TAIWANESE JOURNAL OF MATHEMATICS Vol. 19, No. 1, pp. 243-252, February 2015 DOI: 10.11650/tjm.19.2015.3873 This paper is available online at http://journal.taiwanmathsoc.org.tw

MAXIMIZATION AND MINIMIZATION PROBLEMS RELATED TO A *p*-LAPLACIAN EQUATION ON A MULTIPLY CONNECTED DOMAIN

N. Amiri and M. Zivari-Rezapour*

Abstract. In this paper we investigate maximization and minimization problems related to a *p*-Laplacian equation on a multiply connected domain in \mathbb{R}^2 , where the admissible set is a rearrangement class of a fixed function. We prove existence and representation of the maximizers and existence, uniqueness and representation of the minimizer.

1. INTRODUCTION

Let Ω be a nonempty, bounded, connected open set in \mathbb{R}^2 whose boundary is a disjoint union of simple closed curves $\Gamma_0, \Gamma_1, \ldots, \Gamma_n$ of class C^2 , and suppose Γ_0 encloses Ω . Let 1 , we denote the conjugate of <math>p by $p' = \frac{p}{p-1}$. We consider the following boundary value problem

(1)
$$\begin{cases} -\Delta_p u = f & \text{in } \Omega, \\ u = 0 & \text{on } \Gamma_0, \\ u = \text{constant} & \text{on } \Gamma_i, \quad i = 1, \dots, n, \\ -\int_{\Gamma_i} |\nabla u|^{p-2} \nabla u \cdot \mathbf{n} \, \mathrm{d}s = \gamma_i & \text{for } i = 1, \dots, n, \end{cases}$$

where $f \in L^{p'}(\Omega)$, **n** is the unit outer normal to $\partial\Omega$, boundary of Ω , and $\gamma_1, \ldots, \gamma_n$ are real numbers. When p = 2, G. R. Burton in [4, Appendix] has proved that the problem (1) has exactly one solution. By similar method, we show that (1) still has a unique solution when $1 . For each <math>f \in L^{p'}(\Omega)$ we denote the unique solution of (1) by u_f . For application of (1), when p = 2, to fluids dynamics (vorticity) see [4]. Our interest in this paper are in the maximization and minimization of the quantity $\frac{1}{p} \int_{\Omega} |\nabla u_f|^p dx$, the kinetic energy, as f varies in a rearrangement class of a fixed function in $L^{p'}(\Omega)$; see the next section for precise definition of rearrangement of

Received October 6, 2013, accepted June 4, 2014.

Communicated by Franco Giannessi.

²⁰¹⁰ Mathematics Subject Classification: 35J20, 49J20.

Key words and phrases: Rearrangement, Maximization, Minimization, Existence, Uniqueness. *Corresponding author.

functions. Rearrangement optimization problems have been investigated in recent years by many authors, see [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. However, the boundary value problem in the one which is discussed here is interesting and very different from others.

2. Rearrangement

Let E be a (Lebesgue) measurable set in \mathbb{R}^N . Real measurable functions f and g on E are *rearrangements* of each other whenever

$$\mathcal{L}_N(\{x \in \Omega : f(x) \ge \alpha\}) = \mathcal{L}_N(\{x \in \Omega : g(x) \ge \alpha\}), \text{ for all } \alpha \in \mathbb{R},$$

where \mathcal{L}_N denotes the *N*-dimensional Lebesgue measure. It is well known that if $f \in L^r(E)$, $1 \leq r \leq \infty$, and *g* be a rearrangement of *f*, then $g \in L^r(E)$ and in fact $||f||_r = ||g||_r$, where $||.||_r$ denotes the standard norm on $L^r(E)$. We denote the rearrangement class of *f* by $\mathcal{R}(f)$ which comprises all functions which are rearrangements of *f*. The readers can see [2, 3] for more results about rearrangements of functions.

We now collect some useful lemmas to be applied later.

Lemma 2.1. ([3]). Let p > 1 and $f_0 \in L^p(E)$. Then

- (i) $\overline{\mathcal{R}(f_0)}$, the weak closure of $\mathcal{R}(f_0)$ in $L^p(E)$, is compact with respect to $L^{p'}$ -topology, weak topology, on $L^p(E)$.
- (*ii*) $\overline{\mathcal{R}(f_0)}$ is convex.

Lemma 2.2. ([3]). Let $f_0 : E \to \mathbb{R}$ and $g : E \to \mathbb{R}$ be two measurable functions. If every level set of g has measure zero then there exists an increasing function ξ such that $\xi(g) \in \mathcal{R}(f_0)$. Furthermore there exists a decreasing function η such that $\eta(g) \in \mathcal{R}(f_0)$.

Lemma 2.3. ([3]). Let p > 1, $f_0 \in L^p(E)$ and $g \in L^{p'}(E)$.

(i) If there is an increasing function ξ such that $\xi(g) \in \mathcal{R}(f_0)$ then

$$\int_E fg \, \mathrm{d}x \le \int_E \xi(g)g \, \mathrm{d}x, \quad \text{for all } f \in \overline{\mathcal{R}(f_0)},$$

and $\xi(g)$ is the unique maximizer relative to $\overline{\mathcal{R}(f_0)}$.

(ii) If there is a decreasing function η such that $\eta(g) \in \mathcal{R}(f_0)$ then

$$\int_E fg \, \mathrm{d}x \ge \int_E \eta(g)g \, \mathrm{d}x, \quad \text{for all } f \in \overline{\mathcal{R}(f_0)},$$

and $\eta(g)$ is the unique minimizer relative to $\overline{\mathcal{R}(f_0)}$.

Lemma 2.4. ([2]). Let $1 \le r \le \infty$ and s be the conjugate exponent of r. Let $g \in L^r(E)$ and $\Psi : L^r(E) \to \mathbb{R}$ be convex.

- (i) Suppose that Ψ is sequentially continuous in the L^s -topology on $L^r(E)$. Then Ψ attains a maximum value relative to $\mathcal{R}(g)$.
- (ii) Suppose that Ψ is strictly convex, that g^* is a maximizer for Ψ relative to $\mathcal{R}(g)$ and that w is a member of sub-gradient of Ψ at g^* . Then $g^* = \xi(w)$ almost everywhere in E for some increasing function ξ .

3. EXISTENCE AND UNIQUENESS

In this section we prove the existence and uniqueness for the boundary value problem (1).

Theorem 3.1. Let $\gamma_1, \ldots, \gamma_n \in \mathbb{R}$, $1 , and <math>f \in L^{p'}(\Omega)$. Then the boundary value problem (1) has a unique solution.

Proof. Let $\Omega_0, \Omega_1, \ldots, \Omega_n$ be the regions enclosed by $\Gamma_0, \Gamma_1, \ldots, \Gamma_n$. Let

 $W = \{ w \in W^{1,p}(\Omega) \mid w = 0 \text{ on } \Gamma_0 \text{ and } w = \text{constant on } \Gamma_i, i = 1, \dots, n \}.$

If $w \in W$, then we denote the value of w on Γ_i by $(w)_i$ for i = 1, ..., n. Define

$$J(w) := \frac{1}{p} \int_{\Omega} |\nabla w|^p \, \mathrm{d}x - \int_{\Omega} f w \, \mathrm{d}x + \sum_{i=1}^n \gamma_i(w)_i, \quad w \in W.$$

By the trace embedding $W^{1,p}(\Omega) \to L^p(\partial\Omega)$ we infer that W is a closed linear subspace of $W^{1,p}(\Omega)$, and W comprises the restrictions to Ω of elements of $W_0^{1,p}(\Omega_0)$ that are constant on Ω_i , i = 1, ..., n. We consider the equivalent norm for $W_0^{1,p}(\Omega_0)$ that is defined as follows

$$||w|| = \left(\int_{\Omega_0} |\nabla w|^p \, \mathrm{d}x\right)^{\frac{1}{p}}.$$

It is well known that the function $x \to |x|^p$, $x \in \mathbb{R}^N$, is strictly convex. From this, it is easy to deduce that J is strictly convex. We know that J is differentiable on W with

$$J'(w)v = \int_{\Omega} |\nabla w|^{p-2} \nabla w \cdot \nabla v \, \mathrm{d}x - \int_{\Omega} fv \, \mathrm{d}x + \sum_{i=1}^{n} \gamma_i(v)_i.$$

Moreover,

$$J(w) \ge \frac{1}{p} \|w\|^p - \|f\|_{p'} \|w\|_p + \sum_{i=1}^n \gamma_i(w)_i \ge \frac{1}{p} \|w\|^p - C \|w\| + \sum_{i=1}^n \gamma_i(w)_i,$$

for some C > 0. Thus J is coercive because p > 1. Therefore J has a unique global minimizer. We know that $u \in W$ is a critical point of J whenever J'(u)v = 0, for all $v \in W$. Hence

(2)
$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, \mathrm{d}x - \int_{\Omega} f v \, \mathrm{d}x + \sum_{i=1}^{n} \gamma_i(v)_i = 0, \text{ for all } v \in W.$$

Let Lipschitz functions $g^1, \ldots, g^n \in W$ be chosen to satisfy the boundary conditions $(g^j)_i = \delta_{ij}, i, j = 1, \ldots, n$. Then (2) is equivalent to

(3)
$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, \mathrm{d}x - \int_{\Omega} f v \, \mathrm{d}x = 0, \text{ for all } v \in W_0^{1,p}(\Omega),$$

(4)
$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla g^j \, \mathrm{d}x - \int_{\Omega} f g^j \, \mathrm{d}x + \gamma_j = 0, \quad j = 1, \dots, n.$$

Thus (3) is a variational formulation of $-\Delta_p u = f$, in Ω . Now from (4) and Divergence theorem we infer that

$$\int_{\Omega} (-\Delta_p u - f) g^j \, \mathrm{d}x + \sum_{i=1}^n \int_{\Gamma_i} g^j |\nabla u|^{p-2} \nabla u \cdot \mathbf{n} \, \mathrm{d}s + \gamma_j = 0, \ j = 1, \dots, n,$$

which reduces to

$$\int_{\Gamma_j} |\nabla u|^{p-2} \nabla u \cdot \mathbf{n} \, \mathrm{d}s + \gamma_j = 0, \quad j = 1, \dots, n.$$

It follows that (1) holds if and only if u is a critical point of J, and therefore (1) has a unique solution.

4. Optimization Problem

Let $\gamma_1, \ldots, \gamma_n$ are fixed real numbers and $1 . Also, let <math>f_0$ is a fixed function in $L^{p'}(\Omega)$ and $\mathcal{R} := \mathcal{R}(f_0)$. It is well known that the solution u_f of problem (1) satisfies the following variational problem

(5)
$$\frac{1}{p} \int_{\Omega} |\nabla u_f|^p \, \mathrm{d}x - \int_{\Omega} f u_f \, \mathrm{d}x + \sum_{i=1}^n \gamma_i (u_f)_i = \min_{w \in W} J_f(w),$$

where

$$J_f(w) := \frac{1}{p} \int_{\Omega} |\nabla w|^p \, \mathrm{d}x - \int_{\Omega} f w \, \mathrm{d}x + \sum_{i=1}^n \gamma_i(w)_i.$$

By (2), when $v = u = u_f$, and (5) we deduce that

(6)

$$(p-1)\int_{\Omega} |\nabla u_f|^p \, \mathrm{d}x = \max_{w \in W} (-pJ_f(w))$$

$$= \max_{w \in W} \left(p \int_{\Omega} fw \, \mathrm{d}x - \int_{\Omega} |\nabla w|^p \, \mathrm{d}x - p \sum_{i=1}^n \gamma_i(w)_i \right).$$

We define the functional $\varphi: L^{p'}(\Omega) \to \mathbb{R}$ by

$$\varphi(f) := \int_{\Omega} |\nabla u_f|^p \, \mathrm{d}x.$$

Our interest is in the following optimization problems

(7)
$$\max_{f \in \mathcal{R}} \varphi(f),$$

and

(8)
$$\min_{f \in \mathcal{R}} \varphi(f).$$

We now prove some useful lemmas to be applied later.

Lemma 4.1. The functional φ is continuous with respect to weak topology in $L^{p'}(\Omega)$.

Proof. Let a sequence $\{f_j\}$ and f be all in $L^{p'}(\Omega)$ such that $f_j \rightharpoonup f$ in $L^{p'}(\Omega)$. To simplify notation we write u_j in place of u_{f_j} . From (6) we have

$$(p-1)\varphi(f) + p \int_{\Omega} (f_j - f) u_f \, \mathrm{d}x$$

$$= p \int_{\Omega} f_j u_f \, \mathrm{d}x - \int_{\Omega} |\nabla u_f|^p \, \mathrm{d}x - p \sum_{i=1}^n \gamma_i (u_f)_i$$

(9)
$$\leq (p-1)\varphi(f_j)$$

$$= p \int_{\Omega} f u_j \, \mathrm{d}x - \int_{\Omega} |\nabla u_j|^p \, \mathrm{d}x - p \sum_{i=1}^n \gamma_i (u_j)_i + p \int_{\Omega} (f_j - f) u_j \, \mathrm{d}x$$

$$\leq (p-1)\varphi(f) + p \int_{\Omega} (f_j - f) u_j \, \mathrm{d}x.$$

Since $f_j \rightharpoonup f$ we deduce that

(10)
$$\lim_{j \to \infty} \int_{\Omega} (f_j - f) u_f \, \mathrm{d}x = 0.$$

Now, we prove that

(11)
$$\lim_{j \to \infty} \int_{\Omega} (f_j - f) u_j \, \mathrm{d}x = 0.$$

From (2), when $v = u = u_j$, $f_j \rightarrow f$, Poincarè's inequality for $W_0^{1,p}(\Omega_0)$ and Hölder's inequality we find that

$$\begin{aligned} \|u_j\|^p &\leq \left| \int_{\Omega} f_j u_j \, \mathrm{d}x \right| + \sum_{i=1}^n |\gamma_i(u_j)_i| \\ &\leq \|f_j\|_{p'} \|u_j\|_p + C \|u_j\| \\ &\leq C \|u_j\|, \end{aligned}$$

where C denotes a positive constant that can change from line to line. Note that in the above inequalities, the second inequality, we used this fact that if $i \in \{1, 2, \dots, n\}$ then

$$|(u_j)_i|^p \mathcal{L}_2(\Omega_i) = \int_{\Omega_i} |u_j|^p \, \mathrm{d}x \le \int_{\Omega_0} |u_j|^p \, \mathrm{d}x \le C ||u_j||^p.$$

Hence $\{u_j\} \subset W$ is a bounded sequence in $W_0^{1,p}(\Omega_0)$, thus there exists a subsequence, still denoted $\{u_j\}$, that converges weakly to $\hat{u} \in W$, because W is closed. The compact imbedding of $W^{1,p}(\Omega)$ into $L^p(\Omega)$ implies that $\{u_j\}$ converges strongly to \hat{u} in $L^p(\Omega)$. Thus, we derive (11). Therefore, (9), (10) and (11) complete the proof of the lemma.

Remark 4.1. According to the proof of the Lemma 4.1, we claim that \hat{u} is equal to u_f almost every where in Ω . We know that

$$(p-1)\varphi(f_j) = p \int_{\Omega} f_j u_j \, \mathrm{d}x - \int_{\Omega} |\nabla u_j|^p \, \mathrm{d}x - p \sum_{i=1}^n \gamma_i(u_j)_i.$$

Now by the weak lower semicontinuity of the norm $\|.\|$ and (6), we derive

$$(p-1)\varphi(f) \le p \int_{\Omega} f\hat{u} \, \mathrm{d}x - \int_{\Omega} |\nabla \hat{u}|^p \, \mathrm{d}x - p \sum_{i=1}^n \gamma_i(\hat{u})_i$$
$$\le (p-1)\varphi(f).$$

Therefore, the uniqueness of the maximizer of the functional $-pJ_f(.)$ implies that $\hat{u} = u_f$ almost every where in Ω .

Lemma 4.2. The functional φ is strictly convex in $L^{p'}(\Omega)$.

Proof. Let $0 \le t \le 1$ and $f, g \in L^{p'}(\Omega)$. For each $w \in W$ we have

$$-pJ_{tf+(1-t)g}(w) = p \int_{\Omega} (tf+(1-t)g)w \, \mathrm{d}x - \int_{\Omega} |\nabla w|^p \, \mathrm{d}x - p \sum_{i=1}^n \gamma_i(w)_i$$
$$= t(-pJ_f(w)) + (1-t)(-pJ_g(w)).$$

Hence, from (6) we infer that

$$\varphi(tf + (1-t)g) \le t\varphi(f) + (1-t)\varphi(g);$$

thus φ is convex. Now, we show that φ is strictly convex. Suppose for some 0 < t < 1, we have

$$\varphi(h) = t\varphi(f) + (1-t)\varphi(g),$$

where h := tf + (1 - t)g. Thus,

$$J_h(u_h) = tJ_f(u_f) + (1-t)J_g(u_g).$$

Hence,

$$tJ_f(u_h) + (1-t)J_g(u_h) = tJ_f(u_f) + (1-t)J_g(u_g)$$

Since 0 < t < 1, we derive $J_f(u_h) = J_f(u_f)$ and $J_g(u_h) = J_g(u_g)$. By the uniqueness of the minimizer of the functionals $J_f(.)$ and $J_g(.)$ on W, we deduce that

$$u_h = u_f = u_g$$
, a.e. in Ω .

Thus, $-\Delta_p u_f = -\Delta_p u_g$ almost every where in Ω , so f = g almost every where in Ω . Therefore, φ is strictly convex.

Lemma 4.3. Let $f \in L^{p'}(\Omega)$. The functional φ is Gâteaux differentiable at f with derivative

$$\varphi'(f)g = \frac{p}{p-1} \int_{\Omega} g u_f \, \mathrm{d}x,$$

for all $g \in L^{p'}(\Omega)$.

Proof. Let $\{t_j\}$ be a sequence of positive numbers that tends to zero. Let $f, g \in L^{p'}(\Omega)$ and $h_j := f + t_j(g - f), j \ge 1$. So, $h_j \to f$ in $L^{p'}(\Omega)$ as $j \to 0$. From (9) we have

$$(p-1)\varphi(f) + p \int_{\Omega} (h_j - f) u_f \, \mathrm{d}x \le (p-1)\varphi(h_j)$$
$$\le (p-1)\varphi(f) + p \int_{\Omega} (h_j - f) u_j \, \mathrm{d}x,$$

where $u_j := u_{h_j}$. Thus,

(12)
$$\frac{p}{p-1} \int_{\Omega} (g-f)u_f \, \mathrm{d}x \leq \frac{\varphi(f+t_j(g-f)) - \varphi(f)}{t_j} \leq \frac{p}{p-1} \int_{\Omega} (g-f)u_j \, \mathrm{d}x.$$

As a consequence of *Remark* 4.1, $u_j \rightarrow u_f$ in $L^p(\Omega)$. This coupled with (12), implies that

$$\lim_{j \to \infty} \frac{\varphi(f + t_j(g - f)) - \varphi(f)}{t_j} = \frac{p}{p - 1} \int_{\Omega} (g - f) u_f \, \mathrm{d}x.$$

Therefore, the proof of the lemma follows.

Now, we are ready to prove the main results of this section.

Theorem 4.4. The maximization problem (7) is solvable; that is, there exists $f^* \in \mathcal{R}$ such that

$$\varphi(f^*) = \max_{f \in \mathcal{R}} \varphi(f).$$

Moreover, there exists an increasing function ξ such that $f^* = \xi(u_{f*})$ almost everywhere in Ω .

Proof. From Lemma 4.1, Lemma 4.2 and Lemma 2.4(i) we infer that there exists $f^* \in \mathcal{R}$ such that $\varphi(f) \leq \varphi(f^*)$, for all $f \in \mathcal{R}$. From Lemma 4.3, $\varphi(f)$ is Gâteaux differentiable with derivative $\frac{p}{p-1}u_f$. Since φ is strictly convex, by Lemma 2.4(ii), there is an increasing function ξ such that $f^* = \xi(u_{f^*})$.

Theorem 4.5. If $f_0 > 0$ in Ω , then the minimization problem (8) has a unique solution. Moreover, if f_* be the minimizer, then $f_* = \eta(u_{f_*})$ for some decreasing function η .

Proof. We know φ is weakly continuous in $L^{p'}(\Omega)$, Lemma 4.1, and $\overline{\mathcal{R}}$ is weakly compact, Lemma 2.1. Thus, there exists $f_* \in \overline{\mathcal{R}}$ such that

$$\varphi(f_*) = \min_{f \in \overline{\mathcal{R}}} \varphi(f).$$

Since φ is strictly convex, Lemma 4.2, we infer that f_* is unique. Now, we prove that $f_* \in \mathcal{R}$. From Lemma 2.14 of [3] we have

$$\mathcal{L}_{2}(\{x \in \Omega : f_{*}(x) > 0\} \ge \mathcal{L}_{2}(\{x \in \Omega : f_{0}(x) > 0\} = \mathcal{L}_{2}(\Omega),$$

so, $f_* > 0$ in Ω . This coupled with $-\Delta_p u_{f_*} = f_*$ in Ω , implies that every level set of u_{f_*} in Ω has measure zero. By applying Lemma 2.2 we derive that there exists a decreasing function η such that $\eta(u_{f_*}) \in \mathcal{R}$. Now, from Lemma 2.3(ii) we have

(13)
$$\int_{\Omega} f u_{f_*} \, \mathrm{d}x \ge \int_{\Omega} \eta(u_{f_*}) u_{f_*} \, \mathrm{d}x, \quad \text{for all } f \in \overline{\mathcal{R}}.$$

250

Let 0 < t < 1 and $f \in \overline{\mathcal{R}}$. We define $f_t := tf + (1-t)f_*$. Since $\overline{\mathcal{R}}$ is convex, Lemma 2.1(i), $f_t \in \overline{\mathcal{R}}$ for all 0 < t < 1. From Lemma 4.3, for sufficiently small t we have

$$\varphi(f_*) \le \varphi(f_t) = \varphi(f_*) + \frac{tp}{p-1} \int_{\Omega} (f - f_*) u_{f_*} \, \mathrm{d}x + o(t).$$

Thus, when $t \to 0^+$ we deduce

(14)
$$\int_{\Omega} f u_{f_*} \, \mathrm{d}x \ge \int_{\Omega} f_* u_{f_*} \, \mathrm{d}x, \quad \text{for all } f \in \overline{\mathcal{R}}.$$

Therefore, by (13), (14) and Lemma 2.3(ii) we derive $f_* = \eta(u_{f_*})$.

251

References

- 1. R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- G. R. Burton, Rearrangements of functions, maximization of convex functionals, and vortex rings, *Math. Ann.*, 276 (1987), 225-253.
- 3. G. R. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices, *Ann. Inst. Henri Poincare*, 6 (1989), 295-319.
- 4. G. R. Burton, Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex, *Acta Math.*, **163** (1989), 291-309.
- 5. F. Cuccu, B. Emamizadeh and G. Porru, Optimization of the first eigenvalue in problems involving the *p*-Laplacian, *Proc. Amer. Math. Soc.*, **137(5)** (2009), 1677-1687.
- F. Cuccu, B. Emamizadeh and G. Porru, Optimization problems for an elastic plate, J. Math. Phys., 47(8) (2006), 082901, 12 pp.
- 7. F. Cuccu, B. Emamizadeh and G. Porru, Nonlinear elastic membranes involving the *p*-Laplacian operator, *Electron. J. Differential Equations*, **49** (2006), 10 pp.
- F. Cuccu, G. Porru and S. Sakaguchi, Optimization problems on general classes of rearrangements, *Nonlinear Analysis*, 74 (2011), 5554-5565.
- F. Cuccu, G. Porru and A. Vitolo, Optimization of the energy integral in two classes of rearrangements, *Nonlinear Stud.*, 17(1) (2010), 23-35.
- L. M. Del Pezzo and J. Fernández Bonder, Some optimization problems for *p*-Laplacian type equations, *Appl. Math. Optim.*, **59(3)** (2009), 365-381.
- 11. L. M. Del Pezzo and J. Fernández Bonder, Remarks on an optimization problem for the *p*-Laplacian, *Appl. Math. Lett.*, **23(2)** (2010), 188-192.
- B. Emamizadeh and M. Zivari-Rezapour, Optimization of the principal eigenvalue of the pseudo *p*-Laplacian operator with Robin boundary conditions, *International Journal of Mathematics*, 23(12) (2012), 1250127, 17 pp.

- B. Emamizadeh and M. Zivari-Rezapour, Rearrangements and minimization of the principal eigenvalue of a nonlinear Steklov problem, *Nonlinear Anal.*, 74(16) (2011), 5697-5704.
- 14. B. Emamizadeh and M. Zivari-Rezapour, Rearrangement optimization for some elliptic equations, *J. Optim. Theory Appl.*, **135(3)** (2007), 367-379.
- 15. B. Emamizadeh and J. V. Prajapat, Maximax and minimax rearrangement optimization problems, *Optim. Lett.*, **5(4)** (2011), 647-664.
- 16. M. Zivari-Rezapour, Maximax rearrangement optimization related to a homogeneous Dirichlet problem, *Arab. J. Math.*, **2(4)** (2013), 427-433, DOI 10.1007/s40065-013-0083-0.

N. Amiri and M. Zivari-Rezapour Department of Mathematics Faculty of Mathematical Sciences & Computer Shahid Chamran University Golestan Blvd. Ahvaz Iran E-mail: n-amiri@phdstu.scu.ac.ir mzivari@scu.ac.ir