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A CONVERGENCE RESULT FOR MATRIX RICCATI DIFFERENTIAL
EQUATIONS ASSOCIATED WITH M -MATRICES

Chun-Hua Guo and Bo Yu*

Abstract. The initial value problem for a matrix Riccati differential equation
associated with an M -matrix is known to have a global solution X(t) on [0,∞)
when X(0) takes values from a suitable set of nonnegative matrices. It is also
known, except for the critical case, that as t goes to infinityX(t) converges to the
minimal nonnegative solution of the corresponding algebraic Riccati equation. In
this paper we present a new approach for proving the convergence, which is based
on the doubling procedure and is also valid for the critical case. The approach also
provides a way for solving the initial value problem and a new doubling algorithm
for computing the minimal nonnegative solution of the algebraic Riccati equation.

1. INTRODUCTION

We consider the initial value problem for the matrix Riccati differential equation
(RDE):

(1) X ′(t) = X(t)CX(t)− X(t)D − AX(t) + B, X(0) = X0,

for which the block matrix

(2) K =
(

D −C
−B A

)
is a nonsingular M -matrix or an irreducible singular M -matrix, where A and D are
square matrices of orders m and n, respectively. An excellent and quite comprehensive
work on Riccati differential equations is the book [1].
For any real matrices A = (aij) and B = (bij) of the same size, A ≥ B (A > B)

means aij ≥ bij (aij > bij) for all i, j. A real square matrix A is called a Z-matrix
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if aij ≤ 0 whenever i �= j. A Z-matrix can be written as sI − B with B ≥ 0 and is
called an M -matrix if s ≥ ρ(B), where ρ(·) denotes the spectral radius. It is called a
nonsingular M -matrix if s > ρ(B) and a singular M -matrix if s = ρ(B). Let σ(A)
be the spectrum of a square matrix A, and let C<, C>, C≤ and C≥ be the open left
half-plane, the open right half-plane, the closed left half-plane and the closed right
half-plane, respectively. It is clear that σ(A) ⊂ C> for nonsingular M -matrices A and
σ(A) ⊂ C≥ for singular M -matrices A. A Z-matrix A is a nonsingular M -matrix if
and only if Av > 0 for some positive vector v (see [2] or [10]).
If K in (2) is an irreducible singular M -matrix, the Perron–Frobenius theorem [2]

implies that there are positive vectors
(

u1

u2

)
and

(
v1

v2

)
, where u1, v1 ∈ Rn and

u2, v2 ∈ Rm, such that

(3) K

(
v1

v2

)
= 0, (uT

1 uT
2 )K = 0.

The study of the initial value problem (1) is closely related to that of the algebraic
Riccati equation (ARE)

(4) XCX − XD − AX + B = 0.

Nonsymmetric AREs of this type arise in transport theory (see [13]) and Wiener–Hopf
factorization of Markov chains (see [14]). The solution of practical interest is the
minimal nonnegative solution.
The following result is obtained by combining various results from [6] and [7] (see

[6, Theorem 3.1, Theorem 4.2, Theorem 4.7] and [7, Theorem 5]).

Theorem 1. The equation (4) has a minimal nonnegative solution Φ (the mini-
mality is defined using the elementwise order for matrices) and its dual equation

(5) Y BY − Y A − DY + C = 0

(obtained from (4) by switching A and D and switching B and C) has a minimal
nonnegative solution Ψ. Moreover, Φ, Ψ > 0 when K is irreducible. If K in (2) is
a nonsingular M -matrix, then D − CΦ and A − BΨ are nonsingular M -matrices.
If K is an irreducible singular M -matrix with uT

1 v1 �= uT
2 v2, then one of D − CΦ

and A − BΨ is an irreducible nonsingular M -matrix and the other is an irreducible
singularM -matrix. If K is an irreducible singularM -matrix with uT

1 v1 = uT
2 v2, then

both D − CΦ and A − BΨ are irreducible singular M -matrices.

It is known [6] that the matrix

(6) P =
(

I Ψ
Φ I

)
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is nonsingular (or equivalently ρ(ΦΨ) < 1) if K in (2) is a nonsingular M -matrix or
an irreducible singular M -matrix with uT

1 v1 �= uT
2 v2 and that P is singular if K is

an irreducible singular M -matrix with uT
1 v1 = uT

2 v2, which will be referred to as the
critical case.
By Theorem 6 of [5], the initial value problem (1) has a global solution X(t) on

[0,∞) if 0 ≤ X0 ≤ Φ̃, where Φ̃ is any nonnegative solution of (4). Two results about
the convergence ofX(t) toΦ are proved in [5] (see Theorems 9 and 13 there). However,
the proof in [5] is not valid for the critical case since it requires the nonsingularity of
the matrix P in (6).
In this paper we present a new approach for proving the convergence of X(t) to

Φ, which is based on the doubling procedure. The new approach will establish the
convergence in the critical case as well. For a special RDE corresponding to the ARE
arising in transport theory (see [11] and [13]), a convergence result in the critical case
has been proved in [12], where the assumption on X0 is also more restrictive (see [12,
Theorem 4.2]). For symmetric RDEs, convergence results for the solutions of initial
value problems have been given in [3, 15, 16].
The new approach in this paper also provides a way for solving the initial value

problem and a new doubling algorithm for computing the minimal nonnegative solution
of the algebraic Riccati equation.

2. CONVERGENCE PROOF BASED ON A DOUBLING PROCEDURE

Let Φ and Ψ be the minimal nonnegative solutions of the ARE (4) and the dual
ARE (5), respectively. Let

(7) H =
(

D −C

B −A

)
.

Then it is easily verified (and is well known) that

(8) H

(
I Ψ
Φ I

)
=
(

I Ψ
Φ I

)(
R 0
0 −S

)
,

where R = D − CΦ and S = A − BΨ.
The eigenvalues of H are the collection of the eigenvalues of R and −S. The fact

is not obvious for the critical case where the matrix P in (6) is singular, but is proved
in [6]. Moreover, H has a double eigenvalue at 0 with a 2 × 2 Jordan block in the
critical case [6].
Suppose that 0 ≤ X0 ≤ Φ̃, where Φ̃ is any nonnegative solution of (4). Then, by

Theorem 6 of [5], the initial value problem (1) has a solutionX(t) on [0,∞). We also
have (see [5, Lemma 7] for example) that X(t) = Z(t)Y −1(t), where

(9)

(
Y (t)
Z(t)

)
= eHt

(
I

X0

)
.
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Since we would like to present a proof of convergence for the critical case, the
relation in (8) does not give a similarilty transformation for H . So we will use a new
approach in this paper.
The pencil λI − eHt is equivalent to the pencil λM(t) − L(t) whenever M(t) is

nonsingular and M(t)−1L(t) = eHt. We now require that the matrices L(t), M(t)
have the following structures.

(10) L(t) =

(
I −G(t)
0 F (t)

)
, M(t) =

(
E(t) 0
−H(t) I

)
.

Note that the structures in (10) are as in [4] and [9]. But here the matrices E(t), F (t),
G(t), H(t) are to be determined through the relation M(t)−1L(t) = eHt.
Let

(11) eHt =

(
Γ11(t) Γ12(t)

Γ21(t) Γ22(t)

)
,

where the partitioning is the same as in (7). It follows from M(t)−1L(t) = eHt that

E(t) = Γ−1
11 ,(12)

F (t) = Γ22 − Γ21Γ−1
11 Γ12,(13)

G(t) = −Γ−1
11 Γ12,(14)

H(t) = Γ21Γ−1
11 ,(15)

provided Γ11 is nonsingular, where we have omitted the variable t in all Γij . For t > 0
sufficiently small, Γ11(t) is close to the identity matrix and is thus nonsingular. It will
be shown later in the paper that Γ11(t) is actually nonsingular for all t > 0.
We now express X(t) in terms of E(t), F (t), G(t), H(t), assuming that E(t) (or

equivalently Γ11(t)) is nonsingular. Using eHt = M(t)−1L(t) in (9) yields

Y (t) = E(t)−1(I − G(t)X0), Z(t) = F (t)X0 + H(t)Y (t).

It follows that

(16) X(t) = Z(t)Y (t)−1 = H(t) + F (t)X0 (I − G(t)X0)
−1 E(t).

Our convergence proof for X(t) will be based a doubling procedure, which we
now describe.
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By (8) and the power series expansion of the exponential function, we have

(17) eHt

(
I Ψ
Φ I

)
=
(

I Ψ
Φ I

)(
eRt 0
0 e−St

)
,

which is equivalent to

L(t)
(

I

Φ

)
e−Rt = M(t)

(
I

Φ

)
,(18)

L(t)
(

Ψ
I

)
= M(t)

(
Ψ
I

)
e−St.(19)

We now take η > 0 such that Γ11(η) is nonsingular, and let

(20) E0 = E(η), F0 = F (η), G0 = G(η), H0 = H(η).

So for L0 = L(η), M0 = M(η) we have

L0

(
I
Φ

)
e−Rη = M0

(
I
Φ

)
,(21)

L0

(
Ψ
I

)
= M0

(
Ψ
I

)
e−Sη .(22)

We then generate

(23) Lk =
(

I −Gk

0 Fk

)
, Mk =

(
Ek 0
−Hk I

)
by the following doubling algorithm, assuming no breakdown occurs.

Algorithm 2. Let E0, F0, G0, H0 be given by (20). Generate the sequences {Ek},
{Fk}, {Gk}, {Hk} using the doubling procedure

Ek+1 = Ek(I − GkHk)−1Ek,(24)

Fk+1 = Fk(I − HkGk)−1Fk,(25)

Gk+1 = Gk + Ek(I − GkHk)−1GkFk,(26)

Hk+1 = Hk + Fk(I − HkGk)−1HkEk.(27)

We remark that the doubling procedure in (24)–(27) is exactly the same as in [4, 9].
But the initialization in the algorithm is now given by (20), unlike that in [4, 9]. We
will show later (in Theorem 8) that no breakdown occurs in Algorithm 2.
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By the property of the doubling procedure (see [4, 9]), we have

M−1
k Lk = (M−1

0 L0)2
k

= (eHη)2
k

= eH2kη.

This implies that Γ11(2kη) is nonsingular. So Lk and Mk are uniquely determined by
eH2kη. We then have

(28) Lk = L(2kη), Mk = M(2kη).

It follows from (16) that X(2kη) is determined by Lk and Mk . We also have (as in
[4, 9]) that

Lk

(
I

Φ

)
(e−Rη)2

k
= Mk

(
I

Φ

)
,(29)

Lk

(
Ψ
I

)
= Mk

(
Ψ
I

)
(e−Sη)2

k
.(30)

To show the convergence ofX(t), we need to show the convergence ofEk,Fk,Gk,Hk

for η > 0 sufficiently small. We start with proving that Algorithm 2 is well defined
for all η > 0. So Γ11(t) in (11) is actually nonsingular for all t > 0.

Lemma 3. Suppose that the matrixK in (2) has no zero entries and E0, F0, G0, H0

are given by (20). Then there exists η∗ > 0 such that E0, F0, G0, H0 > 0 and
I − G0H0 and I − H0G0 are nonsingularM -matrices when 0 < η ≤ η∗.

Proof. We have

(31) eHt = I +
(

D −C
B −A

)
t + O(t2).

Then Γ11(t) = I + Dt + O(t2). So Γ11 is nonsingular for all t sufficiently small.
Let D = s1I − N1 with s1 > 0 and N1 > 0. Then we have

(32)

E(t) = Γ−1
11 =

1
1 + s1t

(
I − t

1 + s1t
N1 + O(t2)

)−1

=
1

1 + s1t
I +

t

(1 + s1t)2
N1 + O(t2)

> 0

for all t ∈ (0, t1], for some t1 > 0 sufficiently small. As B and C are positive matrices,

(33) G(t) = −Γ−1
11 Γ12 = E(t)(Ct + O(t2)) > 0
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for all t ∈ (0, t2] and

(34) H(t) = Γ21Γ−1
11 = (Bt + O(t2))E(t) > 0

for all t ∈ (0, t3]. Let A = s2I − N2 with s2 > 0 and N2 > 0. Then

(35)

F (t) = Γ22 − Γ21Γ−1
11 Γ12

= I − At + O(t2) − Γ21Γ−1
11 Γ12

= (1− s2t)I + N2t − Γ21Γ−1
11 Γ12 + O(t2)

> 0

for all t ∈ (0, t4].
Since limt→0 eHt = I , we have limt→0 G(t)H(t) = 0. So

ρ(G(t)H(t)) = ρ(H(t)G(t)) < 1 for all t ∈ (0, t5].

Now the conclusions in the theorem hold with η∗ = min{t1, t2, t3, t4, t5}.
We will need to get rid of the assumption that the matrix K in (2) has no zero

entries. A direct use of continuity argument would not work since the number η∗ in
Lemma 3 may decrease to 0 in a limit process. We will then achieve our goal in a
roundabout way. The following result about matrix exponential can be found in [17,
Section 8.2] for example.

Lemma 4. For any Z-matrix A, e−At ≥ 0 when t ≥ 0; for any irreducible
Z-matrix A, e−At > 0 when t > 0.

With this lemma, we can obtain the following result about Algorithm 2.

Lemma 5. Let Φ and Ψ be the minimal nonnegative solutions of the ARE (4) and
the dual ARE (5), respectively. Suppose that K has no zero entries and E0, F0, G0, H0

are given by (20) with 0 < η ≤ η∗, where η∗ is as in Lemma 3. Then the sequences
{Ek}, {Fk}, {Gk}, {Hk} in Algorithm 2 are well defined. Moreover, for all k ≥ 0,
Ek > 0, Fk > 0, 0 < Hk < Hk+1 < Φ, 0 < Gk < Gk+1 < Ψ, and both I − GkHk

and I − HkGk are nonsingularM -matrices.

Proof. The proof can be completed by induction as in [9].

The next result says that the conclusions in the above lemma actually hold for all
η > 0.

Lemma 6. Suppose that K has no zero entries and E0, F0, G0, H0 are given by
(20) with any η > 0. Then the sequences {Ek}, {Fk}, {Gk}, {Hk} in Algorithm 2
are well defined, Ek > 0, Fk > 0, 0 < Hk < Hk+1 < Φ, 0 < Gk < Gk+1 < Ψ, and
both I − GkHk and I − HkGk are nonsingularM -matrices.
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Proof. We take k0 large enough so that 0 < η/2k0 ≤ η∗. Let Ê0 =
E(η/2k0), F̂0 = F (η/2k0), Ĝ0 = G(η/2k0), Ĥ0 = H(η/2k0). By Lemma 5, the se-
quences {Êk}, {F̂k}, {Ĝk}, {Ĥk} are well defined by Algorithm 2, Êk > 0, F̂k > 0,
0 < Ĥk < Ĥk+1 < Φ, 0 < Ĝk < Ĝk+1 < Ψ, and both I − ĜkĤk and I − ĤkĜk

are nonsingular M -matrices. We only need to show that E0 = Êk0, F0 = F̂k0 , G0 =
Ĝk0, H0 = Ĥk0 . In fact, by the property of the doubling procedure, we now have

M̂−1
k0

L̂k0 = (M̂−1
0 L̂0)2

k0 = (eHη/2k0)2
k0 = eHη,

where L̂k and M̂k are defined by Êk, F̂k, Ĝk, Ĥk as in (23). From this we have
I = Êk0Γ11(η). So Γ11(η) is nonsingular and L(η) andM(η) are uniquely determined
by M(η)−1L(η) = eHη. Thus

L(η) = L̂k0 , M(η) = M̂k0 .

Equivalently, E0 = Êk0, F0 = F̂k0 , G0 = Ĝk0, H0 = Ĥk0 .

We can now drop the assumption that K has no zero entries.

Theorem 7. Let E0, F0, G0, H0 be given by (20) for any η > 0. Then E0, F0, G0,
H0 ≥ 0 and I − G0H0 and I − H0G0 are nonsingularM -matrices.

Proof. Since K is a nonsingular M -matrix or an irreducible singular M -matrix,
there is a vector v > 0 such that Kv ≥ 0. Let Kε = K + 2εeT vI − εveT with ε > 0,
where e is the vector of ones. Then Kεv = Kv+ ε(eTv)v > 0. So Kε is a nonsingular
M -matrix with no zero entries. We can now determine

(36) Lε(t) =
(

I −Gε(t)
0 Fε(t)

)
, Mε(t) =

(
Eε(t) 0
−Hε(t) I

)

by Mε(t)−1Lε(t) = eHεt for any t > 0, where Hε =
(

In 0
0 −Im

)
Kε.

Since limt→0 eHt = I , we can find an η > 0 such that E(η) is nonsingular and
ρ(G(η)H(η)) = ρ(H(η)G(η)) < 1. By Lemma 6

Eε(η), Fε(η), Gε(η), Hε(η) > 0

for this η and all ε > 0. Letting ε → 0 yields

E(η), F (η), G(η), H(η) ≥ 0.

So the conclusions in the theorem hold for this fixed η. Then the arguments in the
proof of Lemma 6 show that the conclusions also hold for any η > 0.

We then have the following convergence result for Algorithm 2.
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Theorem 8. Let E0, F0, G0, H0 be given by (20) with any η > 0. Then the
sequences {Ek}, {Fk}, {Gk}, {Hk} in Algorithm 2 are well defined, Ek ≥ 0, Fk ≥ 0,
0 ≤ Hk ≤ Hk+1 ≤ Φ, 0 ≤ Gk ≤ Gk+1 ≤ Ψ, and both I − GkHk and I − HkGk are
nonsingularM -matrices. Moreover, we have

lim sup 2k√‖Φ− Hk‖ ≤ ρ(e−Rη)ρ(e−Sη),(37)

lim sup 2k√‖Ψ − Gk‖ ≤ ρ(e−Rη)ρ(e−Sη),(38)

lim sup 2k√‖Ek‖ ≤ ρ(e−Rη),(39)

lim sup 2k√‖Fk‖ ≤ ρ(e−Sη).(40)

The sequence {Ek} is still bounded when ρ(e−Rη) = 1. The sequence {Fk} is still
bounded when ρ(e−Sη) = 1.

Proof. With Lemma 4, the proof can be completed by induction as in [9] and
[8]. Note that we do not require E0e, F0e > 0 when using the arguments in [8] to
show that I − GkHk and I − HkGk are nonsingular M -matrices.

When K is a nonsingular M -matrix, both R and S are nonsingular M -matrices.
When K is an irreducible singular M -matrix, for the critical case both R and S are
irreducible singular M -matrices and for the non-critical case one of R and S is an
irreducible singular M -matrix and the other is an irreducible nonsingular M -matrix.
From the eigenvalue location of M -matrices we know that, for any t > 0, ρ(e−Qt) < 1
if Q is a nonsingularM -matrix and ρ(e−Qt) = 1 if Q is a singularM -matrix. Theorem
8 then shows that, except for the critical case, Hk converges to Φ quadratically and
Gk converges to Ψ quadratically.
We now examine the critical case.

Theorem 9. Let E0, F0, G0, H0 be given by (20) with any η > 0 and the sequences
{Ek}, {Fk}, {Gk}, {Hk} be generated by Algorithm 2. In the critical case we have

Ek → 0, Fk → 0, Hk → Φ, Gk → Ψ,

and the convergence of each sequence is at least linear with rate 1/2.

Proof. The proof is largely the same as the proof of [4, Theorem 5.4]. The
difference is only in the beginning.
For the critical case, the matrix H (and thus Hη) has n − 1 eigenvalues in C>,

m − 1 eigenvalues in C<, and two eigenvalues at 0 with a 2 × 2 Jordan block. Thus,
the matrix eHη has n− 1 eigenvalues outside the unit circle, m− 1 eigenvalues inside
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the unit circle, and two eigenvalues at 1 with a 2×2 Jordan block. Here we have used

the fact that the exponential of the matrix
(

0 1
0 0

)
is the matrix

(
1 1
0 1

)
.

Now for suitable nonsingular matrices V and Z we have

V L0Z =
(

In 0n,m

0m,n J2,s ⊕ (1)

)
,(41)

V M0Z =
(

J1,s ⊕ (1) 0n−1,m−1 ⊕ (1)
0m,n Im−1 ⊕ (1)

)
,(42)

where X ⊕ Y means
(

X 0
0 Y

)
, and for suitable nonsingular matrices T and W we

have

TL0W =
(

J2,s ⊕ (1) 0m−1,n−1 ⊕ (1)
0n,m In−1 ⊕ (1)

)
,(43)

TM0W =
(

Im 0m,n

0n,m J1,s ⊕ (1)

)
,(44)

where J1,s ⊕ (1) is similar to e−Rη and J2,s ⊕ (1) is similar to e−Sη, with ρ(J1,s) < 1
and ρ(J2,s) < 1. The rest of the proof is the same as in [4].

We now return to the convergence of X(t), the solution to the intial value problem
(1).
When K is irreducible, it is shown in [5] that the ARE (4) has a positive solution

Φ+ with ρ(ΨΦ+) = 1 and that Φ+ > Φ for the non-critical case and Φ+ = Φ in the
critical case.
The following result includes [5, Theorem 9] and [5, Theorem 13] as special cases.

What is new here is the convergence of X(t) in the critical case. Our unified proof is
based on the convergence results for Algorithm 2, obtained earlier in this paper.

Theorem 10. If 0 ≤ X0 ≤ Φ, then X(t) → Φ as t → ∞. If K is ireducible,
0 ≤ X0 ≤ Φ+ and X0 �= Φ+, then X(t) → Φ as t → ∞.

Proof. If X0 = Φ, then we have X(t) = Φ for all t ≥ 0. We now assume
that X0 �= Φ. If K is a nonsingular M -matrix and 0 ≤ X0 ≤ Φ, it follows from
Perron–Frobenius theory [2] that ρ(ΨX0) ≤ ρ(ΨΦ) < 1. If K is an irreducible M -
matrix, 0 ≤ X0 ≤ Φ+ and X0 �= Φ+, it follows from Perron–Frobenius theory that
ρ(ΨX0) < ρ(ΨΦ+) = 1. Thus I − ΨX0 is a nonsingular M -matrix in either case.
Now for any η > 0 we have by (16) and (28) that

(45) X(2kη) = Hk + FkX0(I − GkX0)−1Ek,
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where the sequences {Ek}, {Fk}, {Gk}, {Hk} are generated by Algorithm 2, with
E0, F0, G0, H0 be given by (20). By Theorems 8 and 9, we know that X(2kη) con-
verges to Φ as k → ∞, noting that limk→∞ X0(I − GkX0)−1 = X0(I − ΨX0)−1

exits. Since η > 0 is arbitrary, it follows that X(t) → Φ as t → ∞.
3. CONCLUSIONS

The formula (45) also provides a way for solving the initial value problem (1),
assuming that X0 is in the range described in Theorem 10. Without this assumption,
(1) may not have a global solution on [0,∞). When using (45) to approximate X(t),
the approximations are computed at mesh points of the form 2kη, where η > 0 is a
small number. So the mesh grid here is not uniform at all; the grid is fine near the origin
and coarse away from the origin. This seems to be reasonable since the variations of
X(t) become small for large t values. The formula (9) cannot be used directly for the
computation of X(t) for large t since overflow will occur in the computation of eHt.
Theorems 8 and 9 show that the minimal solutions Φ and Ψ can be approximated

by Algorithm 2, where the initialization is given by (20). The doubling algorithm here
is different from the doubling algorithms in [9] and [18], where the Cayley transform
and the generalized Cayley transform are used, respectively. In general, the doubling
algorithms in [9] and [18] are less expensive than Algorithm 2, which requires the
computation of matrix exponential in the initialization, but they do not solve the initial
value problem (1) at the same time. If the purpose is just to compute the minimal
solutionsΦ and Ψ, Algorithm 2 may still be more efficient than the doubling algorithms
in [9, 18], but only in some special situations. The number of iterations required for
Algorithm 2 may be smaller than that required for the doubling algorithms in [9, 18] if
η > 0 is not too small. In theory, we can have very fast convergence for Algorithm 2 by
taking η to be large. In practice, however, when η is large the matrix Γ11(η) is often ill-
conditioned and the initial matrices E0, F0, G0, H0 in Algorithm 2 cannot be obtained
accurately. The computation of matrix exponential in the initialization of Algorithm 2
is significantly more expensive than the initializations based on (generalized) Cayley
transform. But if we need to compute the minimal solutionΦ for the ARE (4) involving
a parameter, it is possible to reduce the computational work required for computing
the matrix exponential corresponding to one value of the parameter using the matrix
exponential already computed for a nearby value of the parameter. For example, if
H = H1 + εH2 with H1H2 = H2H1 and eH1η is already computed, then we can use
eHη = eH1ηeεH2η and a lower order Taylor polynomial approximating eεH2η to get a
good approximation for eHη.
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