}=a_{1} a_{2} a_{1} \text { and }\left(a_{2}\right)^{2} a_{1}=a_{2} a_{1} a_{2} .
$$

Hence, there exists $k=m_{1}+m_{2}$ such that

$$
\left(a_{1}+a_{2}\right)^{k}=\sum_{i=0}^{k-1} C_{k-1}^{i}\left(a_{1}^{k-i} a_{2}^{i}+a_{2}^{k-i} a_{1}^{i}\right) \in J(\mathscr{A})
$$

that is $(a+b)^{k}-(a+b)^{k+1} x=\left[(a+b)-(a+b)^{2} x\right]^{k}=\left(a_{1}+a_{2}\right)^{k} \in J(\mathscr{C})$
This completes the proof.
Corollary 2.11. [8, Theorem 2.7]. If $a, b \in \mathscr{A}^{p D}$ and $a b=b a$, then $a+b \in \mathscr{A}^{p D}$ if and only if $1+a^{\ddagger} b \in \mathscr{A}^{p D}$. In this case, we have

$$
(a+b)^{\ddagger}=\left(1+a^{\ddagger} b\right)^{\ddagger} a^{\ddagger}+b^{\ddagger} \sum_{i=0}^{\infty}\left(-b^{\ddagger} a\right)^{i} a^{\Pi},
$$

and

$$
\left(1+a^{\ddagger} b\right)^{\ddagger}=a^{\Pi}+a^{2} a^{\ddagger}(a+b)^{\ddagger} .
$$

Acknowledgments

The first and second author have been supported by the National Natural Science Foundation of China (11371089), the Specialized Research Fund for the Doctoral Program of Higher Education (20120092110020), the Foundation of Graduate Innovation Program of Jiangsu Province (CXLX13-072), the Fundamental Research Funds for the Central Universities (22420135011). The third author was financed by "FEDER Funds through \& Programa Operacional Factores de Competitividade-COMPETE"’ and by Portuguese Funds through FCT-"Fundação para a Ciência e a Tecnologia", within the project PEst-OE/MAT/UI0013/2014. The authors would like to express their sincere thanks to the referee for his/her careful reading and valuable remarks that helped them to improve the presentation of this work tremendously.

References

1. M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly, 65 (1958), 506-514.
2. R. E. Hartwig, G. R. Wang and Y. M. Wei, Some additive results on Drazin inverse, Linear Algebra Appl., 322 (2001), 207-217.
3. X. J. Liu, S. X. Wu and Y. M. Yu, On the Drazin inverse of the sum of two matrices, J. Appl. Math., 2011, doi:10.1155/2011/831892.
4. X. J. Liu, L. Xu and Y. M. Yu, The representations of the Drazin inverse of difference of two matrices, Appl. Math. Comput., 216 (2010), 3652-3661.
5. Z. Wang and J. L. Chen, Pseudo Drazin inverses in associative rings and Banach algebras, Linear Algebra Appl., 437 (2012), 1332-1345.
6. Y. M. Wei and C. Y. Deng, A note on additive results for the Drazin invere, Linear Multilinear Algebra, 59 (2011), 1319-1329.
7. H. Yang and X. F. Liu, The Drazin inverse of the sum of two matrices and its applications, J. Comput. Appl. Math., 235 (2011), 1412-1417.
8. H. H. Zhu and J. L. Chen, Additive property of pseudo Drazin inverse of elements in a Banach algebra, arXiv:1307.7232v1 [math.RA].
9. G. F. Zhuang, J. L. Chen, D. S. Cvetković-Ilić and Y. M. Wei, Additive property of Drazin invertibility of elements in a ring, Linear Multilinear Algebra, 60 (2012), 903-910.

Huihui Zhu and Jianlong Chen
Department of Mathematics
Southeast University
Nanjing 210096
P. R. China

E-mail: ahzhh08@sina.com
jlchen@seu.edu.cn
Pedro Patrício
CMAT-Centro de Matemática and Departamento de Matemática e Aplicações
Universidade do Minho
Braga 4710-057
Portugal
E-mail: pedro@math.uminho.pt

[^0]: Received March 22, 2014, accepted June 5, 2014.
 Communicated by Juan Enrique Martinez-Legaz.
 2010 Mathematics Subject Classification: 15A09, 16N20, 16 U80.
 Key words and phrases: Pseudo Drazin inverse, Strongly spectral idempotent, Jacobson radical.
 *Corresponding author.

