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Lk-2-TYPE HYPERSURFACES IN HYPERBOLIC SPACES

Pascual Lucas* and Héctor-Fabián Ramı́rez-Ospina

Abstract. In this article, we study Lk-finite-type hypersurfaces Mn of a hyper-
bolic space H

n+1 ⊂ R
n+2
1 , for k ≥ 1. In the 3-dimensional case, we obtain the

following classification result. Let ψ : M3 → H
4 ⊂ R

5
1 be an orientable hy-

persurface with constant k-th mean curvature Hk, which is not totally umbilical.
Then M3 is of Lk-2-type if and only if M3 is an open portion of a standard Rie-
mannian product H

1(r1) × S
2(r2) or H

2(r1) × S
1(r2), with −r21 + r22 = −1. In

the n-dimensional case, we show that a hypersurfaceMn ⊂ H
n+1, with constant

k-th mean curvature Hk and having at most two distinct principal curvatures,
is of Lk-2-type if and only if Mn is an open portion of a Riemannian product
H

m(r1)×S
n−m(r2), with −r21 + r22 = −1, for some integer m ∈ {1, . . . , n−1}.

In the case k = n−1 we drop the condition on the principal curvatures of the hy-
persurfaceMn, and prove that ifMn ⊂ H

n+1 is an orientableHn−1-hypersurface
of Ln−1-2-type then its Gauss-Kronecker curvature Hn is a nonzero constant.

1. INTRODUCTION

Submanifolds of finite type were introduced by B.Y. Chen, whose first results were
gathered in his book [7] (see also [8]). Although the first definition was given for
a compact submanifold in the Euclidean space, Chen extended the concept to non-
compact submanifolds in Euclidean or pseudo-Euclidean spaces, [9, 10]. A detailed
survey of the results on this subject, up to 1996, was given by Chen in [14], and in a
recent article [15], the author provides a detailed account of recent development on the
problems and conjectures about finite type submanifolds.
The Laplacian operator Δ can be seen as the first one of a sequence of n operators

L0 = Δ, L1, . . . , Ln−1, whereLk stands for the linearized operator of the first variation
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222 Pascual Lucas and Héctor-Fabián Ramı́rez-Ospina

of the (k + 1)-th mean curvature arising from normal variations of the hypersurface
(see, for instance, [24]). These operators Lk are given by Lk(f) = tr(Pk ◦ ∇2f) for a
smooth function f on M , where Pk denotes the k-th Newton transformation associated
to the second fundamental form of the hypersurface and ∇2f denotes the self-adjoint
linear operator metrically equivalent to the Hessian of f .
As an extension of finite type theory, S.M.B. Kashani [17] introduced the notion

of Lk-finite-type hypersurface in the Euclidean space. In general, a submanifold Mn

in R
m is said to be of Lk-finite-type if the position vector ψ : Mn → R

m of Mn into
Rm admits the following finite spectral decomposition

ψ = a+ ψ1 + · · ·+ ψq, Lkψt = λtψt,

where a is a constant vector, λt are constants and ψt are non-constant Rm-valued maps
on Mn. If all λt’s are mutually different,Mn is said to be of Lk-q-type, and if one of
λt is zero Mn is said to be of Lk-null-q-type. Naturally, that definition is also valid
for a pseudo-Riemannian submanifoldMn

t into the pseudo-Euclidean space R
m
s .

In [21], the authors, by using results from [1], show that k-minimal Euclidean
hypersurfaces and open portions of hyperspheres are the only Lk-1-type hypersurfaces
in Rn+1. As for hypersurfaces of Lk-2-type in Rn+1, the authors show that if Mn is
a hypersurface with at most two distinct principal curvatures, then (i) Mn is not of
Ln−1-null-2-type (Theorem 3.5); and (ii) Mn is of Lk-null-2-type (k �= n− 1) if and
only if M is locally isometric to a generalized cylinder (Theorems 3.11 and 3.12).
In [20], the authors study Lk-2-type hypersurfaces in a hypersphere S4 ⊂ R5. Since

the case k = 0 corresponds to the classical one, which has been well studied (see, e.g.,
[11], [12] and [16], among others), the authors concentrate in cases k = 1 and k = 2,
and show the following result:

Theorem A. Let ψ : M3 → S
4 ⊂ R

5 be an orientable Hk-hypersurface, which is
not an open portion of a hypersphere. Then M3 is of Lk-2-type if and only if M3 is a
Clifford tori S

1(r1)× S
2(r2), r21 + r22 = 1, for appropriate radii, or a tube T r(V 2) of

appropriate constant radius r around the Veronese embedding V 2 of the real projective
plane RP 2(

√
3).

In this paper we extend this result to hypersurfaces in a hyperbolic space. The case
k = 0 was studied by Chen, [13], in the n-dimensional case. He proved (i) that every
2-type hypersurface of the hyperbolic space has nonzero constant mean curvature and
constant scalar curvature, and (ii) that there exists no compact 2-type hypersurfaces in
the hyperbolic space.
After a section devoted to preliminaries and basic results we proceed, in the third

section, to compute some formulae required to present the examples. In section 4 we
present the main results in dimension three, which we can gather in the following
classification theorem:



Lk-2-Type Hypersurfaces in Hyperbolic Spaces 223

Theorem B. Let ψ : M3 → H4 ⊂ R5
1 be an orientable Hk-hypersurface, which

is not totally umbilical. Then M3 is of Lk-2-type if and only if M3 is a standard
Riemannian product H1(r1) × S2(r2) or H2(r1)× S1(r2), with −r21 + r22 = −1.

In the final section, we extend the previous result to n-dimensional hypersurfaces
in the hyperbolic space H

n+1 as follows.

Theorem C. Let ψ : Mn → Hn+1 ⊂ R
n+2
1 be an orientable Hk-hypersurface

and assume that Mn has at most two distinct principal curvatures. Then Mn is of
Lk-2-type if and only if Mn is an open portion of Hm(−√

1 + r2) × Sn−m(r), for
some positive integer m, 1 ≤ m ≤ n− 1, and for some positive number r.

We wish to thank the referee for his/her comments and suggestions that have im-
proved the original manuscript.

2. PRELIMINARIES AND LEMMA

Let R5
1 be the 5-dimensional Lorentzian space with the standard flat metric g given

by

g = −dx2
1 +

5∑
i=2

dx2
i ,

where (x1, . . . , x5) is a rectangular coordinate system of R
5
1. For a positive number r

and a point c ∈ R5
1 we denote by H4(c,−r) the (connected) hyperbolic space centered

at c with radius r, which is embedded standardly in R
5
1 by

H
4(c,−r) =

{
x ∈ R

5
1 | 〈x− c, x− c〉 = −r2, and x1 > 0

}
,

where 〈, 〉 denotes the Lorentzian inner product on R
5
1. To simplify the notation, we

write H4(−r) ≡ H4(0,−r) and H4 ≡ H4(0,−1). We will also use 〈, 〉 to denote the
flat metric g. Without loss of generality, we assume that c = 0 and r = 1.
Let ψ : M3 → H4 ⊂ R5

1 be an isometric immersion of a connected orientable
hypersurface M3 with Gauss map N . We denote by ∇0, ∇ and ∇ the Levi-Civita
connections on R5

1, H4 andM3, respectively. Then the Gauss and Weingarten formulae
are given by [22]

∇0
XY = ∇XY + 〈SX, Y 〉N + 〈X, Y 〉ψ,

SX = −∇XN = −∇0
XN,

for all tangent vector fields X, Y ∈ X(M3), where S : X(M3) −→ X(M3) stands for
the shape operator (or Weingarten endomorphism) of M3, with respect to the chosen
orientation N .
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As is well known, for every point p ∈ M3, S defines a linear self-adjoint endo-
morphism on the tangent space TpM

3, and its eigenvalues κ1(p), κ2(p) and κ3(p) are
the principal curvatures of the hypersurface. The characteristic polynomial QS(t) of S
is defined by

QS(t) = det(tI − S) = (t− κ1)(t− κ2)(t− κ3) = t3 + a1t
2 + a2t+ a3,

where the coefficients of QS(t) are given by

a1 = −(κ1 + κ2 + κ3), a2 = κ1κ2 + κ1κ3 + κ2κ3, a3 = −κ1κ2κ3.

These coefficients can be expressed in terms of the traces of Sj as follows:

a1 = −tr(S),

a2 = −1
2
tr(S2) +

1
2
tr(S)2,(1)

a3 = −1
3
tr(S3) +

1
2
tr(S2)tr(S)− 1

6
tr(S)3.

The k-th mean curvature Hk or mean curvature of order k ofM3 in H
4 is defined

by (
3
k

)
Hk = (−1)kak, with H0 = 1.

We say that M3 is an Hk-hypersurface if its k-th mean curvature Hk is constant. If
Hk+1 = 0, we then say thatM3 is a k-minimal hypersurface; a 0-minimal hypersurface
is nothing but a minimal hypersurface in H4.
The k-th Newton transformation of M3 is the operator Pk : X(M3) → X(M3)

defined by

Pk =
k∑

j=0

(−1)j
( 3
k−j

)
Hk−jS

j = (−1)k
k∑

j=0

ak−jS
j.

In particular,

P0 = I, P1 = 3HI − S, P2 = 3H2I − S ◦ P1, P3 = H3I − S ◦ P2.(2)

Note that by Cayley-Hamilton theorem we have P3 = 0. Let us recall that, for every
point p ∈ M3, each Pk(p) is also a self-adjoint linear operator on the tangent hyper-
plane TpM which commutes with S(p). Indeed, S(p) and Pk(p) can be simultaneously
diagonalized: if {e1, e2, e3} are the eigenvectors of S(p) corresponding to the eigen-
values κ1(p), κ2(p), κ3(p), respectively, then they are also the eigenvectors of Pk(p)
with corresponding eigenvalues given by

μi
k
(p) =

3∑
i1<···<ik

ij /∈i

κi1 · · ·κik , for every i = 1, 2, 3 and k = 1, 2.
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In particular,

μ1
1

= κ2 + κ3, μ2
1

= κ1 + κ3, μ3
1

= κ1 + κ2,

μ1
2

= κ2κ3, μ2
2

= κ1κ3, μ3
2

= κ1κ2.

According to [22, p. 86], the divergence of a vector field X is the differentiable
function defined as the contraction of the operator ∇X , where ∇X(Y ) := ∇YX , that
is,

div(X) = C(∇X) = tr(∇X) =
∑
i,j

gij 〈∇EiX,Ej〉 ,

{Ei} being any local frame of tangent vectors fields, where (gij) represents the inverse
of the metric (gij) = (〈Ei, Ej〉). For an operator T : X(M3) −→ X(M3) we have
two divergences: one associated to the (1,1)-contraction C1

1 , and another associated
to the metric contraction C12; the first contraction produces a 1-form and the second
contraction produces a vector field. We consider here the second one, so that the
divergence of an operator T will be the vector field div(T ) ∈ X(M3) defined as

div(T ) = C12(∇T ) =
∑
i,j

gij(∇EiT )Ej,

where ∇T (X, Y ) = (∇XT )Y = ∇X(TY ) − T (∇XY ).
In the following lemma (see [19] for details) we present some interesting properties

of the Newton transformations. The proof of the first four is merely algebraic and
straightforward.

Lemma 1. The Newton transformations Pk, k = 1, 2, satisfy the following prop-
erties:

(a) tr(Pk) = ckHk,
(b) tr(S ◦ Pk) = ckHk+1,
(c) tr(S2 ◦ P1) = 9HH2 − 3H3,
(d) tr(S2 ◦ P2) = 3HH3,
(e) tr(∇XS ◦ Pk) =

(
3

k+1

) 〈∇Hk+1, X〉,
(f) div(Pk) = 0,

where c1 = 6 and c2 = 3.

Keeping in mind this lemma we obtain

div(Pk(∇f)) = tr
(
Pk ◦ ∇2f

)
,

where ∇2f : X(M3) −→ X(M3) denotes the self-adjoint linear operator metrically
equivalent to the Hessian of f , given by

〈∇2f(X), Y
〉

= 〈∇X(∇f), Y 〉, for vector
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fields X, Y ∈ X(M3). Associated to each Newton transformation Pk, we can define
the second-order linear differential operator Lk : C∞(M3) −→ C∞(M3) by

Lk(f) = tr
(
Pk ◦ ∇2f

)
.(3)

An interesting property of Lk is the following:

(4) Lk(fg) = gLk(f) + fLk(g) + 2 〈Pk(∇f),∇g〉 ,

for every couple of differentiable functions f, g ∈ C∞(M3).

3. FIRST FORMULAS AND EXAMPLES

First we will calculate Lk acting on the coordinate components of the immersion
ψ, that is, a function given by 〈ψ, e〉, where e ∈ R5

1 is an arbitrary fixed vector. An
easy computation shows that

(5) ∇〈ψ, e〉 = e� = e − 〈N, e〉N + 〈ψ, e〉ψ,

where e� ∈ X(M3) denotes the tangential component of e. Taking covariant derivative
in (5), and using the Gauss and Weingarten formulae, we obtain

(6) ∇X∇〈ψ, e〉 = ∇Xe
� = 〈N, e〉SX + 〈ψ, e〉X,

for every vector field X ∈ X(M3). Finally, by using (3) and Lemma 1, we obtain

Lk 〈ψ, e〉 = ckHk+1 〈N, e〉+ ckHk 〈ψ, e〉 .(7)

This expression allows us to extend operator Lk to vector functions F = (f1, . . . , f5),
fi ∈ C∞(M3), as follows: LkF :=

(
Lkf1, . . . , Lkf5

)
. Then Lkψ can be computed as

Lkψ = ckHk+1N + ckHkψ,(8)

where {e1, . . . , e5} stands for an orthonormal basis in R
5
1.

Now, we will compute LkN , and in order to do that we are going to compute the
operator Lk acting on the coordinate functions of the Gauss mapN , that is, the functions
〈N, e〉 where e ∈ R5

1 is an arbitrary fixed vector. A straightforward computation yields

∇〈N, e〉 = −Se�,

that jointly with the Weingarten formula and (6), leads to

∇X∇〈N, e〉 = −(∇e�S)X − 〈N, e〉S2X − 〈ψ, e〉SX,
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for every tangent vector field X . This equation, combined with (3) and Lemma 1,
yields

(9)
Lk 〈N, e〉 = −tr(∇e�S ◦ Pk) − 〈N, e〉 tr(S2 ◦ Pk) − 〈ψ, e〉 tr(S ◦ Pk)

= −( 3
k+1

) 〈∇Hk+1, e〉 − tr(S2 ◦ Pk) 〈N, e〉 − ckHk+1 〈ψ, e〉 ,

which is equivalent to

LkN = −( 3
k+1

)∇Hk+1 − tr(S2 ◦ Pk)N − ckHk+1ψ.

On the other hand, equations (4) and (7) lead to

L2
k 〈ψ, e〉 = ckHk+1Lk 〈N, e〉+ Lk(ckHk+1) 〈N, e〉+ 2ck

〈
Pk(∇Hk+1),∇〈N, e〉〉

+ ckHkLk 〈ψ, e〉+ Lk(ckHk) 〈ψ, e〉+ 2ck
〈
Pk(∇Hk),∇〈ψ, e〉〉,

and by using again (7) and (9) we get

L2
k 〈ψ, e〉

= −ck
(

3
k+1

)
Hk+1 〈∇Hk+1, e〉 − 2ck 〈(S ◦ Pk)(∇Hk+1), e〉+ 2ck 〈Pk(∇Hk), e〉

+
[
ckLk(Hk+1) −

(
tr(S2 ◦ Pk)− ckHk

)
ckHk+1

]
〈N, e〉

+
[
− c2kH

2
k+1 + c2kH

2
k + ckLk(Hk)

]
〈ψ, e〉 .

Finally, we obtain

(10)

L2
kψ = −ck

2
(

3
k+1

)∇H2
k+1 − 2ck(S ◦ Pk)(∇Hk+1) + 2ckPk(∇Hk)

+
[
ckLk(Hk+1)−

(
tr(S2 ◦ Pk)− ckHk

)
ckHk+1

]
N

+
[
− c2kH

2
k+1 + c2kH

2
k + ckLk(Hk)

]
ψ.

Example 1. k-minimal Hk-hypersurfaces in H4 are of Lk-1-type or Lk-null-1-
type. In fact, from (8) we obtain that Lkψ = λψ, with λ = ckHk, and then M3 is of
Lk-1-type if Hk �= 0; otherwise,M3 is of Lk-null-1-type.

Example 2. Non-flat totally umbilical hypersurfaces in H4 are of Lk-1-type. As
is well known, totally umbilical hypersurfaces in H

4 are obtained as the intersection of
H4 with a hyperplane of R5

1, and the causal character of the hyperplane determines the
type of the hypersurface. More precisely, let a ∈ R5

1 be a non-zero constant vector with
〈a, a〉 ∈ {1, 0,−1}, and take the differentiable function fa : H

4 ⊂ R
5
1 → R defined by
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fa(x) = 〈x, a〉. It is not difficult to see that for every τ ∈ R with 〈a, a〉+τ2 = δ2 > 0,
the set

Mτ = f−1
a (τ) = {x ∈ H

4 | 〈x, a〉 = τ}
is a totally umbilical hypersurface in H

4, with Gauss map

N (x) =
1
δ

(a+ τx),

and shape operator

(11) SX = −τ
δ
X.

It is easy to see, from (11), that Mτ has constant mean curvature H = −τ/δ and
constant Gauss-Kronecker curvature K = −1 + H2 = −〈a, a〉 δ−2. Therefore, Hk

and Hk+1 are also nonzero constants.
Now we will consider all different possibilities:

(i) If 〈a, a〉 = −1, then |τ | > 1, K = 1/(τ2 − 1) is positive, and Mτ ≡
S

3(
√
τ2 − 1).

(ii) If 〈a, a〉 = 0, then τ �= 0, K = 0, and Mτ ≡ R
3.

(iii) If 〈a, a〉 = 1, then K = −1/(τ2 + 1) is negative, and Mτ ≡ H
3(−√

τ2 + 1).

Bearing (8) in mind we find that Lkψ = λψ + b, where λ = ckH
k(1 − H2) and

b = ckH
k+1δ−1a. We distinguish three cases:

(i) If H = 0, then M3 is of Lk-null-1-type.
(ii) If |H | = 1, then 〈a, a〉 = 0 and M3 is flat.

(iii) Otherwise, λ �= 0 and we can write

ψ = ψ0 + ψ1, ψ0 = − b

λ
and ψ1 = ψ +

b

λ
,

where ψ0 is constant and Lkψ1 = λψ1. Therefore, M3 is Lk-1-type in R5
1.

The following proposition shows that the hypersurfaces exhibited in Examples 1
and 2 are the only hypersurfaces in H

4 of Lk-1-type in R
5
1.

Proposition 2. k-minimal Hk-hypersurfaces in H4 and open portions of a non-flat
totally umbilical hypersurface in H4 are the only Lk-1-type hypersurfaces in H4.

Proof. Let M3 be a Lk-1-type hypersurface in H
4, then its position vector ψ can

be put as ψ = ψ0 + ψ1, where ψ0 is a constant vector and Lkψ1 = λψ1. Hence we
deduce Lkψ = λψ + b, with b = −λψ0. From (8) we get

b = ckHk+1N + (ckHk − λ)ψ,
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and taking covariant derivative here we obtain

0 = −ckHk+1SX + (ckHk − λ)X + ckX(Hk+1)N + ckX(Hk)ψ,

for every vector field X ∈ X(M3). The previous equation implies that Hk and Hk+1

are both constant. If Hk+1 �= 0 then we get SX = μX , for a certain constant μ, i.e.
M3 is totally umbilical, and then the result follows from Example 2.

Example 3. Standard Riemannian products H
1(r1)×S

2(r2) and H
2(r1)×S

1(r2),
with −r21 + r22 = −1, are hypersurfaces in H4 of Lk-2-type in R5

1.
For a positive number r, let us denoteM3

m(r) = Hm(−√
1 + r2)×S3−m(r) ⊂ H4,

m = 1, 2. In the case m = 1, observe that the hypersurface M3
1 (r) is defined by the

equation
M3

1 (r) = {x ∈ H
4 | x2

3 + x2
4 + x2

5 = r2},
and its Gauss map is given by

N (x) =

(
r√

1 + r2
x1,

r√
1 + r2

x2,

√
1 + r2

r
x3,

√
1 + r2

r
x4,

√
1 + r2

r
x5

)
.

Then its principal curvatures in H4 are

κ1 =
−r√
1 + r2

and κ2 = κ3 =
−√

1 + r2

r
.

Hence we get

H1 = − 2 + 3r2

3r
√

1 + r2
, H2 =

1 + 3r2

3r2
, H3 = −

√
1 + r2

r
.

If we put ψ1 = (x1, x2, 0, 0, 0) and ψ2 = (0, 0, x3, x4, x5), then ψ = ψ1 + ψ2 and by
using (8) we obtain:

(a) L0ψ1 = λ1ψ1 and L0ψ2 = λ2ψ2, where λ1 = 1
1+r2 and λ2 = − 2

r2 . Therefore,
M3

1 (r) is of L0-2-type in R5
1 for any r (see [11, Example 1]).

(b) L1ψ1 = λ1ψ1 and L1ψ2 = λ2ψ2, where λ1 = − 2
r
√

1+r2
and λ2 = 2(1+2r2)

r3
√

1+r2
.

Therefore, M3
1 (r) is of L1-2-type in R

5
1 for any r.

(c) L2ψ1 = λ1ψ1 and L2ψ2 = λ2ψ2, where λ1 = 1
r2 and λ2 = − 2

r2 . Therefore,
M3

1 (r) is of L2-2-type in R5
1 for any r.

In the case m = 2, note that the hypersurface M3
2 (r) is defined by the equation

M3
2 (r) = {x ∈ H

4 | x2
4 + x2

5 = r2}.
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In this case, the Gauss map on M3
2 (r) in H4 is given by

N (x) =

(
r√

1 + r2
x1,

r√
1 + r2

x2,
r√

1 + r2
x3,

√
1 + r2

r
x4,

√
1 + r2

r
x5

)
,

and its principal curvatures in H4 are

κ1 = κ2 =
−r√
1 + r2

and κ3 =
−√

1 + r2

r
.

Consequently, we get

H1 = − 1 + 3r2

3r
√

1 + r2
, H2 =

2 + 3r2

3(1 + r2)
, H3 = − r√

1 + r2
.

If we put as before ψ1 = (x1, x2, x3, 0, 0) and ψ2 = (0, 0, 0, x4, x5), then ψ = ψ1 +ψ2

and by using (8) we obtain:

(a) L0ψ1 = λ1ψ1 and L0ψ2 = λ2ψ2, where λ1 = 2
1+r2 and λ2 = − 1

r2 . Therefore,
M3

2 (r) is of L0-2-type in R5
1 for any r (see [11, Example 1]).

(b) L1ψ1 = λ1ψ1 and L1ψ2 = λ2ψ2, where λ1 = − 2(1+2r2)

r(1+r2)3/2 and λ2 = 2
r
√

1+r2 .
Therefore, M3

2 (r) is of L1-2-type in R
5
1 for any r.

(c) L2ψ1 = λ1ψ1 and L2ψ2 = λ2ψ2, where λ1 = 2
1+r2 and λ2 = − 1

1+r2 . Therefore,
M3

2 (r) is of L2-2-type in R
5
1 for any r.

4. THE THREE-DIMENSIONAL CASE

Let us suppose that a hypersurface M3 in H
4 is of Lk-2-type in R

5
1, that is, its

position vector ψ can be written as follows

ψ = a+ ψ1 + ψ2, Lkψ1 = λ1ψ1, Lkψ2 = λ2ψ2,

where a is a constant vector in R5
1 and ψ1, ψ2 are R5

1-valued non-constant differentiable
functions defined on M3.
It is easy to see that Lkψ = λ1ψ1 + λ2ψ2 and L2

kψ = λ2
1ψ1 + λ2

2ψ2, and thus

L2
kψ = (λ1 + λ2)Lkψ − λ1λ2(ψ − a).

By using (8) we get

L2
kψ = λ1λ2a

� +
[
(λ1 + λ2)ckHk+1 + λ1λ2 〈N, a〉

]
N

+
[
(λ1 + λ2)ckHk − λ1λ2 − λ1λ2 〈ψ, a〉

]
ψ,
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that, jointly with (10), yields the following equations of Lk-2-type,

λ1λ2a
� = −ck

2
(

3
k+1

)∇H2
k+1 − 2ck(S ◦ Pk)(∇Hk+1) + 2ckPk(∇Hk),(12)

λ1λ2 〈N, a〉 = ckLk(Hk+1) −
(
tr(S2 ◦ Pk) − ckHk + λ1 + λ2

)
ckHk+1,(13)

λ1λ2 〈ψ, a〉 = c2kH
2
k+1 − (ckHk − λ1)(ckHk − λ2) − ckLk(Hk).(14)

In [13], the author shows that if Mn is a hypersurface of the hyperbolic space
Hn+1 with constant mean curvature and constant scalar curvature, then Mn is either
of 1-type or of 2-type. He also proves that every 2-type hypersurface of the hyperbolic
space has nonzero constant mean curvature and constant scalar curvature.
Our goal in this section is to prove similar results for operators L1 and L2.

Theorem 3. Let ψ : M3 → H
4 ⊂ R

5
1 be an orientable H2-hypersurface. If M3 is

of L2-2-type then the Gauss-Kronecker curvature H3 is a nonzero constant.

Proof. Let {E1, E2, E3} be a local orthonormal frame of principal directions of
S such that SEi = κiEi for every i = 1, 2, 3, and consider the open set

U3 =
{
p ∈M3 | ∇H2

3 (p) �= 0
}
.

Let us suppose that U3 is not empty. Since we are assuming thatM3 is of L2-2-type and
H2 is constant, then by taking covariant derivative in (14) we have λ1λ2a

� = 9∇H2
3 ,

and putting this into (12) yields

(S ◦ P2)(∇H2
3 ) = −7

2
H3∇H2

3 on U3.(15)

Since P3 = 0 then S ◦ P2 = H3I and so (S ◦ P2)(∇H2
3) = H3∇H2

3 , that jointly with
(15) implies H3∇H2

3 = 0 on U3, which is not possible.

We want to extend the previous theorem for the operator L1; next theorem is an
intermediate step.
Recall that a hypersurface Mn immersed in either the Euclidean space R

n+1, the
sphere Sn+1 or the hyperbolic space Hn+1, is called isoparametric if all the principal
curvatures κi are constant functions; this is equivalent to saying that all the mean
curvatures Hi are constant functions. An isoparametric hypersurface of the Euclidean
space can have at most two distinct principal curvatures, and it must be an open portion
of a hyperplane, hypersphere or spherical cylinder Sk(r)×Rn−k (see e.g. [26, 25]). A
similar result holds for H

n+1: an isoparametric hypersurface must be an open part of
a totally umbilical hypersurface or hyperbolic cylinder Hm(r1) × Sn−m(r2) (see [3]).
However, the classification of isoparametric hipersurfaces in the sphere Sn+1 turns out
to be much more complicated, as Elie Cartan showed (see [4, 5, 6]).
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Theorem 4. Let M3 be an orientable Hk-hypersurface of the hyperbolic space
H

4, which is not totally umbilical, and consider the following three conditions:

(a) Hk+1 is a nonzero constant.
(b) tr(S2 ◦ Pk) is constant.
(c) M3 is of Lk-2-type.

Then any two conditions imply the third one.

Proof. First, we show that conditions a) and b) imply condition c). From Lemma
1 we obtain thatM3 is an isoparametric hypersurface; sinceM3 is not totally umbilical
then M3 is a hyperbolic cylinder, and then the claim follows from Example 3.
Secondly, we show that conditions a) and c) imply condition b). By taking covariant

differentiation in equation (13), and bearing (14) in mind, we find

ckHk+1X(tr(S2 ◦ Pk)) = −λ1λ2X(〈N, a〉) = λ1λ2

〈
SX, a�

〉
= 0,

that is, tr(S2 ◦ Pk) is constant on M3.
Finally, we show that conditions b) and c) imply condition a). In the case k = 2,

the proof follows directly from Theorem 3. To prove the claim in the case k = 1, let
us consider the open set

U2 = {p ∈M3 | ∇H2
2 (p) �= 0},

and assume that it is not empty. Since H is constant, by taking covariant derivative in
(14) we obtain that λ1λ2a

� = 36∇H2
2 . Using this in (12) we get

(16) (S ◦ P1)(∇H2
2) = −15

2
H2∇H2

2 on U2,

that jointly with equation (2) leads to P2(∇H2
2) = 21

2 H2∇H2
2 . Now, by applying the

operator S on both sides, we have

(17) (S ◦ P2)(∇H2
2 ) =

21
2
H2S(∇H2

2).

Since P3 = 0 we get S ◦ P2 = H3I , and then (S ◦ P2)(∇H2
2 ) = H3∇H2

2 , that jointly
with (17) implies

S(∇H2
2) =

2H3

21H2
∇H2

2 .

Without loss of generality, let us assume that E1 is parallel to ∇H2
2 , i.e. the principal

curvature κ1 = 2H3
21H2

. Then we have

(S ◦ P1)(∇H2
2) = κ1μ

1
1
∇H2

2 =
2H3

21H2

(
3H − 2H3

21H2

)∇H2
2 ,
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that jointly with (16) yields the following equation,

6615H3
2 + 252HH2H3 − 8H2

3 = 0.

From Lemma 1 we have that 3H3 = 9HH2 − tr(S2 ◦ P1), and then the previous
equation can be rewritten as follows

6615H3
2 + 684H2H2

2 − 68H tr(S2 ◦ P1)H2 − 8
9 tr(S

2 ◦ P1) = 0.

In other words, H2 is a root of a polynomial with constant coefficients, and so H2 has
to be constant, which is a contradiction.

An interesting consequence of the last theorem is the following result.

Theorem 5. Let ψ : M3 → H
4 ⊂ R

5
1 be an orientable H2-hypersurface. If M is

of L2-2-type then M3 is an isoparametric hypersurface.

Proof. From Theorem 3 we get thatH3 is a nonzero constant, and then Theorem 4
yields that tr(S2 ◦ P2) is constant. Now we use Lemma 1(d) to deduce that the mean
curvature H is constant, and this concludes the proof.

Since the isoparametric hypersurfaces of the hyperbolic space H
4 ⊂ R

5
1 are well

known, the following result is clear.

Theorem 6. Let ψ : M3 → H
4 ⊂ R

5
1 be an orientable H2-hypersurface, which

is not totally umbilical. Then M3 is of L2-2-type if and only if M3 is a standard
Riemannian product H

1(r1) × S
2(r2) or H

2(r1)× S
1(r2), with −r21 + r22 = −1.

Now, we state the main result of this section.

Theorem 7. Let ψ : M3 → H4 ⊂ R5
1 be an orientable Hk-hypersurface. If M is

of Lk-2-type then Hk+1 is a nonzero constant.

Proof. Case k = 0 is shown in [13] and case k = 2 has been proved in Theorem 3,
so we can assume k = 1. Let us consider {E1, E2, E3} a local orthonormal frame of
principal directions of S such that SEi = κiEi for every i = 1, 2, 3. Let us define the
open set

U2 = {p ∈M3 | ∇H2
2 (p) �= 0},

and suppose that U2 is not empty. Since we are assuming that M3 is L1-2-type and H
is constant, then equation (14) leads to

(18) λ1λ2a
� = 36∇H2

2 .

Using this equation in (12) we have that (S ◦ P1)(∇H2
2 ) = −15

2 H2∇H2
2 on U2, and

substituting this into (2) we obtain

(19) P2(∇H2
2) =

21
2
H2∇H2

2 on U2.
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The vector field∇H2
2 can be written as ∇H2

2 = E1(H2
2)E1+E2(H2

2 )E2+E3(H2
2 )E3,

and then

P2(∇H2
2) = E1(H2

2 )μ1
2E1 +E2(H2

2 )μ2
2E2 +E3(H2

2 )μ3
2E3.

Therefore equation (19) is equivalent to

(20) Ei(H2
2)
(
μi

2
− 21

2
H2

)
= 0 on U2,

for every i = 1, 2, 3. An immediate and important consequence of this equation is that
Ei(H2

2 ) = 0 for some i. Otherwise, we deduce that

tr(P2) = μ1
2

+ μ2
2

+ μ3
2

=
63
2
H2,

that jointly with Lemma 1 leads to H2 = 0 on U2, which is a contradiction.
Bearing in mind the previous consequence, and without loss of generality, we have

to analyze the following two possible cases.

Case 1. E1(H2
2 ) �= 0, E2(H2

2 ) �= 0 and E3(H2
2 ) = 0.

From (20) we have μ1
2

= μ2
2

= 21
2 H2, then (κ1−κ2)κ3 = 0, and therefore κ1 = κ2.

Observe that κi �= 0 for all i, otherwise H2 = 0. It is easy to see that

κ2κ3 = μ1
2

=
21
2
H2 =

7
2
(κ2

2 + 2κ2κ3),

and so 7κ2 + 12κ3 = 0. On the other hand, we know that 3H = 2κ2 + κ3 and then
we get that the principal curvatures κ2 and κ3 are constant. So H2 is also constant,
which can not be possible.

Case 2. E1(H2
2 ) �= 0, E2(H2

2 ) = 0 and E3(H2
2 ) = 0.

We know that 3H2 = κ1μ
1
1

+ μ1
2
and μ1

2
= 21

2 H2 (see (20)), then we have

(21) H2 =
2
15

(κ2
1 − 3Hκ1) and H2

2 = p(κ1),

where p(x) =
(

2
15

)2(
x4−6Hx3+9H2x2

)
. Observe that H �= 0; otherwise, κ2 +κ3 =

−κ1 and from (21) we get κ2κ3 = 7
5κ

2
1. Then κ2 and κ3 are the roots of the equation

t2 + κ1t+ 7
5κ

2
1 = 0, but this is not possible since the discriminant of this equation is

negative.
We claim that

E1(H2
2 ) = p′(κ1)E1(κ1),(22)

λ1λ2 〈ψ, a〉 = 36 p(κ1) + A0,(23)

λ1λ2 〈N, a〉 = q(κ1) + B0,(24)
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where q(x) = − (4
5

)2 (4
5x

5 − 9H
2 x

4 + 6H2x3
)
, and A0, B0 are two constants. First,

(22) and (23) follow directly from (21) and (14), respectively. On the other hand,
bearing (18) in mind we find that

X(λ1λ2 〈N, a〉) = −λ1λ2

〈
SX, a�

〉
= −36κ1

〈
X,∇H2

2

〉
= −36κ1X(H2

2) = X
(
q(κ1)

)
,

for any tangent vector field X , and this implies equation (24).
Now, by taking covariant differentiation in (18) in the direction of an arbitrary

tangent vector field X , we have

λ1λ2∇Xa
� = 36X

(
E1(H2

2 )
)
E1 + 36E1(H2

2 )∇XE1,

that jointly with (6) yields

(25) 36E1(H2
2 )∇XE1 = −36X

(
E1(H2

2 )
)
E1 + λ1λ2

( 〈N, a〉SX + 〈ψ, a〉X),
or equivalently

(26)
36E1(H2

2 ) 〈∇XE1, Ei〉
= −36X

(
E1(H2

2)
)
δ1i + λ1λ2

( 〈N, a〉κi + 〈ψ, a〉 ) 〈X,Ei〉 ,
for i = 1, 2, 3. If we take X = E1, then (26) reduces to the following equations

36E1(E1(H2
2 )) = λ1λ2

( 〈N, a〉κ1 + 〈ψ, a〉),
E1(H2

2 ) 〈∇E1E1, Ei〉 = 0, i = 2, 3.

From the last equation we conclude that ∇E1E1 = 0, that is, the integral curves of E1

on U2 are geodesics of M3.
Let X be a tangent vector field orthogonal to E1. Then equation (26) for i = 1

leads to X(E1(H2
2 )) = 0 and thus (25) yields

(27) 36E1(H2
2 )∇XE1 = λ1λ2

( 〈N, a〉SX + 〈ψ, a〉X), ∀ X ⊥ E1.

From the Codazzi equation (∇EjS)E1 = (∇E1S)Ej, we get

E1

(
κj

)
= (κ1 − κj)

〈∇EjE1, Ej

〉
, j = 2, 3,

that jointly with (27) for X = Ej yields

36E1(H2
2)E1(κj)

= (κ1 − κj)
[
λ1λ2 〈N, a〉κj + λ1λ2 〈ψ, a〉

]
= −λ1λ2 〈N, a〉κ2

j + λ1λ2 〈N, a〉κ1κj − λ1λ2 〈ψ, a〉κj + λ1λ2 〈ψ, a〉κ1.
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Last equation implies

36E1(H2
2 )(E1(κ2) + E1(κ3)) = −λ1λ2 〈N, a〉 (κ2

2 + κ2
3) + λ1λ2 〈N, a〉κ1(κ2 + κ3)

− λ1λ2 〈ψ, a〉 (κ2 + κ3) + 2λ1λ2 〈ψ, a〉κ1,

that is,

36E1(H2
2 )E1(3H − κ1) = −λ1λ2 〈N, a〉 (tr(S2)− κ2

1) + λ1λ2 〈N, a〉κ1(3H − κ1)
− λ1λ2 〈ψ, a〉 (3H − κ1) + 2λ1λ2 〈ψ, a〉κ1.

From (1) and (21) we have that tr(S2) = 9H2− 3
5Hκ1− 4

5κ
2
1. By using this and (22),

last equation can be written as

(28)
36p′(κ1)

[
E1(κ1)

]2
= −1

5
λ1λ2 〈N, a〉 (4κ2

1 + 3Hκ1 − 45H2) + 3λ1λ2 〈ψ, a〉 (H − κ1).

On the other hand, a direct computation shows

(29)
362
[
p′(κ1)E1(κ1)

]2 = 362
[
E1(H2

2 )
]2 = 362

〈∇H2
2 ,∇H2

2

〉
= λ2

1λ
2
2|a�|2

= λ2
1λ

2
2|a|2 − (λ1λ2 〈N, a〉)2 + (λ1λ2 〈ψ, a〉)2.

From equations (28) and (29), and taking into account (23) and (24), we find a poly-
nomial T (x) with constant coefficients given by

(30)

T (x) =
[
q(x) + B0

]2 − [36p(x) +A0

]2
−36

5

[
q(x) + B0

]
(4x+ 15H)(x− 3H)p′(x)

+108
[
36p(x) +A0

]
(H − x)p′(x)− λ2

1λ
2
2|a|2,

and satisfying T (κ1) = 0. Therefore, κ1 is locally constant on U2, and so H2 is also
constant, which is a contradiction with the definition of U2. This finishes the proof.

An interesting consequence is the following result, similar to Theorem 5.

Theorem 8. Let ψ : M3 → H4 ⊂ R5
1 be an orientable H-hypersurface. If M3 is

of L1-2-type then M3 is an isoparametric hypersurface.

Proof. From Theorem 7 we get that H2 is a non-zero constant, and then
Theorem 4 yields that tr(S2 ◦P1) is constant. Now we use Lemma 1(c) to deduce that
the Gauss-Kronecker curvature H3 is constant, and this concludes the proof.

Bearing in mind Theorems 8 and 4, and the classification of isoparametric hyper-
surfaces in the hyperbolic space H4, the following result, that extends Theorem 6, is
clear.
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Theorem 9. Let ψ : M3 → H4 ⊂ R5
1 be an orientable H-hypersurface, which

is not totally umbilical. Then M3 is of L1-2-type if and only if M3 is a standard
Riemannian product H1(r1) × S2(r2) or H2(r1)× S1(r2), with −r21 + r22 = −1.

5. THE n-DIMENSIONAL CASE

Let ψ : Mn → Hn+1 ⊂ R
n+2
1 denote an isometric immersion of an orientable

hypersurface Mn in the hyperbolic space H
n+1 ≡ H

n+1(0,−1). The goal of this
section is to classify Lk-2-type hypersurfaces with constant k-th mean curvature Hk

and having at most two distinct principal curvatures.
Suppose that ψ is of Lk-2-type, then we can write

ψ = a+ ψ1 + ψ2, Lkψ1 = λ1ψ1, Lkψ2 = λ2ψ2,

where a ∈ R
n+2
1 is a constant vector and ψ1, ψ2 : Mn → R

n+2
1 are non-constant

differentiable functions.
Performing calculations similar to those made in Sections 3 and 4, the following

equations can be obtained:

λ1λ2a
� = −ck

2
( n
k+1

)∇H2
k+1 − 2ck(S ◦ Pk)(∇Hk+1) + 2ckPk(∇Hk),(31)

λ1λ2 〈N, a〉 = ckLk(Hk+1) −
(
tr(S2 ◦ Pk) − ckHk + λ1 + λ2

)
ckHk+1,(32)

λ1λ2 〈ψ, a〉 = c2kH
2
k+1 − (ckHk − λ1)(ckHk − λ2) − ckLk(Hk),(33)

where ck = (n− k)
(n
k

)
= (k + 1)

( n
k+1

)
.

The following example exhibits hypersurfaces of Lk-2-type in the hyperbolic space
Hn+1.

Example 4. For each positive number r and each integer m, 1 ≤ m ≤ n − 1, let
Mn

m(r) be the n-dimensional submanifold of R
n+2
1 defined by

Mn
m(r) =

{
(x1, . . . , xn+2)

∣∣∣ − x2
1 +

m+1∑
i=2

x2
i = −1 − r2,

n+2∑
j=m+2

x2
j = r2

}
.

It is well known that Mn
m(r) is a complete and non-compact hypersurface of the

hyperbolic space Hn+1; in fact,Mn
m(r) is isometric to the standard Riemannian product

H
m(−√

1 + r2) × S
n−m(r).

The Gauss map of Mn
m(r) in Hn+1 is given by

N (x) =

(
r√

1 + r2
x1, . . . ,

r√
1 + r2

xm+1,

√
1 + r2

r
xm+2, . . . ,

√
1 + r2

r
xn+2

)
,
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and then Mn
m(r) has two constant distinct principal curvatures given by

κ1 = · · · = κm =
−r√
1 + r2

and κm+1 = · · · = κn =
−√

1 + r2

r
.

Hence, the mean curvature Hk is constant for every k.
If we put ψ1 = (x1, . . . , xm+1, 0, . . . , 0) and ψ2 = (0, . . . , 0, xm+2, . . . , xn+2),

then ψ = ψ1 + ψ2 and, by using (7), we obtain Lkψ1 = λ1ψ1 and Lkψ2 = λ2ψ2,
where

λ1 =
ck√

1 + r2

(
rHk+1 +

√
1 + r2Hk

)
and λ2 =

ck
r

(√
1 + r2Hk+1 +rHk

)
.

Therefore, Mn
m(r) is a hypersurface of Lk-2-type of the hyperbolic space H

n+1.

Now, we are ready to prove the following classification result.

Theorem 10. Let ψ : Mn → H
n+1 ⊂ R

n+2
1 be an orientable Hk-hypersurface

and assume that Mn has at most two distinct principal curvatures. Then Mn is of
Lk-2-type if and only if Mn is an open portion of Mn

m(r), for some positive integer
m, 1 ≤ m ≤ n− 1, and for some positive number r.

Proof. Let us assume that Mn is a hypersurface of Lk-2-type. Let κ1 and κ2

denote the principal curvatures of Mn, with multiplicities m and n−m, respectively.
Consider {E1, E2, . . . , En} a local orthonormal frame of principal directions of S such
that SEi = κ1Ei, for i = 1, . . . , m, and SEj = κ2Ej , j = m + 1, . . . , n. Without
loss of generality, we can distinguish two cases according to the multiplicitym.

Case 1. m = 1.
Let us consider the open set

Uk+1 =
{
p ∈Mn | ∇H2

k+1(p) �= 0
}
.

Our goal is to show that Uk+1 is empty. Otherwise, since Mn is a Lk-2-type hyper-
surface and the mean curvature Hk is constant, by taking covariant derivative in (33)
we obtain λ1λ2a

� = c2k∇H2
k+1, that jointly with (31) yields

(S ◦ Pk)(∇H2
k+1) = − ck(2k+3)

2(k+1) Hk+1∇H2
k+1 on Uk+1.(34)

From the inductive definition of Pk+1 =
( n
k+1

)
Hk+1I − S ◦ Pk and (34) we obtain

Pk+1(∇H2
k+1) = DkHk+1∇H2

k+1 on Uk+1,(35)
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where Dk = 2k+5
2

( n
k+1

)
. The vector field ∇H2

k+1 can be written as ∇H2
k+1 =∑n

i=1

〈∇H2
k+1, Ei

〉
Ei, and then we get

Pk+1(∇H2
k+1) =

n∑
i=1

〈∇Hk+1, Ei〉μi
k+1

Ei.

Hence, Eq. (35) is equivalent to

〈∇H2
k+1, Ei

〉 (
μi

k+1
−DkHk+1

)
= 0 on Uk+1,

for every i = 1, . . . , n. Therefore, for every i such that
〈∇H2

k+1, Ei

〉 �= 0 we get

μi
k+1

= DkHk+1.

We will distinguish two cases: (a)
〈∇H2

k+1, E1

〉 �= 0, and (b)
〈∇H2

k+1, Ei

〉 �= 0
for some i > 1.
(a) First, let us suppose that

〈∇H2
k+1, E1

〉 �= 0. Then, we get

μ1
k+1

= DkHk+1 = 2k+5
2 μ

k+1
= 2k+5

2 (κ1μ
1
k

+ μ1
k+1

).

This equation, bearing in mind that
(
n
k

)
Hk = μ

k
= κ1μ

1
k−1

+ μ1
k
, leads to

−(2k + 3)μ1
k+1

μ1
k−1

= (2k + 5)
((n

k

)
Hk − μ1

k

)
μ1

k
.(36)

Now, by using that μ1
j

=
(
n−1

j

)
κj

2 for j ∈ {1, . . . , n − 1}, we can rewrite (36) as
follows

Aκk
2

+B = 0,

where A and B are two nonzero constants. Therefore, κ2 is constant. This implies,
since Hk is constant, that the principal curvature κ1 is constant, and so Hk+1 is also
constant, which is a contradiction.
(b) Now, suppose that

〈∇H2
k+1, Ei

〉 �= 0 for some i > 1. Then, we get

κ1μ
1,i
k

+ μ1,i
k+1

= μi
k+1

= DkHk+1 = 2k+5
2 (κ1μ

1
k

+ μ1
k+1

).

It is not difficult to see that this equation is equivalent to(n−2
k

)
κ1 +

(n−2
k+1

)
κ2 = 2k+5

2

((n−1
k

)
κ1 +

(n−1
k+1

)
κ2

)
.

In other words, Cκ1 = Dκ2, where C and D are two nonzero constants given by

C = 3−n(2k+3)
2(n−1)

(
n−1

k

)
and D = n(2k+3)−1

2(n−1)

(
n−1
k+1

)
.
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By direct computation, we find that

C
(
n
k

)
Hk =

[(
n−1

k

)
C +

(
n−1
k−1

)
D
]
κk

2 .

Therefore, κ2 is constant. As before, this implies that the (k + 1)-th mean curvature
Hk+1 is also constant, which is not possible.

Case 2. 1 < m < n − 1 (i.e. the multiplicities of two principal curvatures are
greater than one).
Without loss of generality, suppose that κ1, κ2 �= 0. By using a standard reasoning

involving the Codazzi equations, we deduce that Ei(κ1) = 0, for i = 1, . . . , m, and
Ej(κ2) = 0, for j = m+1, . . . , n. Since the number of distinct principal curvatures is
two, the distribution corresponding to each principal curvature is smooth and integrable
(see, e.g., [2, Paragraph 16.10] and [23]). Hence, we deduce that each principal
curvature κi is constant on each integral submanifold of the corresponding distribution
of the space of principal vectors V (κi) (see [23]). Therefore, Mn is locally isometric
to the Riemannian product M1 ×M2, where Mi is the maximal integral submanifold
corresponding to the distribution of the space V (κi) (see, e.g., [18, p. 182]).
Since Hk is constant on the hypersurface M1 ×M2 and κ1 is constant on M1, we

deduce that κ2 is also constant on M1. Similarly, the constancy of Hk and κ2 on M2

implies that κ1 is also constant on M2. In other words, the principal curvatures κ1 and
κ2 are constant on the whole hypersurface, and so Hk+1 is also constant, which is a
contradiction.
In conclusion, the mean curvatures Hk and Hk+1 of the hypersurface Mn are

constant. SinceMn has at most two distinct principal curvatures, we get thatMn is an
isoparametric hypersurface of the hyperbolic space. Bearing in mind the classification
of isoparametric hypersurfaces in H

n+1 (see [3]), we deduce thatMn is an open portion
ofMn

m(r), for some positive integerm, 1 ≤ m ≤ n−1, and for some positive number
r.

In the case k = n− 1 we can drop the condition on the principal curvatures of the
hypersurface Mn.

Theorem 11. Let ψ : Mn → H
n+1 ⊂ R

n+2
1 be an orientable Hn−1-hypersurface.

IfMn is of Ln−1-2-type then its Gauss-Kronecker curvatureHn is a nonzero constant.

Proof. Let us suppose that Hn is non constant and consider the nonempty open
set

Un =
{
p ∈Mn | ∇H2

n(p) �= 0
}
.

Since Mn is of Ln−1-2-type and Hn−1 is constant, by taking covariant derivative in
(33) we have λ1λ2a

� = c2n−1∇H2
n, and by putting this into Eq. (31) we obtain

(S ◦ Pn−1)(∇H2
n) = −2n+1

2 Hn∇H2
n on Un.(37)
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Since Pn = 0, we deduce S ◦ Pn−1 = HnI , and so S ◦ Pn−1(∇H2
n) = Hn∇H2

n, that
jointly with (37) implies Hn∇H2

n = 0 on Un, which can not be possible. Therefore,
Hn is constant and nonzero.
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242 Pascual Lucas and Héctor-Fabián Ramı́rez-Ospina

17. S. M. B. Kashani, On some L1-finite type (hyper)surfaces in R
n+1, Bull. Korean Math.

Soc., 46 (2009), 35-43.

18. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Wiley-
Interscience, New York, NY, USA, 1963; Vol. II, 1969.

19. P. Lucas and H. F. Ramı́rez-Ospina, Hypersurfaces in pseudo-Euclidean spaces satisfying
a linear condition on the linearized operator of a higher order mean curvature, Differential
Geom. Appl., 31 (2013), 175-189.

20. P. Lucas and H. F. Ramı́rez-Ospina, Lk-2-type Hypersurfaces in S
4, submitted for pub-

lication.

21. A. Mohammadpouri and S. M. B. Kashani, On some Lk-finite-type Euclidean hypersur-
faces, ISRN Geom., Vol. 2012, article ID 591296, 23 pages.

22. B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press,
1983, New York, London.

23. T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer.
J. Math., 92(1) (1970), 145-173.

24. R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in
space forms, J. Differential Geom., 8 (1973), 465-477.

25. B. Segre, Famiglie di ipersuperficie isoparametrische negli spazi euclidei ad un qualunque
numero di demesioni, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 27
(1938), 203-207.

26. C. Somigliana, Sulle relazione fra il principio di Huygens e l’ottica geometrica, Atti
Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 54 (1918-1919), 974-979.

D. Pascual Lucas Saorı́n
Departamento de Matemáticas
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