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NEW RESULTS ON SYSTEMS OF GENERALIZED VECTOR
QUASI-EQUILIBRIUM PROBLEMS

Monica Patriche

Abstract. This article aims to demonstrate the existence of new solutions for the
vector quasi-equilibrium problems. Firstly we prove the existence of the equi-
librium for the generalized abstract economy model under upper semicontinuity
assumptions. By using these results, we solve the announced problem in case
of multivalued trifunctions. Secondly, we consider the generalized strong vector
quasi-equilibrium problem and prove the existence of its solutions in case of cor-
respondences being weakly naturally quasi-concave or weakly biconvex and also
in case of weak-continuity assumptions. In all situations, our theoretical analy-
sis is based on fixed-point theorems. Our study indicates that the refinement of
the hypotheses concerning the equilibrium problems plays an important role in
the developing of this theory and it improves, by its novelty, the existent results
obtained so far in literature.

1. INTRODUCTION

Research studies on the vector equilibrium problem are gaining an increasingly
greater attention, since it is a unified model of other several problems, for instance,
vector variational inequalities, vector optimization problems or Debreu-type equilibrium
problems. For further relevant information on this topic, the reader is referred to the
following publications available in our bibliography: [1, 2, 4, 9, 11, 12, 15, 16, 17, 19,
20, 22, 23, 24, 25, 27, 31].
The current paper focuses on the solving of two types of vector equilibrium prob-

lems. The first one is defined by the existence of the multivalued trifunctions, the
second one is known as generalized strong vector quasi-equilibrium problem. In the
first instance, our research establishes the existence equilibrium theorems for the gen-
eralized abstract economy model which can be proved under upper continuity assump-
tions. This methodology follows an open direction in literature, but it still proves to
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bring fruitful results related to the solvability of this particular problem. It is important
to mention some milestones in the development of the theory, for a better understand-
ing of how we deducted our new solutions. The generalized abstract economy model
was introduced by Kim and Tan [18] and generalizes the previous models of abstract
economies defined by Debreu [6], Shafer and Sonnenshine [31] or Borglin and Keiding
[5]. Kim and Tan based their work on the fact that any preference of the real agents
of an economy could be made unstable by the fuzziness of consumers’ behaviour and
of other market situations.
In the second instance, we report new results concerning the existence of the solu-

tions for the generalized strong vector quasi-equilibriumproblems with correspondences
having new properties of generalized convexity or fulfilling weak-continuity assump-
tions. In all situations, our theoretical analysis is based on fixed-point theorems. Our
study indicates that the refinement of the hypotheses concerning the equilibrium prob-
lems plays an important role in the developing of this theory and it improves, by its
novelty, the existent results obtained so far in other publications.
The rest of the paper is organized as follows. Section 2 contains preliminaries and

notations. In Sections 3 the equilibrium existence of the generalized abstract economy
model is obtained. Section 4 studies the existence of solutions for systems of generalized
vector quasi-equilibrium problems. Section 5 presents types of convexity conditions
which are sufficient in order to guarantee that the generalized vector quasi-equilibrium
problems can be solved. The case of weak-continuity assumptions is approached in the
end.

2. PRELIMINARIES AND NOTATION

For the reader’s convenience, we present several properties of the correspondences
which are used in our proofs.
Let X be a subset of a topological vector space E . The set X is said to have the

property (K) if, for every compact subset B of X , the convex hull coB is relatively
compact in E . It is clear that each compact convex set in a Hausdorff (resp., locally)
topological vector space always has property (K). A normal topological space in which
each open set is an Fσ is called perfectly normal.
Let X , Y be topological spaces and T : X → 2Y be a correspondence. T is

said to be upper semicontinuous if for each x ∈ X and each open set V in Y with
T (x) ⊂ V , there exists an open neighborhood U of x in X such that T (y) ⊂ V

for each y ∈ U . T is said to be lower semicontinuous if for each x∈ X and each
open set V in Y with T (x) ∩ V �= ∅, there exists an open neighborhood U of x in
X such that T (y) ∩ V �= ∅ for each y ∈ U . T is said to have open lower sections
if T−1(y) := {x ∈ X : y ∈ T (x)} is open in X for each y ∈ Y. T is said to
be compact if, for any x ∈ X, there exists an open neighborhood V (x) such that
T (N (x)) = ∪y∈N(x)T (y) is relatively compact in Y.
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The correspondence T is defined by T (x) := {y ∈ Y : (x, y) ∈clX×Y Gr T} (the
set clX×Y Gr (T ) is called the adherence of the graph of T ). It is easy to see that cl
T (x) ⊂ T (x) for each x ∈ X. T is said to be quasi-regular if it has nonempty convex
values, open lower sections and T (x) =clT (x) for each x ∈ X. T is said to be regular
if it is quasi-regular and has an open graph.
If X and Y are topological vector spaces, K is a nonempty subset of X, C is a

nonempty closed convex cone and T : K → 2Y is a correspondence, then [26], T is
called upper C-continuous at x0 ∈ K if, for any neighborhood U of the origin in Y,
there is a neighborhood V of x0 such that, for all x ∈ V, T (x) ⊂ T (x0) + U + C. T
is called lower C-continuous at x0 ∈ K if, for any neighborhood U of the origin in Y,

there is a neighborhood V of x0 such that, for all x ∈ V, T (x0) ⊂ T (x) + U − C.

Now, we are presenting the approximation of upper semicontinuous correspondences
as demonstrated by C. Ionescu-Tulcea.
Let X be a nonempty set, let Y be a nonempty subset of a topological vector space

E , and let T : X → 2Y . A family (fj)j∈J of correspondences between X and Y ,
indexed by a nonempty filtering set J (denote by ≤ the order relation in J), is an
upper approximating family for F [32] if (1) T (x) ⊂ fj(x) for all x ∈ X and all
j ∈ J; (2) for each j ∈ J there is a j∗ ∈ J such that, for each h ≥ j∗ and h ∈ J,
fh(x) ⊂ fj(x) for each x ∈ X and (3) for each x ∈ X and V ∈ β, where β is a base
for the zero neighborhood in E , there is a jx,V ∈ J such that fh(x) ⊂ T (x) + V if
h ∈ J and jx,V ≤ h. From (1)-(3), it is easy to deduce that for each x ∈ X and k ∈ J,

T (x) ⊂ ∩j∈Jfj(x) = ∩k≤j,k∈J fj(x) ⊂clT (x) ⊂ T (x).

Conditions for the existence of an approximating family for an upper semicontinuous
correspondence are given in the following Lemma, which is obtained by observing
Theorem 3 and the Remark of Tulcea [[32], p. 280 and pp 281-282].

Lemma 1. (see [7]). Let (Xi)i∈I be a family of paracompact spaces and let (Yi)i∈I

be a family of nonempty closed convex subsets, each in a locally convex Hausdorff
topological vector space and each has property (K). For each i ∈ I, let Ti : Xi → 2Yi

be compact and upper semicontinuous with nonempty and convex values. Then, there
is a common filtering set J (independent of i ∈ I) such that, for each i ∈ I , there is a
family (fij)j∈J of correspondences between Xi and Yi with the following properties:

(i) for each j ∈ J, (fij)j∈J is regular;

(ii) (fij)j∈J and (f ij)j∈J are upper approximating families for Fi;

(iii) for each j ∈ J, the correspondence f ijis continuous if Yi is compact.

The proofs of our results which use approximating methods are based on Lemma
1, which is a version of Lemma 1.1 in [33] (for D = Y, we obtain Lemma 1.1 in [33]).
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Lemma 2. (see [29]). Let X be a topological space, Y be a nonempty subset of a
locally convex topological vector spaceE and T : X → 2Y be a correspondence. Let β
be a basis of neighborhoods of 0 in E consisting of open absolutely convex symmetric
sets. Let D be a compact subset of Y . If for each V ∈ β, the correspondence
T V : X → 2Y is defined by T V (x) = (T (x) + V ) ∩ D for each x ∈ X, then
∩V ∈βT V (x) ⊆ T (x) for every x ∈ X.

Lemma 3 concerns the continuity of correspondences and it will be also crucial in
our proofs.

Lemma 3. (see [33]). Let X and Y be two topological spaces and let D be an
open subset of X. Suppose T1 : X → 2Y , T2 : X → 2Y are upper semicontinuous
correspondences such that T2(x) ⊂ T1(x) for all x ∈ D. Then the correspondence
T : X → 2Y defined by

T (z ) =

{
T1(x), if x /∈ D,

T2(x), if x ∈ D

is also upper semicontinuous.

The property of properlyC−quasiconvexity for correspondences is presented below.
Let X be a nonempty convex subset of a topological vector space E, Z be a real

topological vector space, Y be a subset of Z and C be a pointed closed convex cone
in Z with its interior intC �= ∅. Let T : X → 2Z be a correspondence with nonempty
values. T is said to be properly C−quasiconvex on X , if for any x1, x2 ∈ X and
λ ∈ [0, 1], either T (x1) ⊂ T (λx1+(1−λ)x2)+C or T (x2) ⊂ T (λx1+(1−λ)x2)+C.

3. EQUILIBRIUM EXISTENCE FOR GENERALIZED ABSTRACT ECONOMIES

Our research concerning the existence of the solutions for the vector quasi-
equilibrium problems with multivalued trifunctions is mainly based on the existence
equilibrium theorems for the generalized abstract economy, model which is defined
below. It is characterized by the existence of the fuzzy constraint correspondences.
Kim and Tan [18] asserts that their option for this types of correspondences is based on
the fuzziness of consumers’ behavior in a real market, which means that the preferences
of the real economic agents are unstable. This model generalizes the previous ones
defined by Debreu [6], Shafer and Sonnenshine [31] or Borglin and Keiding [5].
Before starting our exposure, we emphasize that the results from this section will

be used in order to obtain the main theorems in Section 4, where we will consider
systems of vector quasi-equilibrium problems under upper semicontinuity assumptions.
Let I be any set of agents (countable or uncountable). For each i ∈ I , let Xi be a

nonempty set of actions available to the agent i in a topological vector space Ei and
X =

∏
i∈I

Xi.
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Definition 1. [18]. A generalized abstract economy Γ = (Xi, Ai, Fi, Pi)i∈I is
defined as a family of ordered quadruples (Xi, Ai, Fi, Pi) where Ai : X → 2Xi is a
constraint correspondence such that Ai(x) is the state attainable for the agent i at x,
Fi : X → 2Xi is a fuzzy constraint correspondence such that Fi(x) is the unstable
state for the agent i and Pi : X × X → 2Xi is a preference correspondence such that
Pi(x, x) is the state preferred by the agent i at x.

Definition 2. An equilibrium for Γ is a point (x∗, y∗) ∈ X ×X such that for each
i ∈ I, x∗

i ∈ Ai(x∗), y∗i ∈ Fi(x∗) and Pi(x∗, y∗) ∩ Ai(x∗) = ∅.
If for each i ∈ I and each x ∈ X, Fi(x) = Xi and the preference correspondence

Pi satisfies Pi(x, y) = Pi(x, y
′
) for each x, y, y

′ ∈ X, the definition of a generalized
abstract economy and an equilibrium coincides with the usual definition of an abstract
economy and an equilibrium established by Shafer and Sonnenschein [31].

The following theorem is the compact version of Theorem 5.1 of Lin et al. [21]. It
states the existence of the equilibrium points for the generalized abstract economy with
the set X being compact and the correspondences Ai, Fi and Pi having open lower
sections. Theorem 1 will be used to prove the existence of the equilibrium for the same
model, but with correspondences being upper semicontinuous.

Theorem 1. For each i ∈ I (I finite), let Xi be a nonempty compact convex
subset of a topological vectorspace Ei, X =

∏
i∈I

Xi, Ai : X → 2Xi a constraint

correspondence, Pi : X × X → 2Xi a preference correspondence and Fi : X → 2Xi

a fuzzy constraint correspondence. Assume that the following conditions are fulfilled:

(i) For all x ∈ X , Ai(x) and Fi(x) are nonempty and convex;
(ii) For all yi ∈ Xi, A−1

i (yi), F−1
i (yi) and P−1

i (yi) are open sets (the correspon-
dences Ai, Fi and Pi have open lower sections);

(iii) For all (x, y) ∈ X × X , xi /∈coPi(x, y);

(iv) The set Wi : = {(x, y) ∈ X × X : xi ∈ Ai(x) and yi ∈ Fi(x)} is closed in
X × X .

Then, there exists (x∗, y∗) ∈ X ×X such that for each i ∈ I , x∗
i ∈ Ai(x∗),

y∗i ∈ Fi(x∗) and Ai(x∗) ∩ Pi(x∗, y∗) = ∅.
We establish the following result which is an equilibrium existence theorem for a

generalized abstract economy with upper semicontinuous correspondences. We use a
method of approximation of upper semi-continuous correspondences developed by C.
I. Tulcea [32]. Theorem 1 is also crucial for the demonstration.

Theorem 2. For each i ∈ I (I finite), let Xi be a nonempty compact convex
subset with property (K) of a topological vector space Ei, X =

∏
i∈I

Xi be perfectly
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normal, Ai : X → 2Xi a constraint correspondence, Pi : X × X → 2Xi a preference
correspondence and Fi : X → 2Xi a fuzzy constraint correspondence. Assume that
the following conditions are fulfilled:

(i) For all x ∈ X , Ai(x) and Fi(x) are nonempty and convex;
(ii) For all yi ∈ Xi, P−1

i (yi) are open sets and the correspondences Fi, Ai are
upper semicontinuous, compact, with nonempty convex closed values;

(iii) For all (x, y) ∈ X × X , xi /∈coPi(x, y);

(iv) The set Ui := {(x, y) ∈ X × X : Pi(x, y)∩ Ai(x) �= ∅} is open.
Then, there exists (x∗, y∗) ∈ X ×X such that for each i ∈ I , x∗

i ∈ Ai(x∗),
y∗i ∈ Fi(x∗) and Ai(x∗) ∩ Pi(x∗, y∗) = ∅.
Proof. Our approach and the upper approximation method require the application

of Lemma 1. Hence, there is a common filtering set J such that, for every i ∈ I , there
exists a family (Aij)j∈J of regular correspondences betweenX and Xi, such that both
(Aij)j∈J and (Aij)j∈J are upper approximating families for Ai and a family (Fij)j∈J

of regular correspondences between X and Xi, such that both (Fij)j∈J and (Fij)j∈J

are upper approximating families for Fi. The correspondences Aij and Fij are regular,
and it is clear that Aij and Fij have an open graph and thus, they have open lower
sections.
The hypotheses guarantee that Ai and Fi have closed graphs, and this allows us to

deduce that the set Wi := {(x, y) ∈ X × X : xi ∈ Ai(x) and yi ∈ Fi(x)} is closed
in X × X . Therefore, the abstract economy Γj = (Xi, Aij, Pi, Fij)i∈I satisfies all
hypotheses of Theorem 1. Moreover, Theorem 1 implies that Γj has an equilibrium
(x∗j, y∗j) ∈ X × X such that Aij(x∗j) ∩ Pi(x∗j, y∗j) = ∅, x∗j

i ∈ Aij(x∗j) and
y∗j
i ∈ Fij(x∗j) for all i ∈ I.
The inclusion Ai(x∗j) ⊂ Aij(x∗j) implies that Ai(x∗j) ∩Pi(x∗j, y∗j) = ∅. There-

fore, {(x∗j, y∗j)}j∈I ⊂ UC
i follows straightforward from the last assertion. We remark

that UC
i is closed in X × X by condition iv).

Furthermore, we exploit the fact that (x∗j, y∗j)j∈I is a net in the compact set
X ×X ; without loss of generality, we may assume that (x∗j)j∈I converges to x∗ ∈ X

and (y∗j)j∈I converges to y∗ ∈ X. Then, for each i ∈ I, x∗
i = limj∈I x∗j

i and
y∗i = limj∈I y∗j

i . Clearly, (x∗, y∗) ∈ UC
i for all i ∈ I, and we conclude that Ai(x∗) ∩

Pi(x∗, y∗) = ∅.
Now, the conclusion of the theorem follows from the key idea of the method:

each abstract economy Γj has an equilibrium point (x∗j, y∗j) satisfying the properties
x
∗j
i ∈ Aij(x∗j) ⊂ Aij(x∗j) and y

∗j
i ∈ Fij(x∗j) ⊂ Fij(x∗j). Given the closedness

of the graphs of the correspondences Aij and Fij , we obtain (x∗, x∗
i ) ∈GrAij and

(x∗, y∗i ) ∈GrAij for every i ∈ I. Recall that for each i ∈ I, (Aij)j∈I is an upper
approximation family for Ai, which guarantees that ∩j∈IAij(x) ⊂ Ai(x) for each
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∈ X, and then, (x∗, x∗
i ) ∈GrAi. Similarly, (x∗, y∗i ) ∈GrFi. Finally, we complete the

proof by summarizing that for each i ∈ I, Ai(x∗) ∩ Pi(x∗, y∗) = ∅, x∗
i ∈ Ai(x∗) and

y∗i ∈ Fi(x∗).

Remark 1. The main difference between Theorem 1 and Theorem 2 is the nature of
the constraint correspondences Fi and Ai, which have open lower sections in the first
case and are upper semicontinuous in the second case. In practice, the assumptions over
constraints can vary widely, and the upper semicontinuity is a very common hypothesis
in the results concerning the equilibrium existence. This requirement, together with
the compactness of the spaces Xi, implies that Fi and Ai have a closed graph, and
therefore, the assumption iv) from Theorem 1 is fulfilled. This way, we conclude that
the set Wi := {(x, y) ∈ X × X : xi ∈ Ai(x) and yi ∈ Fi(x)} is closed in X × X .
We notice that the assumption iv) in Theorem 2 is different, since it asks that the set
Ui := {(x, y) ∈ X × X : Pi(x, y) ∩ Ai(x) �= ∅} to be open. This condition is also
common for the theorems which state the existence of equilibrium for cases when the
correspondences are upper semicontinuous. Some proofs use Lemma 3, where the set
D is precisely Ui, and T1 and T2 are defined using the correspondences of the model.
The distinction between the two hypothesis iv) comes from the various approaches
which are used for demonstrations. In [21], the authors use maximal element theorems
for a family of correspondences in order to prove their result (which we present as
Theorem 1). In the proof of Theorem 2, we exploit the closedness of UC

i (i ∈ I),
since we have a sequence of points in UC

i , converging to the equilibrium pair (x∗, y∗),
which must belong also to each UC

i .

The next results in this section prove the existence of equilibrium for generalized
abstract economies. Theorem 3 is a replicated form of Theorem 2, but all the corre-
spondences are upper semicontinuous.

Theorem 3. Let Γ = {Xi, Ai, Fi, Pi}i∈I be a generalized abstract economy, where
I is any index set, such that, for each i ∈ I:

(i) Xi is a nonempty convex subset of a Hausdorff locally convex space Ei, Di is
a nonempty compact subset of Xi and denote X =

∏
i∈I

Xi, D =
∏
i∈I

Di;

(ii) Ai : X → 2Di is upper semicontinuous such that for each x ∈ X, Ai(x) is a
nonempty closed convex subset of Xi;

(iii) Pi : X × X → 2Xi is upper semicontinuous such that for each x ∈ X, Pi(x)
is a nonempty closed convex subset of Xi;

(iv) the set Wi = {(x, y) ∈ X × X : Ai (x) ∩ Pi(x, y) �= ∅} is open;
(v) for each x ∈ Wi, xi /∈ Pi(x, y).

Then, there exists (x∗, y∗) ∈ D × D such that x∗
i ∈ Ai (x∗) , y∗ ∈ Fi(x∗) and

Ai (x∗) ∩ Pi (x∗, y∗) = ∅ for each i ∈ I.
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Proof. First note that assumption i) implies that D is a nonempty compact
subset of X . Let us focus on any player i ∈ I. We first define the correspondence
Gi : X × X → 2Di as follows:

Gi (x, y) = Ai (x) ∩ Pi (x, y) for each (x, y) ∈ X × X.
Clearly, Gi has closed convex values and it is upper semicontinuous.
In order to prove our result, we construct the correspondence Ti : X × X → 2Di

by

Ti (x, y) =

{
(Ai (x) ∩ Pi(x, y))× Fi(x), if x ∈ Wi;

Ai (x) × Fi(x), if x /∈ Wi.

We can apply Lemma 3 to assert that Ti is upper semicontinuous and has nonempty
closed convex values.
Let us define the correspondence T : X × X → 2D, by
T (x, y) =

∏
i∈I

Ti(x, y) for each x ∈ X.

Then, T is also upper semicontinuous and nonempty closed convex valued. Him-
melberg’s fixed point Theorem [14] indicates the existence of a fixed point for T. Thus,
there exists (x∗, y∗) ∈ T (x∗, y∗) , where (x∗, y∗) ∈ D × D. Obviously, x∗

i ∈ Ti (x∗)
for each i ∈ I. Now, assumption v) guarantees that x∗

i /∈ Pi(x∗, y∗), and this implies
x∗

i ∈ Ai (x∗) , y∗i ∈ Fi(x∗) and (Ai ∩ Pi) (x∗) = ∅ for each i ∈ I.

Theorem 4 is distinguished by the fact that no continuity assumptions are made over
the constraint correspondences. It improves the known results established in literature
by the reduction of the hypotheses and the new technique of proof mainly based on
Lemma 2. We emphasize that this approximation methodology differs essentially from
Ionescu-Tulcea’s one and it will be largely used in the following sections of this paper.

Theorem 4. Let Γ = {Xi, Ai, Fi, Pi}i∈I be a generalized abstract economy,
where I is any index set, such that, for each i ∈ I:

(i) Xi is a nonempty convex subset of a Hausdorff locally convex space Ei, Di is
a nonempty compact subset of Xi and denote X =

∏
i∈I

Xi, D =
∏
i∈I

Di;

(ii) AVi
i , FVi

i : X → 2Di are correspondences with nonempty convex values for
each open absolutely convex symmetric neighborhood Vi of 0 in Ei;

(iii) Pi : X × X → 2Xi is upper semicontinuous with nonempty closed convex
values;

(iv) the set Wi = {(x, y) ∈ X × X : Ai (x) ∩ Pi(x, y) �= ∅} is open;
(v) for each (x, y) ∈ Wi, xi /∈ Pi(x, y).

Then, there exists (x∗, y∗) ∈ D × D such that x∗
i ∈ Ai (x∗) , y∗i ∈ F i (x∗) and

Ai(x∗) ∩ Pi(x∗, y∗) = ∅ for each i ∈ I.
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Proof. We first note that assumption iv) asserts that Wi is open in X for each
i ∈ I.
In order to use an approximation technique to prove our result, we will consider a

basis βi of open absolutely convex symmetric neighborhoods of 0 in Ei and we denote
β =

∏
i∈I

βi.

The fixed point approach can be effectively exploited. To do this, we will construct
several correspondences.
For each V = (Vi)i∈I ∈ ∏

i∈I
βi, for each i ∈ I, let’s define T Vi

i : X ×X → 2Xi by

T Vi
i (x, y) :=

⎧⎨
⎩

(AVi
i (x) ∩ Pi (x, y))× FVi

i (x), if (x, y) ∈ Wi,

AVi
i (x)× FVi

i (x), if (x, y) /∈ Wi

for each (x, y) ∈

X × X.

Assumption ii) ensures that each T Vi
i is upper semicontinuous with nonempty closed

convex values. Now, we define T V : X × X → 2D by
T V (x, y) =

∏
i∈I

T Vi
i (x, y) for each (x, y) ∈ X × X.

The correspondence T V is upper semicontinuous with nonempty closed convex
values. The existence of a fixed point (x∗

V , y∗V ) =
∏
i∈I

(x∗
V , y∗V )i ∈ D×D for T V is en-

sured by Himmelberg’s fixed point Theorem [14]. Clearly, (x∗
V , , y∗V )i ∈ T Vi

i (x∗
V , , y∗V )

for each i ∈ I.

We will show the existence of the equilibrium points for the generalized abstract
economy. Towards this end, we define for each V = (Vi)i∈I ∈ β, the set

QV = ∩i∈I{(x, y) ∈ D × D : (xi, yi) ∈ T Vi
i (x, y)}.

We note that QV is nonempty since (x∗
V , y∗V ) ∈ QV . The closedness of QV is also

obvious.
We claim that the family {QV : V ∈ β} has the finite intersection property.
Indeed, let {V (1), V (2), ..., V (n)} be any finite set of β and let V (k) =

∏
i∈I

V
(k)
i ,

k = 1, ..., n. For each i ∈ I , let Vi =
n∩

k=1
V

(k)
i , then Vi ∈ βi; thus V =

∏
i∈I

Vi ∈
∏
i∈I

βi.

Clearly QV ⊆ n∩
k=1

QV (k) so that
n∩

k=1
QV (k) �= ∅.

Since D × D is compact and the family {QV : V ∈ β} has the finite intersec-
tion property, the intersection over the entire collection of neighborhoods is nonempty:
∩{QV : V ∈ β} �= ∅. Take any (x∗, y∗) ∈ ∩{QV : V ∈ β}, then for each Vi ∈ βi,

(x∗
i , y

∗
i ) ∈ T Vi

i (x∗, y∗). Lemma 2 implies that (x∗
i , y

∗
i ) ∈ Ti(x∗, y∗) for each i ∈ I.

Finally, condition v) guarantees that x∗
i ∈ Ai (x∗) , y∗i ∈ F i (x∗) and (Ai ∩

Pi)(x∗, y∗) = ∅ for each i ∈ I. This completes the proof.
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4. SYSTEMS OF VECTOR QUASI-EQUILIBRIUM PROBLEMS UNDER
UPPER SEMICONTINUITY ASSUMPTIONS

This section is dedicated to establishing the main results of this paper. We state
new theorems concerning the existence of the solutions for the systems of vector quasi-
equilibrium problems which are presented below. Our research considers the continuity
with respect to a cone of the correspondences fi. Our study is split into two parts
which are presented separately: Theorem 5 is proved under the assumption of lower
(-Ci)-semicontinuity of fi and in Theorem 6 we make the assumption of upper (Ci)-
semicontinuity of fi. Both theorems consider upper semicontinuous correspondences
Ai and Fi : X → 2Xi and improve the existent results in literature. The last result
of this section identifies a situation which has not been treated by prior studies: no
continuity assumption is made over the correspondences Ai and Fi. An approximation
technique, based on Lemma 2, is used in order to demonstrate our statement. The
novelty of this paper can be measured in two standard procedures: the methodology
used in our demonstrations and the assumptions used to formulate the theorems.
We start this section with the presentation of the problem we approach.

For each i ∈ I, let Xi be a nonempty subset of a topological vector space Ei, Yi a
topological vector space and letX =

∏
i∈I

Xi and Ci ⊂ Xi a closed cone with intC �= ∅.
For each i ∈ I, let Ai, Fi : X → 2Xi and fi : X ×X ×Xi → 2Xi be correspondences
with nonempty values. We consider the following systems of generalized vector quasi-
equilibrium problems (in short, SGVQEP (I)):
Find (x∗, y∗) ∈ X × X such that for each i ∈ I, x∗

i ∈ Ai(x∗), y∗i ∈ Fi(x∗) and
fi(x∗, y∗, ui) ⊆ Ci for each ui ∈ Ai(x∗).

The next theorems establish the existence of the solutions for systems of vector
quasi-equilibrium problem.
The highlights of our first result of this section include the upper semicontinuity

(resp. lower (−Ci)−semicontinuity) of Fi and Ai : X → 2Xi (resp. fi : X×X×Xi →
2Xi). The Ci−quasi-convexity of fi(x, y, ·) : Xi → 2Xi is also assumed.

Theorem 5. For each i ∈ I (I finite), let Xi be a nonempty compact convex
subset of a locally convex Hausdorff topological vector space Ei. Let X =

∏
i∈I

Xi be

perfectly normal and Ci a closed cone with intCi �= ∅. Let fi : X × X × Xi → 2Xi

be a correspondence with nonempty values. For each i ∈ I, assume that:

(i) Fi, Ai : X → 2Xi are upper semicontinuous correspondences with nonempty
closed convex values;

(ii) for all x, y ∈ X, fi(x, y, xi) ⊆ Ci;
(iii) fi(·, ·, ·) is lower (−Ci)−semicontinuous;
(iv) for each x, y ∈ X, the correspondence fi(x, y, ·) is Ci−quasi-convex;
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(v) Ui = {(x, y) ∈ X × X : there exists ui ∈ Ai(x) such that fi(x, y, ui) ⊆ Ci} is
open.

Then, there exists a solution (x∗, y∗) ∈ X × X of (SGVQEP)(I).

Proof. The key idea of the proof is to use Theorem 2. Towards this end, we need
the construction of the following correspondences.
For each i ∈ I, let Pi : X × X → 2Xi be defined by
Pi(x, y) = {ui ∈ Xi : fi(x, y, ui) � Ci} for each (x, y) ∈ X × X.
We will show that Pi has an open graph and convex values.
Firstly we are proving the convexity of Pi(x0, y0), where (x0, y0) ∈ X × X is

arbitrary fixed. Indeed, let us consider u1, u2 ∈ Pi(x0, y0) and λ ∈ [0, 1]. Since u1, u2 ∈
Xi and the set Xi is convex, the convex combination u = λu1+(1−λ)u2 is an element
of Xi.

Further, by using the property of properly C-quasiconvexity of fi(x0, y0, ·), we can
assume, without loss of generality, that fi(x0, y0, u1) ⊂ fi(x0, y0, u) + Ci.

We will prove that u ∈ Pi(x0, y0). If, by contrary, u /∈ Pi(x0, y0), then, fi(x0, y0, u)
⊆ Ci and, therefore, fi(x0, y0, u1) ⊂ fi(x0, y0, u) + Ci ⊆ Ci + Ci ⊆ Ci, which
contradicts u1 ∈ Pi(x0, y0). Hence, u ∈ Pi(x0, y0) and, consequently, Pi(x0, y0) is a
convex set.
Assumption ii) asserts that xi /∈ Pi(x, y) for each (x, y) ∈ X × X.

The closedness of the (GrPi)C will be shown now.
We consider the net {(xα, yα, uα) : α ∈ Λ} ⊂ (GrPi)C , such that (xα, yα, uα) →

(x0, y0, u0) ∈ X×X×Xi. Then, uα /∈ Pi(xα, yα) for each α ∈ Λ, i.e. fi(xα, yα, uα) ⊆
Ci. We prove that (x0, y0, u0) ∈ (GrPi)C , that is u0 /∈ Pi(x0, y0). We use the
lower (−Ci)− continuity of F and we conclude that, for each neighborhood U of
the origin in Xi, there exists a neighborhood V (x0, y0, u0) of (x0, y0, u0) such that,
fi(x0, y0, u0) ⊂ fi(xα, yα, uα) + U + Ci for each (xα, yα, uα) ∈ V (x0, y0, u0). Then,
for each (x, y, u) ∈ V (x0, y0, u0), fi(x0, y0, u0) ⊂ Ci + U + Ci ⊂ Ci + U.
We will prove that fi(x0, y0, u0) ⊆ Ci. If, by contrary, there exists a ∈ fi(x0, y0, u0)

and a /∈ Ci, then, 0 /∈ B := Ci − a and B is closed. Thus, B is open and
0 ∈ Xi\B. There exists an open symmetric neighborhood U1 of the origin in Xi,

such that U1 ⊂ Xi\B and U1 ∩B is closed. Therefore, 0 /∈ B +U1, i.e., a /∈ Ci +U1,
which contradicts f(x0, y0, z0) ⊂ U1 + Ci. We conclude that f(x0, y0, z0) ⊆ Ci and
then, u0 ∈ Pi(x0, y0)C and (GrPi)C is closed. Therefore, GrPi is open and Pi has
open lower sections.
According to vi), Ui = {(x, y) ∈ X × X : Ai(x) ∩ Pi(x, y) �= ∅} is open and

according to ii), xi /∈ Pi(x, y) for each (x, y) ∈ X × X.

All the assumptions of Theorem 2 are fulfilled. Then, there exists (x∗, y∗) ∈
X × X such that for each i ∈ I, Ai(x∗) ∩ Pi(x∗, y∗) = ∅, x∗

i ∈ Ai(x∗) and y∗i ∈
Fi(x∗). Consequently, there exist x∗, y∗ ∈ X such that x∗

i ∈ Ai(x∗), y∗i ∈ Fi(x∗) and
fi(x∗, y∗, u) ⊆ Ci for each u ∈ Ai(x∗).
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Remark 2. We note that Theorem 5 differs from Theorem 3.2.1 in [22] in the
following way: the correspondences Ai and Fi are upper semicontinuous and fi is
lower (−Ci)− continuous for each i ∈ I .

Theorem 6 is stated in terms of upper (Ci)− semicontinuity for fi : X×X×Xi →
2Xi and upper semicontinuity for Fi and Ai. Its proof is mainly based on Theorem 3.

Theorem 6. For each i ∈ I, let Xi be a nonempty convex subset of a Hausdorff
locally convex space Ei, Di a nonempty compact subset ofXi and denoteX =

∏
i∈I

Xi,

D =
∏
i∈I

Di. Let fi : X × X × Xi → 2Xi be correspondence with nonempty values.

For each i ∈ I, assume that:

(i) Fi, Ai : X → 2Xi are upper semicontinuous correspondences with nonempty
closed convex values;

(ii) for each x, y ∈ X, fi(x, y, xi) ⊆intCi;
(iii) for each (x, y) ∈ X × X, fi(x, y, ·) is upper semicontinuous;
(iv) fi(·, ·, ·) is upper (Ci)− semicontinuous;
(v) for each x, y ∈ X, the correspondence fi(x, y, ·) is Ci−quasi-convex;
(vi) Ui = {(x, y) ∈ X × X : there exists ui ∈ Ai(x) such that f(x, y, ui) ⊆intCi}

is open.

Then, there exists (x∗, y∗) ∈ X × X such that x∗
i ∈ Ai(x∗), y∗i ∈ Fi(x∗) and

fi(x∗, y∗, u) ⊆intCi for each u ∈ Ai(x∗).

Proof. The proof requires the application of Theorem 3 for a generalized abstract
economy which we intend to construct. We need to define the preference correspon-
dences. Actually, for each i ∈ I, let Pi : X × X → 2Xi be defined by

Pi(x, y) = {ui ∈ Xi : fi(x, y, ui) �intCi} for each (x, y) ∈ X × X.
We will check that the assumptions of Theorem 3 are fulfilled.
Firstly, we will prove that Pi has a closed graph and nonempty closed convex

values.
Let us fix (x0, y0) ∈ X × X .
In order to show the convexity of Pi(x0, y0), let us consider u1, u2 ∈ Pi(x0, y0)

and λ ∈ [0, 1]. Let u be the convex combination u = λu1 + (1− λ)u2 ∈ Xi. Further,
in virtue of the property of properly C-quasiconvexity of fi(x0, y0, ·), we can assume,
without loss of generality, that fi(x0, y0, u1) ⊂ fi(x0, y0, u) + Ci.
We will prove that u ∈ Pi(x0, yo). If, by contrary, u /∈ Pi(x0, y0), fi(x0, y0, u) ⊆

intCi and, consequently, fi(x0, y0, u1) ⊂ fi(x0, y0, u)+Ci ⊆intCi +Ci ⊆intCi, which
contradicts u1 ∈ Pi(x0, y0). We conclude that u ∈ Pi(x0, y0) which implies the con-
vexity of Pi(x0, y0).
Further, we will prove that Pi(x0, y0) is closed.
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Towards this end, we consider the net {uα : α ∈ Λ} ⊆ Pi(x0, y0) such that uα →
u0. Then, uα ∈ Xi and fi(x0, y0, uα) �intCi for all α ∈ Λ. It is clear from the closed-
ness of Xi that u0 ∈ Xi. We assume, by contrary, that fi(x0, y0, u0) ⊆intCi. Since
fi(x0, y0, ·) is upper semicontinuous, then, fi(x0, y0, uα) ⊂intCi for α ≥ α0, α0 ∈ Λ,
which is a contradiction. Therefore, our assumption is false and fi(x0, y0, u0) �intCi,

i.e. u0 ∈ Pi(x0, y0) and Pi(x0, y0) is a closed set.
Now, the closedness of Pi will be shown. We consider the net {(xα, yα, uα) : α ∈

Λ} ⊂GrPi such that (xα, yα, uα) → (x0, y0, u0) ∈ X×X×Xi. Then, uα ∈ Pi(xα, yα)
for each α ∈ Λ and we prove that (x0, y0, u0) ∈GrPi, that is u0 ∈ Pi(x0, y0). If, by
contrary, u0 /∈ Pi(x0, y0), then, fi(x0, y0, u0) ⊆intCi. This relation implies that there
exists a neighborhood U0 of the origin in Z such that fi(x0, y0, u0) + U0 ⊂intCi.
Further, the upper Ci−continuity of fi yields the existence of a neighborhood

V (x0, y0, u0) of (x0, y0, u0) such that, fi(x, y, u) ⊂ fi(x0, y0, u0) + U0 + C for
each (x, y, u) ∈ V (x0, y0, u0). The last assertion implies that, for each (x, y, u) ∈
V (x0, y0, u0), fi(x, y, u) ⊂intCi + Ci ⊂intCi, which guarantees the existence of
α0 ∈ Λ such that for each α ≥ α0, fi(xα, yα, uα) ⊂intCi.

The last relation contradicts uα ∈ Pi(xα, yα). Consequently, the assumption that
u0 /∈ Pi(x0, y0) is false. Since u0 ∈ Pi(x0, y0), GrPi is closed, and, since Xi is
compact, it is clear that Pi is upper semicontinuous.
According to vi), Ui = (x, y) ∈ X × X : Ai(x) ∩ Pi(x, y) �= ∅} is open and

according to ii), xi /∈ Pi(x, y) for each (x, y) ∈ X × X.
All the assumptions of Theorem 3 are fulfilled and we can apply it to assert the

existence of a pair (x∗, y∗) such that for each i ∈ I, Ai(x∗) ∩ Pi(x∗, y∗) = ∅, x∗
i ∈

Ai(x∗) and y∗i ∈ Fi(x∗). This means that there exist x∗, y∗ ∈ X such that x∗
i ∈ Ai(x∗),

y∗i ∈ Fi(x∗) and f(x∗, y∗, u) ⊆intCi for each u ∈ Ai(x∗). The proof is complete.

In order to demonstrate the last theorem of this section, an approximating technique
will be used. The proof is based on Theorem 4. It is shown that the continuity
assumptions over the correspondences Fi and Ai can be avoided. New types of
hypotheses lead to a result which is weaker than the previous ones.

Theorem 7. For each i ∈ I, let Xi be a nonempty convex subset of a Hausdorff
locally convex space Ei, Di a nonempty compact subset ofXi and denoteX =

∏
i∈I

Xi,

D =
∏
i∈I

Di. Let fi : X × X × Xi → 2Xi be a lower semicontinuous correspondence

with nonempty values. For each i ∈ I, assume that:

(i) FVi
i , A

Vi
i : X → 2Xi are correspondences with nonempty convex values for each

open absolutely convex symmetric neighborhood Vi of 0 in Ei;
(ii) for all x, y ∈ X, fi(x, y, xi) ⊆intCi;
(iii) for each (x, y) ∈ X × X, fi(x, y, ·) is upper semicontinuous;
(iv) fi(·, ·, ·) is upper (Ci)− semicontinuous;
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(v) for each x, y ∈ X, the correspondence fi(x, y, ·) is Ci−quasi-convex;
(vi) Ui = {(x, y) ∈ X × X : there exists ui ∈ Ai(x) such that f(x, y, ui) ⊆intCi}

is open.

Then, there exists (x∗, y∗) ∈ X × X such that x∗
i ∈ Ai(x∗), y∗i ∈ Fi(x∗) and

fi(x∗, y∗, u) ⊆intCi for each u ∈ Ai(x∗).

Proof. We intend to derive the conclusion by using Theorem 4. In order to be in
the setting of this last theorem, we have to construct the preference correspondences
Pi.

Therefore, for each i ∈ I, let Pi : X × X → 2Xi be defined by
Pi(x, y) = {ui ∈ Xi : fi(x, y, ui) �intCi} for each (x, y) ∈ X × X.
By the same reasoning as in the proof of Theorem 5, we can easily show that Pi

is upper semicontinuous with nonempty closed convex values.
Firstly we note that assumption vi) asserts that Ui = (x, y) ∈ X × X : Ai(x) ∩

Pi(x, y) �= ∅} is open and assumption ii) assures that xi /∈ Pi(x, y) for each (x, y) ∈
X × X.

All the assumptions of Theorem 4 are fulfilled. We shall complete the proof by
applying Theorem 4 to show the existence of a pair (x∗, y∗) ∈ X × X such that for
each i ∈ I, Ai(x∗) ∩ Pi(x∗, y∗) = ∅, x∗

i ∈ Ai(x∗) and y∗i ∈ Fi(x∗). Together with
the fact that fi(x∗, y∗, u) ⊆intCi for each u ∈ Ai(x∗), the last assertion implies the
existence of the solutions for the considered vector equilibrium problem.

5. STRONG VECTOR QUASI-EQUILIBRIUM PROBLEMS

This section is dedicated to the study of the strong vector equilibrium problem.
Its originality consists in a new manner of treating this topic, by considering corre-
spondences which fulfill no continuity assumptions. Instead, new types of convexities
assumptions are made. In order to establish the announced results, some new types of
generalized convexities introduced by the author are used.

In this particular section, we examine the following problem.

Let us consider E1, E2 and Z be topological vector spaces, let K ⊂ E1, D ⊂ E2

be subsets and Ci ⊂ Z a nonempty closed convex cone. Let us also consider the
correspondences A : K → 2K , F : K → 2D and f : K × D × K → 2Z .

We will study the existence of the solutions for the following extension of the
generalized strong vector quasi-equilibrium problem (shortly, GSVQEP): finding x∗ ∈
K and y∗ ∈ F (x∗) such that x∗ ∈ A(x∗) and fi(x∗, y∗, z) ⊂ Ci, ∀z ∈ A(x∗), where
the correspondence A is defined by A(x) = {y ∈ Y : (x, y) ∈clX×YGrA}. Note that
clA(x) ⊂ A(x) for each x ∈ X.

The element x∗ will be called a strong solution for the GSVQEP and the set of all
strong solutions for the GSVQEP will be denoted by VA(f).
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5.1. Strong vector quasi-equilibrium problems without continuity assumptions
In this subsection, we demonstrate that the set VA(f) of all strong solutions for the

GSVQEP is nonempty also when the correspondences do not satisfy continuity assump-
tions defined explicitly. Instead, we will use some conditions concerning generalized
convexity, mainly, the weakly naturally quasi-concavity property of correspondences.
Other assumptions refer to correspondences with weakly convex graphs. We present
these notions below.
Let us denote Δn−1 =

{
(λ1, λ2, ..., λn)∈Rn :

n∑
i=1

λi =1 and λi�0, i=1, 2, ..., n

}
the standard (n-1)-dimensional simplex in Rn.
The correspondence F : X → 2Y is said to have weakly convex graph [8] if for

each n ∈ N and for each finite set {x1, x2, ..., xn} ⊂ X , there exists yi ∈ F (xi),
(i = 1, 2, ..., n) such that

(1.1) co({(x1, y1), (x2, y2), ..., (xn, yn)}) ⊂ Gr(F )

The relation (1.1) is equivalent to

(1.2)
n∑

i=1

λiyi ∈ F (
n∑

i=1

λixi) (∀(λ1, λ2, ..., λn) ∈ Δn−1).

We introduced in [29] the weakly naturally quasi-concave correspondences.

Definition 3. (see [29]). LetX be a nonempty convex subset of a topological vector
space E and Y a nonempty subset of a topological vector space Z. The correspondence
F : X → 2Y is said to be weakly naturally quasi-concave (WNQ) iff for each n and
for each finite set {x1, x2, ..., xn} ⊂ X , there exists yi ∈ F (xi), i ∈ {1, ..., n} and
g = (g1, g2, ..., gn) : Δn−1 → Δn−1 a mapping with gi continuous, gi(1) = 1 and

gi(0) = 0 for each i ∈ {1, 2, ..., n}, such that
n∑

i=1
gi(λi)yi ∈ F (

n∑
i=1

λixi) for every

(λ1, λ2, ..., λn) ∈ Δn−1.

Example 1. (see [20]) Let F : [0, 4] → 2[−2,2] be defined by

F (x) =

⎧⎪⎪⎨
⎪⎪⎩

[0, 2] if x ∈ [0, 2);

[−2, 0] if x = 2;

(0, 2] if x ∈ (2, 4].
F is neither upper semicontinuous, nor lower semicontinuous in 2. F is weakly

naturally quasi-concave.

The next theorem is our first result concerning the existence of the strong solutions
for the GSVQEP. The proof consists in the construction of a continuous selection for
a correspondence and then, Brouwer’s fixed point Theorem is applied. The theorems
consider the weakly naturally quasi-concave correspondences.
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Theorem 8. Let E1, E2,Z be topological vector spaces, K ⊂ E1 and D ⊂ E2

be subsets. Let L be a simplex in K × D and denote LK =prKL. Let (A, F ) :
LK → 2L be weakly naturally quasi-concave. Let us suppose that, for each n ∈ N,

λ ∈ Δn−1 and x1, x2, ..., xn ∈ Lk, A(
n∑

i=1
λixi) ⊂

n⋂
i=1

A(xi). Let f : L × K → 2K a

correspondence such that the following assumptions are fulfilled:

(i) ∀(x, y) ∈ L, f(x, y, A(x)) ⊂ C;

(ii) for each z ∈ K, for each n ∈ N, λ, λ′ ∈ Δn−1 and (x1, y1), (x2, y2), ..., (xn, yn)

∈ L, f(
n∑

i=1
λixi,

n∑
i=1

λ′
iyi, z) ⊂

n⋂
i=1

f(xi, yi, z).

Then, Vf �= ∅.

Proof. The fixed point approach is effectively exploited to solve the announced
problem. The proof is based on the construction of a continuous selection of a weakly
naturally quasi-concave correspondence which we will firstly define and also on the
application of the Brouwer fixed point Theorem.
Let us start by defining the correspondences P : L → 2K and M : L → 2L as

follows:
P (x, y) = {u ∈ A(x) : f(u, y, z) ⊂ C ∀z ∈ A(x)} and
M(x, y) = (P (x, y), F (x)).

We claim that M is weakly naturally quasi-concave.
Indeed, let us consider n ∈ N, (x1, y1), (x2, y2), ..., (xn, yn) ∈ L. For each i =

1, 2, ..., n, there exists (ui, vi) ∈ M(xi, yi), that is ui ∈ A(xi) and f(ui, yi, z) ⊂ C

∀z ∈ A(xi) and vi ∈ F (xi). Let λ ∈ Δn−1 such that
n∑

i=1
λi(xi, yi) ∈ L and let us

denote (u, v) =
n∑

i=1
λi(ui, vi).

The hypotheses assures that (A, F ) is weakly naturally quasiconcave and in the
virtue of this property, there exists g = (g1, g2, ..., gn) : Δn−1 → Δn−1 a function de-
pending on (x1, y1), (x2, y2), ..., (xn, yn) with gi continuous, gi(1) = 1, gi(0) = 0 for

each i = 1, 2, ...n, such that for every λ = (λ1, λ2, ..., λn) ∈ Δn−1,
n∑

i=1
gi(λi)(ui, vi) ∈

(A, F )(
n∑

i=1
λixi).

Given assumption ii) in the statement of the theorem, we can write:

f(
n∑

i=1
gi(λi)ui,

n∑
i=1

λiyi, z) ⊂ f(ui, yi, z) ⊂ C.

Naturally, f(
n∑

i=1
gi(λi)ui,

n∑
i=1

λiyi, z) ⊂ C ∀z ∈ A(
n∑

i=1
λixi). Now, having shown
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that A(
n∑

i=1
λixi) ⊂ A(xi) for each i ∈ {1, 2, ..., n},we obtain f(

n∑
i=1

gi(λi)ui,
n∑

i=1
λiyi, z)

⊂ C ∀z ∈ A(xi).
Therefore, P is weakly naturally quasi-concave.
We will use the last assertion in order to prove the weakly naturally quasi-concavity

of M.
Towards this end, we first notice that
n∑

i=1
gi(λi)ui ∈ A(

n∑
i=1

λixi), f(
n∑

i=1
gi(λi)ui,

n∑
i=1

λiyi, z) ⊂ C ∀z ∈ A(
n∑

i=1
λixi) and

n∑
i=1

gi(λi)vi ∈ F (
n∑

i=1
λixi), that is

n∑
i=1

gi(λi)ui ∈ P (
n∑

i=1
λixi,

n∑
i=1

λiyi) and
n∑

i=1
gi(λi)vi ∈ F (

n∑
i=1

λixi).

Consequently,
n∑

i=1
gi(λi)(ui, vi) ∈ M(

n∑
i=1

λi(xi, yi).

Hence, we proved that M is also weakly naturally quasi-concave.
Further, we will show that M has a continuous selection on L. We exploit the fact

that L is a simplex. Let us suppose that it is the convex hull of the affinely independent
set {(a1, b1), (a2, b2), ..., (an, bn)}.
On appealing to the last assumption, we state that there exist unique continu-

ous functions λi : L → R, i = 1, 2, ..., n such that, for each (x, y) ∈ L, we get

(λ1(x, y), λ2(x, y), ..., λn(x, y)) ∈ Δn−1 and (x, y) =
n∑

i=1
λi(x, y)(ai, bi).

Let us define h : L → L by
h(ai, bi) = (ci, di) (i = 1, ..., n) and

h(
n∑

i=1
λi(ai, bi)) =

n∑
i=1

λi(ci, di) ∈ M(x, y).

We show that h is continuous. For this purpose, let us consider (xm, ym)m∈N a

sequence which converges to (x0, y0) ∈ L, where (xm, ym) =
n∑

i=1
λi(xm, ym)(ai, bi)

and (x0, y0) =
n∑

i=1
λi(x0)(ai, bi). The continuity of λi, implies that, for each i =

1, 2, ..., n, λi(xm, ym) → λi(x0, y0) as m → ∞. Hence, h(xm, ym) → h(x0, y0) as
m → ∞, i.e. h is continuous.
We proved that M has a continuous selection on B.
Finally, we apply the Brouwer fixed point theorem to guarantee the existence

of a fixed point for the function h. Therefore, there exists (x∗, y∗) ∈ L such that
h(x∗, y∗) = (x∗, y∗) and the last statement assures that (x∗, y∗) ∈ M(x∗, y∗). Clearly,
x∗ ∈ P (x∗, y∗) and y∗ ∈ F (x∗), which imply that there exist x∗ ∈ K and y∗ ∈ F (x∗)
such that x∗ ∈ A(x∗) and f(x∗, y∗, x) ⊂ C, ∀x ∈ A(x∗). We are thus lead to the
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conclusion that x∗ ∈ VA(f).
We have shown that VA(f) is nonempty and the proof is completed.
We will prove a similar result in case of biconvexity. The biconvex sets were

introduced by Aumann [3]. For the reader’s convenience, we present below the most
important notions concerning biconvexity.
Let X ⊂ E1 and Y ⊂ E2 be two nonempty convex sets, E1, E2 be topological

vector spaces and let B ⊂ X × Y.
The set B ⊂ X ×Y is called a biconvex set on X × Y if the section Bx =

{y∈Y : (x, y)∈B} is convex for every x ∈ X and the sectionBy ={x∈X : (x, y)∈B}
is convex for every y ∈ Y. Let (xi, yi) ∈ X × Y for i = 1, 2, ...n. A convex com-

bination (x, y) =
n∑

i=1
λi(xi, yi), (with

n∑
i=1

λi = 1, λi ≥ 0 i = 1, 2, ..., n) is called a

biconvex combination if x1 = x2 = ... = xn = x or y1 = y2 = ... = yn = y. Let
D ⊆ X ×Y be a given set. The set H :=

⋂{DI : D ⊆ DI , DI is biconvex} is called
biconvex hull of D and is denoted biconv(D).

Theorem 9. (Aumann and Hart [3]). A set B ⊆ X × Y is biconvex if and only if
B contains all biconvex combinations of its elements.

Theorem 10. (Aumann and Hart [3]). The biconvex hull of a set P is biconvex.
Furthermore, it is the smallest biconvex set (in the sense of set inclusion), which
contains P.

Lemma 4. (Gorski, Pfeuffer and Klamroth [13]). Let D ⊆ X × Y be a given set.
Then biconv(D) ⊆conv(D).

Now we introduce the following definition.

Definition 4. Let B ⊂ X × Y be a biconvex set, Z a nonempty convex subset
of a topological vector space F and T : B → 2Z a correspondence. T is called
weakly biconvex if for each finite set {(x1, y1), (x2, y2), ..., (xn, yn)} ⊂ B, there exists
zi ∈ T (xi, yi), (i = 1, 2, ..., n) such that for every biconvex combination (x, y) =
n∑

i=1
λi(xi, yi) ∈ B (with

n∑
i=1

λi = 1, λi ≥ 0 i = 1, 2, ..., n),
n∑

i=1
λizi ∈ T (

n∑
i=1

λi(xi, yi)).

The second important statement of this section concerns the existence of the so-
lutions for the strong vector quasi-equilibrium problems in case of correspondences
having an weakly convex graph. The proof relies on the construction of a continuous
selection of a biconvex correspondence. The Brouwer fixed point theorem is also used.

Theorem 11. Let E1, E2, Z be topological vector spaces and K ⊂ E1, D ⊂ E2

be subsets. Let B be the biconvex hull of {(a1, b1), (a2, b2), ..., (an, bn)} ⊂ K ×D (a
biconvex subset of K × D) and denote BK = prKB.
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Let (A, F ) : BK → 2B, such that and A : BK → 2K and F : BK → 2D

have weakly convex graphs and for each n ∈ N, λ ∈ Δn−1 and x1, x2, ..., xn ∈ Bk,

A(
n∑

i=1
λixi) ⊂

n⋂
i=1

A(xi).

Let f : B × K → 2K such that:

(a) ∀(x, y) ∈ B, f(x, y, A(x)) ⊂ C

(b) for each z ∈ K, for each n ∈ N, λ ∈ Δn−1 and (x1, y1), (x2, y2), ..., (xn, yn) ∈
B, f(

n∑
i=1

λixi,
n∑

i=1
λiyi, z) ⊂

n⋂
i=1

f(xi, yi, z).

Then, Vf �= ∅.

Proof. The approach is similar to one of the proof of the previous theorem. It relies
on Brouwer’s fixed point theorem, which will be applied to a continuous selection of
a weakly biconvex correspondence.
The key idea of the method is to define the correspondence P : B → 2K as follows:
P (x, y) = {u ∈ A(x) : f(u, y, z) ⊂ C ∀z ∈ A(x)}.
Let us focus on the correspondence P. We will prove that it is weakly biconvex.

Towards this end, let n ∈ N and (x1, y1), (x2, y2), ..., (xn, yn) ∈ B.

For each i = 1, 2, ..., n, there exists ui ∈ Pi(xi, yi), that is ui ∈ A(xi) and

f(ui, yi, z) ⊂ C ∀z ∈ A(xi). Let λ ∈ Δn−1 be such that
n∑

i=1
λi(xi, yi) ∈ B and

let us denote u =
n∑

i=1
λiui. Knowing that A has a weakly convex graph, we obtain

u ∈ A(
n∑

i=1
λixi).

It is clear that f(
n∑

i=1
λiui,

n∑
i=1

λiyi, z) ⊂ f(ui, yi, z) ⊂ C ∀z ∈ A(
n∑

i=1
λixi).

The inclusion A(
n∑

i=1
λixi) ⊂ A(xi) for each i ∈ {1, 2, ..., n}, implies that

f(
n∑

i=1
λiui,

n∑
i=1

λiyi, z) ⊂ C ∀z ∈ A(xi) ∀z ∈ A(xi), i = 1, 2, ..., n.

Therefore, P is weakly biconvex.
Next we define the correspondence M : B → 2B by
M(x, y) = (P (x, y), F (x))∀(x, y) ∈ B.

We claim that M is also weakly biconvex.
Indeed, let n ∈ N and (x1, y1), (x2, y2), ..., (xn, yn) ∈ B. The weakly biconvexity

of P assures the existence, for each i = 1, 2, ..., n, of an element ui ∈ P (xi, yi) such

that for each λ ∈ Δn−1,
n∑

i=1
λiui ∈ P (

n∑
i=1

λi(xi, yi)).
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The property fulfilled by F, of having a weakly convex graph, in turn guarantees
that, for each i = 1, 2, ..., n, there exists vi ∈ F (xi, yi) such that for each λ ∈ Δn−1,
n∑

i=1
λivi ∈ F (

n∑
i=1

λixi).We conclude that for each i = 1, 2, ..., n, there exists (ui, vi) ∈

M(xi, yi) such that for each λ ∈ Δn−1,
n∑

i=1
λi(ui, vi) ∈ M(

n∑
i=1

λi(xi, yi)).

Further, it will be shown that M has a continuous selection on B.
Since B is the biconvex hull of (a1, b1), ..., (an, bn), there exist unique continu-

ous functions λi : K → R, i = 1, 2, ..., n such that for each (x, y) ∈ B, we have

(λ1(x, y), λ2(x, y), ..., λn(x, y)) ∈ Δn−1 and (x, y) =
n∑

i=1
λi(x, y)(ai, bi).

Define h : B → B by
h(ai, bi) = (ci, di) (i = 1, ..., n) and

h(
n∑

i=1
λi(ai, bi)) =

n∑
i=1

λi(ci, di) ∈ M(x, y).

To obtain the continuity of f, let (xm, ym)m∈N be a sequence which converges to

(x0, y0) ∈ B, where (xm, ym) =
n∑

i=1
λi(xm, ym)(ai, bi) implies a1 = a2 = ... = an =

a or b1 = b2 = ... = bn = b and (x0, y0) =
n∑

i=1
λi(x0)(ai, bi) with a1 = a2 = ... =

an = a or b1 = b2 = ... = bn = b. In the virtue of the continuity of λi, for each
i = 1, 2, ..., n, the convergence is achieved: λi(xm, ym) → λi(x0, y0) as m → ∞.
Hence h(xm, ym) → h(x0, y0) as m → ∞, which means that h is continuous.
We proved that M has a continuous selection on B. According to Brouwer’s fixed

point theorem, h has a fixed point (x∗, y∗) ∈ B, i.e. h(x∗, y∗) = (x∗, y∗). We obtain
that (x∗, y∗) ∈ M(x∗, y∗). Therefore, x∗ ∈ P (x∗, y∗) and y∗ ∈ F (x∗), which implies
that there exists x∗ ∈ K and y∗ ∈ F (x∗) such that x∗ ∈ A(x∗) and f(x∗, y∗, x) ⊂ C,
∀x ∈ A(x∗). The proof provides an element x∗ ∈ VA(f) and then, VA(f) is nonempty.

5.2. Strong vectorquasi-equilibrium problemsunder weak continuity assumptions

The aim of this subsection is to generalize the results concerning the problems
with lower semicontinuous correspondences. The technique of proof we use is an
approximation one.
Let us recall the following notation. If A : X → 2Y is a correspondence and

D, V ⊂ Y, then AV : X → 2Y is defined by AV (x) = (A(x)+ V )∩D, ∀x ∈ X. The
hypotheses of Theorem 12 regards the lower semicontinuity of AV , where V is any
absolutely convex symmetric neighborhood of 0 in X.
The next example shows that the assumption we made over A can be fulfilled by

correspondences which are not lower semicontinuous. Thus, our result is indeed an
extension of an already studied case (please see [24]).

Example 2. Let A : (0, 2) → 2[1,4] be the correspondence defined by
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A(x) =

⎧⎪⎨
⎪⎩

[2 − x, 2], if x ∈ (0, 1);
{4} if x = 1;
[1, 2] if x ∈ (1, 2).

A is not lower semicontinuous on (0, 2).

Let D = [1, 2]. For each V = (−ε, ε) with ε > 0, the correspondence AV is lower
semicontinuous and AV has nonempty convex values.

Theorem 12. Let E1, E2, Z be Hausdorff locally convex topological vector spaces,
K ⊂ E1 and D ⊂ E2 be nonempty convex compact subsets and C be a nonempty
closed convex cone. Let A : K → 2K be a correspondence such that A and AV1

are lower semicontinuous with nonempty convex values for each absolutely convex
symmetric neighborhood V1 of 0 in X. Let F : K → 2D be such that F and FV2 has
nonempty convex values for each absolutely convex symmetric neighborhood V2 of 0
in Y. Let f : K × D × K → 2Z such that the following assumptions are satisfied:

(i) for all (x, y) ∈ K × D, f(x, y, A(x)) ⊂ C and f(x, y, AV1(x)) ⊂ C for each
absolutely convex symmetric neighborhood V1 of 0 in X ;

(ii) for all (y, z) ∈ D × K, f(·, y, z) is properly C−quasiconvex;
(iii) f(·, ·, ·) is upper C−continuous;
(iv) for all y ∈ D, f(·, y, ·) is lower (−C)-continuous.

Then, VA(f) �= ∅.

Proof. An approximation method will be used in order to demonstrate our last
result.
In order to accomplish our proof, we need to define the correspondences P :

K × D → 2K and M : K × D → 2K×D by
P (x, y) = {u ∈ A(x) : f(u, y, z) ⊂ C, ∀z ∈ A(x)} ∀(x, y) ∈ K × D and
M(x, y) = (P (x, y), F (x)) ∀(x, y) ∈ K × D.

Let V1 be an open absolutely convex symmetric neighborhood of 0 in X.

Firstly, we will show that PV1 is an upper semicontinuous correspondence with
nonempty closed convex values. The elements of VA(f) will be obtained as a conse-
quence of the existence of the fixed points for M.
Let PV1 be defined by
PV1(x, y) = {u ∈ AV1(x) : f(u, y, z) ⊂ C, ∀z ∈ AV1(x)} ∀(x, y) ∈ K × D.

We will show that the values of PV1 can be described by
PV1(x, y) = {u ∈ AV1(x) : f(u, y, z) ⊂ C, ∀z ∈ AV1(x)} ∀(x, y) ∈ K × D.

In order to do this, the closedness of PV1 will be shown firstly. We consider the net
{(xα, yα, uα) : α ∈ Λ} ⊂GrPV1 such that (xα, yα, uα) → (x0, y0, u0) ∈ K × D × K.

Then, uα ∈ PV1(xα, yα) for each α ∈ Λ and we prove that (x0, y0, u0) ∈GrPV1,
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that is u0 ∈ PV1(x0, y0). Since AV1 is upper semicontinuous and uα ∈ AV1(xα), then
u0 ∈ AV1(x0). If, by contrary, u0 /∈ PV1(x0, y0), there exists z0 ∈ AV1(x0) such that
f(u0, y0, z0) � C. This relation is exploited to assert the existence of a neighborhood
U0 of the origin in Z such that f(u0, y0, z0) + U0 � C.
Further, the upper C− continuity of f guarantees that there exists a neighbor-

hood V (u0, y0, z0) of (u0, y0, z0) such that, f(u, y, z) ⊂ f(u0, y0, z0) + U0 + C for
each (u, y, z) ∈ V (u0, y0, z0). Then, for each (u, y, z) ∈ V (u0, y0, z0), f(u, y, z) �
C + C ⊂ C, which assures the existence of α0 ∈ Λ such that for each α ≥ α0,
f(uα, yα, zα) � C.

The last relation contradicts uα ∈ PV1(xα, yα). Consequently, the assumption that
u0 /∈ PV1(x0, y0) is false. Since u0 ∈ PV1(x0, y0), GrPV1 is closed, and, since K is
compact, the upper semicontinuity of PV1 is guaranteed.
Now, we note that AV1(x) is nonempty for each x ∈ K and this last remark,

together with the assumption i), implies the non-emptiness of PV1(x, y).
Let us fix (x0, y0) ∈ K × D. We will prove secondly that PV1(x0, y0) is closed.

Towards this end, we consider the net {uα : α ∈ Λ} ⊆ PV1(x0, y0) such that uα → u0.

Then, uα ∈ AV1(x0) and f(uα, y0, z) ⊂ C for all z ∈ AV1(uα). The closedness of
AV1(x0) allows us to deduce that u0 ∈ AV1(x0).
On appealing to the lower semicontinuity of AV1, we observe that, for any z0 ∈

AV1(u0) and {uα} → u0, there exists a net {zα} such that zα ∈ AV1(uα) and zα → z0.

The last assertion guarantees, for each α, the existence of zα ∈ AV1(uα) with the
property that f(uα, y0, zα) ⊂ C. Since f(·, y, ·) is lower (−C)-continuous, for each
neighborhood U of the origin in Z, there exists a subnet {uβ , zβ} of {uα, zα} such
that f(u0, y0, z0) ⊂ f(uα, y0, zα) + U + C. Consequently, f(u0, y0, z0) ⊂ U + C.
Further, we prove that f(u0, y0, z0)⊂C. If, by contrary, there exists a∈f(u0, y0, z0)

and a /∈ C, then, 0 /∈ B := C − a and B is closed. Thus, Z\B is open and
0 ∈ Z\B. There exists an open symmetric neighborhood U1 of the origin in Z, such
that U1 ⊂ Z\B and U1 ∩ B = ∅. Therefore, 0 /∈ B + U1, i.e., a /∈ C + U1, which
contradicts f(u0, y0, z0) ⊂ U1 + C. We conclude that f(u0, y0, z0) ⊂ C and then,
u0 ∈ PV1(x0, y0) and PV1(x0, y0) is closed.
Therefore, PV1(x, y) = {u ∈ AV1(x) : f(u, y, z) ⊂ C, ∀z ∈ AV1(x)} ∀(x, y) ∈

K × D.
Now, we claim that PV1(x0, y0) is convex, where (x0, y0) ∈ X × X is arbitrary

fixed. Indeed, let us consider u1, u2 ∈ PV1(x0, y0) and λ ∈ [0, 1]. Since u1, u2 ∈
AV1(x0) and the set AV1(x0) is convex, the convex combination u = λu1 + (1−λ)u2

is an element of AV1(x0). Further, by using the property of properly C-quasiconvexity of
f(·, y, z), we can assume, without loss of generality, that f(u1, y0, z) ⊂ f(u, y0, z)+C.
We will prove that u ∈ PV1(x0, y0). If, by contrary, u /∈ PV1(x0, y0), there exists z0 ∈
AV1(x0) such that f(u, y0, z0) � C and, consequently, f(u1, y0, z) ⊂ f(u, y0, z)+C �
C+C ⊂ C, which contradicts u1 ∈ PV1(x0, y0). Thus, u ∈ PV1(x0, y0), which implies
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that PV1(x0, y0) is a convex set. The claim is shown.
In order to prove the existence of the solutions for SVQEP, let us consider βi a basis

of open absolutely convex symmetric neighborhoods of zero in Ei for each i ∈ {1, 2}
and let β = β1 × β2. For each system of neighborhoods V = V1 × V2 ∈ β1 × β2, let’s
define the correspondence MV : K × D → 2K×D, by

MV (x, y) = (PV1(x, y), FV2(x)) = ((P (x, y) + V1) ∩ K, (F (x) + V2) ∩ D),
(x, y) ∈ K × D.

It is not difficult to see that MV is upper semicontinuous with nonempty closed
convex values. Furthermore, by appealing to Ky Fan fixed point theorem [10], we are
able to find a pair (x∗

V1
, y∗V2

) ∈ K × D such that (x∗
V1

, y∗V2
) ∈ MV (x∗

V1
, y∗V2

).
For each V = V1 × V2 ∈ β, let’s define
QV = {(x, y) ∈ K × D : x ∈ PV1(x, y)} ∩ {(x, y) ∈ K × D : y ∈ FV2(x, y)}.
QV is nonempty since (x∗

V1
, y∗V2

) ∈ QV , thenQV is nonempty and closed. We prove
that the family {QV : V ∈ β} has the finite intersection property. Let {V (1), V (2), ...,

V (n)} be any finite set of β and let V (k) = V
(k)
1 × V

(k)
2 , k = 1, 2, ..., n. Let V1 =

n∩
k=1

V
(k)
1 and V2 =

n∩
k=1

V
(k)
2 . Then, V1 ∈ β1 and V2 ∈ β2. Thus, V = V1×V2 ∈ β1×β2.

Clearly, QV ⊆ n∩
k=1

QV (k) , so that
n∩

k=1
QV (k) �= ∅.

Since K × D is compact and the family {QV : V ∈ β} has the finite intersection
property, we conclude that ∩{QV : V ∈ β} �= ∅. Take any (x∗, y∗) ∈ ∩{QV : V ∈ β},
then for each V ∈ β, (x∗, y∗) ∈ MV (x∗, y∗). We can now appeal to Lemma 2 to
assert that (x∗, y∗) ∈ M(x∗, y∗), which implies x∗ ∈ P (x∗, y∗) and y∗ ∈ F (x∗).
By using the above technique, we can show that the values of P can be described

by
P (x∗, y∗) = {u ∈ A(x) : f(u, y, z) ⊂ C, ∀z ∈ A(x)} ∀(x, y) ∈ K × D.

Consequently, we are guaranteed that there exist x∗ ∈ K and y∗ ∈ F (x∗) such that
x∗ ∈ A(x∗) and f(x∗, y∗, x) ⊂ C, ∀x ∈ A(x∗). It is clear that x∗ ∈ VA(f) and then,
the nonemptiness of VA(f) is proven.

Remark 3. Theorem 2 generalizes Theorem 3.1 in [24], since the correspondences
A and F verify assumptions which are weaker than the ones in [24].

REFERENCES

1. Q. H. Ansari and J. C. Yao, An existence result for the generalized vector equilibrium,
Appl. Math. Lett., 12 (1999) 53-56.

2. Q. H. Ansari, A. P. Farajzadeh and S. Schaible, Existence of solutions of strong vector
equilibrium problems, Taiwanese Journal of Mathematics, 16(1) (2012), 165-178.

3. R. Aumann and S. Hart, Bi-convexity and bi-martingales, Isr. J. Math., 54(2) (1986),
159-180.



276 Monica Patriche
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