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MAXIMIZATION AND MINIMIZATION PROBLEMS RELATED TO A
p-LAPLACIAN EQUATION ON A MULTIPLY CONNECTED DOMAIN

N. Amiri and M. Zivari-Rezapour*

Abstract. In this paper we investigate maximization and minimization problems
related to a p-Laplacian equation on a multiply connected domain in R

2, where
the admissible set is a rearrangement class of a fixed function. We prove existence
and representation of the maximizers and existence, uniqueness and representation
of the minimizer.

1. INTRODUCTION

Let Ω be a nonempty, bounded, connected open set in R
2 whose boundary is a

disjoint union of simple closed curves Γ0, Γ1, . . . , Γn of class C2, and suppose Γ0

encloses Ω. Let 1 < p < ∞, we denote the conjugate of p by p′ = p
p−1 . We consider

the following boundary value problem⎧⎪⎪⎨
⎪⎪⎩

−Δpu = f in Ω,
u = 0 on Γ0,

u = constant on Γi, i = 1, . . . , n,
− ∫Γi

|∇u|p−2∇u · n ds = γi for i = 1, . . . , n,

(1)

where f ∈ Lp′(Ω), n is the unit outer normal to ∂Ω, boundary of Ω, and γ1, . . . , γn

are real numbers. When p = 2, G. R. Burton in [4, Appendix] has proved that the
problem (1) has exactly one solution. By similar method, we show that (1) still has a
unique solution when 1 < p < ∞. For each f ∈ Lp′(Ω) we denote the unique solution
of (1) by uf . For application of (1), when p = 2, to fluids dynamics (vorticity)
see [4]. Our interest in this paper are in the maximization and minimization of the
quantity 1

p

∫
Ω |∇uf |p dx, the kinetic energy, as f varies in a rearrangement class of a

fixed function in Lp′(Ω); see the next section for precise definition of rearrangement of
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functions. Rearrangement optimization problems have been investigated in recent years
by many authors, see [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. However, the boundary
value problem in the one which is discussed here is interesting and very different from
others.

2. REARRANGEMENT

Let E be a (Lebesgue) measurable set in R
N . Real measurable functions f and g

on E are rearrangements of each other whenever

LN ({x ∈ Ω : f(x) ≥ α}) = LN ({x ∈ Ω : g(x) ≥ α}), for all α ∈ R,

where LN denotes the N -dimensional Lebesgue measure. It is well known that if f ∈
Lr(E), 1 ≤ r ≤ ∞, and g be a rearrangement of f , then g ∈ Lr(E) and in fact ‖f‖r =
‖g‖r, where ‖.‖r denotes the standard norm on Lr(E). We denote the rearrangement
class of f by R(f) which comprises all functions which are rearrangements of f . The
readers can see [2, 3] for more results about rearrangements of functions.
We now collect some useful lemmas to be applied later.

Lemma 2.1. ([3]). Let p > 1 and f0 ∈ Lp(E). Then

(i) R(f0) , the weak closure of R(f0) in Lp(E), is compact with respect to Lp′-
topology, weak topology, on Lp(E).

(ii) R(f0) is convex.

Lemma 2.2. ([3]). Let f0 : E → R and g : E → R be two measurable functions.
If every level set of g has measure zero then there exists an increasing function ξ
such that ξ(g) ∈ R(f0). Furthermore there exists a decreasing function η such that
η(g) ∈ R(f0).

Lemma 2.3. ([3]). Let p > 1, f0 ∈ Lp(E) and g ∈ Lp′(E).

(i) If there is an increasing function ξ such that ξ(g) ∈ R(f0) then∫
E

fg dx ≤
∫

E
ξ(g)g dx, for all f ∈ R(f0),

and ξ(g) is the unique maximizer relative to R(f0).
(ii) If there is a decreasing function η such that η(g) ∈ R(f0) then∫

E
fg dx ≥

∫
E

η(g)g dx, for all f ∈ R(f0),

and η(g) is the unique minimizer relative to R(f0).
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Lemma 2.4. ([2]). Let 1 ≤ r ≤ ∞ and s be the conjugate exponent of r. Let
g ∈ Lr(E) and Ψ : Lr(E) → R be convex.

(i) Suppose that Ψ is sequentially continuous in the Ls-topology on Lr(E). Then
Ψ attains a maximum value relative to R(g).

(ii) Suppose that Ψ is strictly convex, that g∗ is a maximizer for Ψ relative to R(g)
and that w is a member of sub-gradient of Ψ at g∗. Then g∗ = ξ(w) almost
everywhere in E for some increasing function ξ.

3. EXISTENCE AND UNIQUENESS

In this section we prove the existence and uniqueness for the boundary value prob-
lem (1).

Theorem 3.1. Let γ1, . . . , γn ∈ R, 1 < p < ∞, and f ∈ Lp′(Ω). Then the
boundary value problem (1) has a unique solution.

Proof. Let Ω0, Ω1, . . . , Ωn be the regions enclosed by Γ0, Γ1, . . . , Γn. Let

W = {w ∈ W 1,p(Ω) | w = 0 on Γ0 and w = constant on Γi, i = 1, . . . , n}.

If w ∈ W , then we denote the value of w on Γi by (w)i for i = 1, . . . , n. Define

J(w) :=
1
p

∫
Ω

|∇w|p dx −
∫

Ω

fw dx +
n∑

i=1

γi(w)i, w ∈ W.

By the trace embeddingW 1,p(Ω) → Lp(∂Ω)we infer thatW is a closed linear subspace
of W 1,p(Ω), and W comprises the restrictions to Ω of elements of W 1,p

0 (Ω0) that are
constant on Ωi, i = 1, . . . , n. We consider the equivalent norm for W 1,p

0 (Ω0) that is
defined as follows

‖w‖ =
(∫

Ω0

|∇w|p dx

) 1
p

.

It is well known that the function x → |x|p, x ∈ R
N , is strictly convex. From this,

it is easy to deduce that J is strictly convex. We know that J is differentiable on W

with

J ′(w)v =
∫

Ω
|∇w|p−2∇w · ∇v dx −

∫
Ω

fv dx +
n∑

i=1

γi(v)i.

Moreover,

J(w) ≥ 1
p
‖w‖p − ‖f‖p′‖w‖p +

n∑
i=1

γi(w)i ≥ 1
p
‖w‖p − C‖w‖ +

n∑
i=1

γi(w)i,
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for some C > 0. Thus J is coercive because p > 1. Therefore J has a unique global
minimizer. We know that u ∈ W is a critical point of J whenever J ′(u)v = 0, for all
v ∈ W . Hence

(2)
∫

Ω
|∇u|p−2∇u · ∇v dx −

∫
Ω

fv dx +
n∑

i=1

γi(v)i = 0, for all v ∈ W.

Let Lipschitz functions g1, . . . , gn ∈ W be chosen to satisfy the boundary conditions
(gj)i = δij , i, j = 1, . . . , n. Then (2) is equivalent to∫

Ω
|∇u|p−2∇u · ∇v dx −

∫
Ω

fv dx = 0, for all v ∈ W 1,p
0 (Ω),(3)

∫
Ω
|∇u|p−2∇u · ∇gj dx −

∫
Ω

fgj dx + γj = 0, j = 1, . . . , n.(4)

Thus (3) is a variational formulation of −Δpu = f , in Ω. Now from (4) and Divergence
theorem we infer that

∫
Ω

(−Δpu − f)gj dx +
n∑

i=1

∫
Γi

gj|∇u|p−2∇u · n ds + γj = 0, j = 1, . . . , n,

which reduces to ∫
Γj

|∇u|p−2∇u · n ds + γj = 0, j = 1, . . . , n.

It follows that (1) holds if and only if u is a critical point of J , and therefore (1) has
a unique solution.

4. OPTIMIZATION PROBLEM

Let γ1, . . . , γn are fixed real numbers and 1 < p < ∞. Also, let f0 is a fixed
function in Lp′(Ω) and R := R(f0). It is well known that the solution uf of problem
(1) satisfies the following variational problem

(5)
1
p

∫
Ω
|∇uf |p dx −

∫
Ω

fuf dx +
n∑

i=1

γi(uf)i = min
w∈W

Jf (w),

where

Jf (w) :=
1
p

∫
Ω
|∇w|p dx −

∫
Ω

fw dx +
n∑

i=1

γi(w)i.



Maximization and Minimization Problems Related to a p-Laplacian Equation 247

By (2), when v = u = uf , and (5) we deduce that

(6)

(p− 1)
∫

Ω
|∇uf |p dx = max

w∈W
(−pJf (w))

= max
w∈W

(
p

∫
Ω

fw dx −
∫

Ω

|∇w|p dx − p
n∑

i=1

γi(w)i

)
.

We define the functional ϕ : Lp′(Ω) → R by

ϕ(f) :=
∫

Ω
|∇uf |p dx.

Our interest is in the following optimization problems

(7) max
f∈R

ϕ(f),

and

(8) min
f∈R

ϕ(f).

We now prove some useful lemmas to be applied later.

Lemma 4.1. The functional ϕ is continuous with respect to weak topology in
Lp′(Ω).

Proof. Let a sequence {fj} and f be all in Lp′(Ω) such that fj ⇀ f in Lp′(Ω).
To simplify notation we write uj in place of ufj . From (6) we have

(9)

(p− 1)ϕ(f) + p

∫
Ω
(fj − f)uf dx

= p

∫
Ω

fjuf dx −
∫

Ω
|∇uf |p dx − p

n∑
i=1

γi(uf)i

≤ (p − 1)ϕ(fj)

= p

∫
Ω

fuj dx −
∫

Ω
|∇uj|p dx − p

n∑
i=1

γi(uj)i + p

∫
Ω
(fj − f)uj dx

≤ (p − 1)ϕ(f) + p

∫
Ω
(fj − f)uj dx.

Since fj ⇀ f we deduce that

(10) lim
j→∞

∫
Ω
(fj − f)uf dx = 0.
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Now, we prove that

(11) lim
j→∞

∫
Ω
(fj − f)uj dx = 0.

From (2), when v = u = uj , fj ⇀ f , Poincarè’s inequality for W 1,p
0 (Ω0) and Hölder’s

inequality we find that

‖uj‖p ≤
∣∣∣∣
∫

Ω

fjuj dx

∣∣∣∣+
n∑

i=1

|γi(uj)i|

≤ ‖fj‖p′‖uj‖p + C‖uj‖
≤ C‖uj‖,

where C denotes a positive constant that can change from line to line. Note that in
the above inequalities, the second inequality, we used this fact that if i ∈ {1, 2, · · · , n}
then

|(uj)i|pL2(Ωi) =
∫

Ωi

|uj|p dx ≤
∫

Ω0

|uj|p dx ≤ C‖uj‖p.

Hence {uj} ⊂ W is a bounded sequence inW 1,p
0 (Ω0), thus there exists a subsequence,

still denoted {uj}, that converges weakly to û ∈ W , because W is closed. The
compact imbedding of W 1,p(Ω) into Lp(Ω) implies that {uj} converges strongly to û

in Lp(Ω). Thus, we derive (11). Therefore, (9), (10) and (11) complete the proof of the
lemma.

Remark 4.1. According to the proof of the Lemma 4.1, we claim that û is equal
to uf almost every where in Ω. We know that

(p − 1)ϕ(fj) = p

∫
Ω

fjuj dx −
∫

Ω
|∇uj|p dx − p

n∑
i=1

γi(uj)i.

Now by the weak lower semicontinuity of the norm ‖.‖ and (6), we derive

(p − 1)ϕ(f) ≤ p

∫
Ω

fû dx −
∫

Ω

|∇û|p dx − p
n∑

i=1

γi(û)i

≤ (p− 1)ϕ(f).

Therefore, the uniqueness of the maximizer of the functional −pJf (.) implies that
û = uf almost every where in Ω.

Lemma 4.2. The functional ϕ is strictly convex in Lp′(Ω).
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Proof. Let 0 ≤ t ≤ 1 and f, g ∈ Lp′(Ω). For each w ∈ W we have

−pJtf+(1−t)g(w) = p

∫
Ω

(tf + (1 − t)g)w dx −
∫

Ω

|∇w|p dx − p
n∑

i=1

γi(w)i

= t(−pJf (w)) + (1− t)(−pJg(w)).

Hence, from (6) we infer that

ϕ(tf + (1− t)g) ≤ tϕ(f) + (1− t)ϕ(g);

thus ϕ is convex. Now, we show that ϕ is strictly convex. Suppose for some 0 < t < 1,
we have

ϕ(h) = tϕ(f) + (1 − t)ϕ(g),

where h := tf + (1 − t)g. Thus,

Jh(uh) = tJf (uf) + (1 − t)Jg(ug).

Hence,
tJf (uh) + (1 − t)Jg(uh) = tJf (uf ) + (1− t)Jg(ug).

Since 0 < t < 1, we derive Jf (uh) = Jf (uf) and Jg(uh) = Jg(ug). By the uniqueness
of the minimizer of the functionals Jf (.) and Jg(.) on W , we deduce that

uh = uf = ug , a.e. in Ω.

Thus, −Δpuf = −Δpug almost every where in Ω, so f = g almost every where in Ω.
Therefore, ϕ is strictly convex.

Lemma 4.3. Let f ∈ Lp′(Ω). The functional ϕ is Gâteaux differentiable at f with
derivative

ϕ′(f)g =
p

p − 1

∫
Ω

guf dx,

for all g ∈ Lp′(Ω).

Proof. Let {tj} be a sequence of positive numbers that tends to zero. Let
f, g ∈ Lp′(Ω) and hj := f + tj(g− f), j ≥ 1. So, hj → f in Lp′(Ω) as j → 0. From
(9) we have

(p − 1)ϕ(f) + p

∫
Ω
(hj − f)uf dx ≤ (p − 1)ϕ(hj)

≤ (p − 1)ϕ(f) + p

∫
Ω
(hj − f)uj dx,
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where uj := uhj . Thus,

p

p − 1

∫
Ω
(g − f)uf dx ≤ ϕ(f + tj(g − f)) − ϕ(f)

tj
≤ p

p − 1

∫
Ω
(g − f)uj dx.(12)

As a consequence of Remark 4.1, uj → uf in Lp(Ω). This coupled with (12), implies
that

lim
j→∞

ϕ(f + tj(g − f)) − ϕ(f)
tj

=
p

p − 1

∫
Ω

(g − f)uf dx.

Therefore, the proof of the lemma follows.

Now, we are ready to prove the main results of this section.

Theorem 4.4. The maximization problem (7) is solvable; that is, there exists f∗ ∈
R such that

ϕ(f∗) = max
f∈R

ϕ(f).

Moreover, there exists an increasing function ξ such that f∗ = ξ(uf∗) almost every-
where in Ω.

Proof. From Lemma 4.1, Lemma 4.2 and Lemma 2.4(i) we infer that there exists
f∗ ∈ R such that ϕ(f) ≤ ϕ(f∗), for all f ∈ R. From Lemma 4.3, ϕ(f) is Gâteaux
differentiable with derivative p

p−1uf . Since ϕ is strictly convex, by Lemma 2.4(ii),
there is an increasing function ξ such that f∗ = ξ(uf∗).

Theorem 4.5. If f0 > 0 in Ω, then the minimization problem (8) has a unique
solution. Moreover, if f∗ be the minimizer, then f∗ = η(uf∗) for some decreasing
function η.

Proof. We know ϕ is weakly continuous in Lp′(Ω), Lemma 4.1, and R is weakly
compact, Lemma 2.1. Thus, there exists f∗ ∈ R such that

ϕ(f∗) = min
f∈R

ϕ(f).

Since ϕ is strictly convex, Lemma 4.2, we infer that f∗ is unique. Now, we prove that
f∗ ∈ R. From Lemma 2.14 of [3] we have

L2({x ∈ Ω : f∗(x) > 0} ≥ L2({x ∈ Ω : f0(x) > 0} = L2(Ω),

so, f∗ > 0 in Ω. This coupled with −Δpuf∗ = f∗ in Ω, implies that every level set
of uf∗ in Ω has measure zero. By applying Lemma 2.2 we derive that there exists a
decreasing function η such that η(uf∗) ∈ R. Now, from Lemma 2.3(ii) we have

(13)
∫

Ω
fuf∗ dx ≥

∫
Ω

η(uf∗)uf∗ dx, for all f ∈ R.
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Let 0 < t < 1 and f ∈ R. We define ft := tf +(1− t)f∗. Since R is convex, Lemma
2.1(i), ft ∈ R for all 0 < t < 1. From Lemma 4.3, for sufficiently small t we have

ϕ(f∗) ≤ ϕ(ft) = ϕ(f∗) +
tp

p − 1

∫
Ω
(f − f∗)uf∗ dx + o(t).

Thus, when t → 0+ we deduce

(14)
∫

Ω
fuf∗ dx ≥

∫
Ω

f∗uf∗ dx, for all f ∈ R.

Therefore, by (13), (14) and Lemma 2.3(ii) we derive f∗ = η(uf∗).
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