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ON THE NUMBER OF LAPLACIAN EIGENVALUES
OF TREES SMALLER THAN TWO

Lingling Zhou, Bo Zhou* and Zhibin Du

Abstract. Let mT [0, 2) be the number of Laplacian eigenvalues of a tree T in
[0, 2), multiplicities included. We give best possible upper bounds for mT [0, 2)
using the parameters such as the number of pendant vertices, diameter, matching
number, and domination number, and characterize the trees T of order n with
mT [0, 2) = n − 1, n − 2, and

⌈
n
2

⌉
, respectively, and in particular, show that

mT [0, 2) =
⌈

n
2

⌉
if and only if the matching number of T is

⌊
n
2

⌋
.

1. INTRODUCTION

We consider simple graphs. Let G be a graph with vertex set V (G). For v ∈
V (G), let dG(v) be the degree of v in G. The Laplacian matrix of G is defined as
L(G) = D(G) − A(G), where D(G) is the degree diagonal matrix of G, and A(G)
is the adjacency matrix of G. The Laplacian eigenvalues of G are the eigenvalues of
L(G). Since L(G) is a positive semi-definite matrix, the Laplacian eigenvalues of G
are nonnegative real numbers. Let μ1(G) ≤ μ2(G) ≤ · · · ≤ μn(G) be the Laplacian
eigenvalues of G, arranged in nondecreasing order, where n = |V (G)|. Since each
row sum of L(G) is zero, μ1(G) = 0. Recall that μn(G) ≤ n (see [1, 5]). Thus all
Laplacian eigenvalues of G belong to [0, n]. For a survey on Laplacian eigenvalues,
see [11].
For a graph G on n vertices and an interval I ⊆ [0, n], let mGI be the number of

Laplacian eigenvalues of G, multiplicities included, that belong to I .
Grone and Merris [5] showed that for a graph with at least one edge, its largest

Laplacian eigenvalue is at least the maximum degree plus one. Thus for a tree T on
n ≥ 2 vertices, mT [0, 2) ≤ n − 1.
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A vertex of a graph G is a pendant vertex if dG(v) = 1. A vertex of G is a
quasi-pendant vertex if it is adjacent to a pendant vertex.
For a graph G on n vertices with p pendant vertices, q quasi-pendant vertices, and

diameter d, Grone et al. [6] showed that
mG[0, 1], mG[1, n] ≥ p ,

mG[0, 1), mG(1, n] ≥ q ,

mG(2, n] ≥
⌊

d

2

⌋
,

and Merris [10] showed that if n > 2q, then

mG(2, n] ≥ q .

Braga et al. [3] showed that for a tree T on n ≥ 2 vertices,

mT [0, 2) ≥
⌈n

2

⌉
.

More results along this line may be found in [3, 7, 8].
In this paper, we give best possible upper bounds for mT [0, 2) using the parame-

ters of a tree T such as the number of pendant vertices, diameter, matching number,
and domination number, provide a simple different proof for the lower bound in [3]
mentioned above, characterize the trees T of order n with mT [0, 2) = n − 1, n − 2,
and

⌈
n
2

⌉
, respectively, and in particular, show that mT [0, 2) =

⌈
n
2

⌉
if and only if the

matching number of T is
⌊

n
2

⌋
(in Theorem 4.2).

2. PRELIMINARIES

An algorithm for computing the number of Laplacian eigenvalues of a tree in an
interval was proposed in [3] based on the algorithm for computing the number of
adjacency eigenvalues of a tree in an interval [9]. For a tree T on n vertices, choose
any vertex as the root of T , and label the vertices of T as v1, v2, . . . , vn such that if
vi is a child of vk, then k > i. The algorithm for computing mT [0, 2) of a tree T is
given as follows:

Input: tree T
Output: diagonal matrix D congruent to L(T )

Algorithm Diagonalize L(T )
initialize aT (v) := dT (v)− 2 for all vertices v
order vertices bottom up
for k = 1 to n

if vk is a leaf then continue
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else if aT (c) �= 0 for all children c of vk then
aT (vk) := aT (vk)−

∑
c is a child of vk

1
aT (c)

else
select one child vj of vk for which aT (vj) = 0
aT (vk) := −1

2
aT (vj) := 2
if vk has a parent vl, then remove the edge vkvl

end loop

For a tree T with vertices v1, v2, . . . , vn labelled as above, the weight of vi in T
is the i-th diagonal entry aT (vi) of the diagonal matrix D obtained under the above
algorithm, where 1 ≤ i ≤ n. If aT (vi) < 0, we say vi has a negative weight in T .

Lemma 2.1. [3] . Suppose that T is a tree. Then mT [0, 2) is equal to the number
of vertices with negative weights in T .

A double broom is a tree obtained by attaching some pendant vertices to the two
end vertices of a path on at least two vertices. In particular, a star is also regarded as
a double broom.

Lemma 2.2. Let T be an n-vertex double broom with diameter d, where 1 ≤ d ≤
n − 1. Then mT [0, 2) =

⌊
2n−d

2

⌋
.

Proof. Choosing a quasi-pendant vertex of T as the root of T . Then the result
follows from Lemma 2.1 easily.

Lemma 2.3. Let T be a tree with v ∈ V (T ), and T ′ be the tree obtained from T
by attaching a path on two vertices to v. Then mT ′ [0, 2) = mT [0, 2) + 1.

Proof. In both T and T ′, we choose v as the root. Note that the two vertices in T ′

not in T have weights 1 and −1, and aT (x) = aT ′(x) for x ∈ V (T ). Then the result
follows from Lemma 2.1 clearly.

Lemma 2.4. Let T be a tree with v ∈ V (T ), and T ∗ be the tree obtained from T
by attaching two pendant vertices to v. Then mT ∗ [0, 2) ≥ mT [0, 2) + 1.

Proof. Let us choose v as the root of both T and T ∗. Clearly, aT (x) = aT ∗(x)
for x ∈ V (T ) \ {v}. Denote by s the number of vertices in T different from v with
negative weights. Note that each pendant vertex in T ∗ has weight −1. By Lemma 2.1,
mT ∗[0, 2) ≥ s + 2 = (s + 1) + 1 ≥ mT [0, 2) + 1.

Lemma 2.5. [6] . Let G be an n-vertex graph and G′ a graph obtained from G
by deleting an edge. Then

0 = μ1(G′) = μ1(G) ≤ μ2(G′) ≤ μ2(G) ≤ · · · ≤ μn(G′) ≤ μn(G).
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For a vertex v of a graph G, G− v denotes the graph resulting from G by deleting
v (and its incident edges). For an edge uv of a graph G (the complement of G,
respectively), G − uv (G + uv, respectively) denotes the graph resulting from G by
deleting (adding, respectively) uv.

3. UPPER BOUNDS FOR mT [0, 2)

For a tree T , if v is a vertex of T with exactly dT (v)− 1 ≥ 1 pendant neighbors,
then the subgraph induced by v and its dT (v) − 1 pendant neighbors is said to be a
pendant star of T at v. If T is not a star, then T has some pendant stars.

Lemma 3.1. Suppose that T is a tree with a pendant star at v, say T1. If we
choose a vertex of T outside T1 as the root of T , then aT (v) > 0.

Proof. Clearly, aT (u) = −1 for any pendant neighbor u of v in T . Thus

aT (v) = dT (v)− 2 − (dT (v)− 1)
1

aT (u)
= 2dT (v)− 3 > 0 ,

as desired.

Lemma 3.2. Let T be a tree, and T1 be the tree obtained from T by deleting a
pendant vertex. Then mT [0, 2) = mT1[0, 2) or mT1[0, 2) + 1.

Proof. Let v be a pendant vertex of T , being adjacent to u. By Lemma 2.5,
μi(T ) ≤ μi+1(T − uv) ≤ μi+1(T ) for 1 ≤ i ≤ n − 1. Obviously, T − uv consists of
T1 and an isolated vertex v. Thus μi+1(T −uv) = μi(T1) for 1 ≤ i ≤ n−1. It follows
that μi(T ) ≤ μi(T1) ≤ μi+1(T ) for 1 ≤ i ≤ n − 1. From μi(T ) ≤ μi(T1), we have
mT [0, 2) ≥ mT1[0, 2), and from μi(T1) ≤ μi+1(T ), we havemT1[0, 2) ≥ mT [0, 2)−1.
Thus we have the desired result.

Theorem 3.1. Let T be an n-vertex tree with p pendant vertices, where 2 ≤ p ≤
n − 1. Then mT [0, 2) ≤

⌊
n+p−1

2

⌋
.

Proof. We prove the result by induction on n.

If n = 3, then T is a star with p = 2, and by Lemma 2.2,mT [0, 2) = 2 ≤
⌊

n+p−1
2

⌋
.

Suppose that the result holds for all trees on less than n ≥ 4 vertices with any
possible number of pendant vertices. Let T be an n-vertex tree with p pendant vertices.
Let v be an end vertex of a diametrical path of T , and u be the (unique) neighbor of
v (on that diametrical path).
Suppose first that u is of degree two. Note that T − v − u has at most p pendant

vertices. Applying the induction hypothesis to T − v − u, we have mT−v−u[0, 2) ≤⌊
(n−2)+p−1

2

⌋
. Then by Lemma 2.3, we have
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mT [0, 2) = mT−v−u[0, 2) + 1 ≤
⌊

(n − 2) + p − 1
2

⌋
+ 1 =

⌊
n + p − 1

2

⌋
.

Now suppose that u is of degree at least three. Note that T−v has p−1 pendant vertices.
Applying the induction hypothesis to T − v, we have mT−v[0, 2) ≤

⌊
(n−1)+(p−1)−1

2

⌋
.

Then by Lemma 3.2, we have

mT [0, 2) ≤ mT−v[0, 2) + 1 ≤
⌊

(n − 1) + (p− 1)− 1
2

⌋
+ 1 =

⌊
n + p − 1

2

⌋
.

The result follows.

Corollary 3.1. Let T be an n-vertex tree with diameter d, where 2 ≤ d ≤ n − 1.
Then mT [0, 2) ≤

⌊
2n−d

2

⌋
.

Proof. Denote by p the number of pendant vertices in T . Clearly, p ≤ n − d + 1.
Then the result follows from Theorem 3.1 easily.

The upper bounds in Theorem 3.1 and Corollary 3.1 are both tight since they are
attained when T is an n-vertex double broom.
A matching of a graph is an edge subset in which no pair shares a common vertex.

The matching number β(G) of a graph G is the maximum cardinality of a matching
of G.

Theorem 3.2. Let T be an n-vertex tree with matching number β, where 1 ≤ β ≤
�n

2 �. Then mT [0, 2) ≤ n − β.

Proof. We prove the result by induction on n.

The case n = 3 follows obviously from Lemma 2.2.
Suppose that the result holds for all trees on less than n ≥ 4 vertices with any

possible matching number. Let T be an n-vertex tree with matching number β. Let v
be an end vertex of a diametrical path of T , and u be the (unique) neighbor of v (on
that diametrical path).
Suppose first that u is of degree two. Note that T − v − u has matching number

β − 1. Applying the induction hypothesis to T − v − u, we have mT−v−u[0, 2) ≤
(n − 2) − (β − 1) = n − β − 1. Now it follows from Lemma 2.3 that

mT [0, 2) = mT−v−u[0, 2) + 1 ≤ (n − β − 1) + 1 = n − β.

Now suppose that u is of degree at least three. Note that T − v has matching number
β. Applying the induction hypothesis to T − v, we have mT−v[0, 2) ≤ n − 1 − β.
Now it follows from Lemma 3.2 that

mT [0, 2) ≤ mT−v [0, 2) + 1 ≤ (n − 1 − β) + 1 = n − β.
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The result follows.

A dominating set of a graph is a vertex subset whose closed neighborhood contains
all vertices of the graph. The domination number of a graph G is the minimum
cardinality of a dominating set of G.
A covering of a graph G is a vertex subset K such that every edge of G has at

least one end vertex in K.

Corollary 3.2. Let T be an n-vertex tree with domination number γ , where 1 ≤
γ ≤ �n/2�. Then mT [0, 2) ≤ n − γ .

Proof. Denote by β the matching number of T . By König’s theorem [2], β is equal
to the minimum cardinality of a covering of G. Note that a covering of T is also a
dominating set of T . Thus β ≥ γ . Then the result follows from Theorem 3.2 easily.

The upper bounds in Theorem 3.2 and Corollary 3.2 are both tight since they are
attained when T is an n-vertex tree obtained by attaching some paths on two vertices
to the central vertex of a star.
Recall that mT [0, 2) ≤ n − 1 for any tree T on n ≥ 2 vertices [5], (which also

follows from Theorem 3.2). Let T 1
n be the set of n-vertex trees (double brooms) with

diameter three, where n ≥ 4. Let T 2
n be the set of n-vertex double brooms with

diameter four, where n ≥ 5.

Theorem 3.3. Let T be a tree on n vertices.
(i) mT [0, 2) = n − 1 for n ≥ 2 if and only if T ∼= Sn.
(ii) mT [0, 2) = n − 2 for n ≥ 4 if and only if T ∈ T 1

n ∪ T 2
n .

Proof. By Lemma 2.2, mT [0, 2) = n − 1 if T ∼= Sn, and mT [0, 2) = n − 2 if
T ∈ T 1

n ∪ T 2
n .

Suppose in the following that T �∈ {Sn} ∪ T 1
n ∪ T 2

n . Then n ≥ 6. Let P =
v0v1 . . . vd be a diametrical path of T . Obviously, d ≥ 4. Let T1 be the pendant star
of T at v1, and T2 be the pendant star of T at vd−1.
If T1 and T2 are the only two vertex-disjoint pendant stars in T , then T is a double

broom with d ≥ 5, and thus by Lemma 2.2, mT [0, 2) ≤ n − 3.
Suppose that there are at least three vertex-disjoint pendant stars in T . Let T3 be

a pendant star in T different from T1 and T2.
If V (T ) = V (T1) ∪ V (T2) ∪ V (T3), then T is the tree obtained by attaching at

least one pendant vertex to each vertex of P3, and by choosing v2 as the root of T and
applying Lemma 2.1, we have mT [0, 2) = n − 3.
Suppose that V (T ) ⊃ V (T1) ∪ V (T2) ∪ V (T3). Let u be a vertex in T outside

T1, T2, T3. Choosing u as the root of T , and by Lemma 3.1, each of T1, T2, T3 has one
vertex which is not of negative weight. Thus, by Lemma 2.1, we havemT [0, 2) ≤ n−3.
Now the result follows easily.
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4. A LOWER BOUND FOR mT [0, 2)

For a tree T , if u is a pendant vertex of T being adjacent to a vertex v of degree
two, then the subgraph of T induced by u and v is said to be a pendant P2 of T . For
a tree on at least three vertices, if there is no pendant P2, then there are two pendant
vertices sharing a common neighbor.
Deleting a pendant P2 of a tree T is said to be a deleting pendant P2 operation, and

deleting a pendant P2 of T or two pendant vertices of T sharing a common neighbor
is said to be a generalized deleting pendant P2 operation.
For a tree on n vertices, we can finally obtain P1 for odd n and P2 for even n by

a series of generalized deleting pendant P2 operations.
The following result has been obtained by Braga et al. [3]. Here we present a

simple different reasoning.

Theorem 4.1. Let T be a tree on n ≥ 2 vertices. Then mT [0, 2) ≥
⌈

n
2

⌉
.

Proof. By Lemmas 2.3 and 2.4, each generalized deleting pendant P2 operation
decreases the number of Laplacian eigenvalues in [0, 2) by at least one. Thus, if n
is odd, then mT [0, 2) ≥ mP1 [0, 2) + n−1

2 = n+1
2 , and if n is even, then mT [0, 2) ≥

mP2[0, 2) + n−2
2 = n

2 .

Lemma 4.1. Let T be a tree with a diametrical path P = v0v1 . . . vd, where d ≥ 4,
and for some i with 2 ≤ i ≤ d−2, vi is of degree three. Let T ′ = T −vivi+1 +v∗i vi+1,
where v∗i is the pendant neighbor of vi outside P . Then mT [0, 2) ≥ mT ′[0, 2).

Proof. Let us choose vi as the root of both T and T ′. It is easily checked that
aT (x) = aT ′(x) for x ∈ V (T ) \ {vi, v

∗
i }, aT (v∗i ) = −1,

aT (vi) = 2− 1
aT (vi−1)

− 1
aT (vi+1)

,

aT ′(v∗i ) = − 1
aT ′(vi+1)

= − 1
aT (vi+1)

,

aT ′(vi) = − 1
aT ′(vi−1)

− 1
aT ′(v∗i )

= − 1
aT (vi−1)

+ aT (vi+1) .

Denote by s the number of vertices in T different from vi, v
∗
i with negative weights.

By Lemma 2.1, mT [0, 2) ≥ s + 1 and mT ′ [0, 2) ≤ s + 2.
Suppose by contradiction that mT [0, 2) < mT ′[0, 2). Then

s + 1 ≤ mT [0, 2) ≤ mT ′ [0, 2)− 1 ≤ s + 1 ,

and thusmT [0, 2) = s+1 and mT ′ [0, 2) = s+2, implying that aT (vi) ≥ 0, aT ′(v∗i ) <

0, and aT ′(vi) < 0. From aT ′(v∗i ) < 0, we have aT (vi+1) > 0, and then
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aT ′(vi) − aT (vi) = aT (vi+1) +
1

aT (vi+1)
− 2 ≥ 0 .

Thus aT ′(vi) ≥ aT (vi) ≥ 0, which is a contradiction.

Attaching the path P2 to a vertex of a tree T is called adding a pendant P2 to T . By
Lemma 2.3, each operation of adding a pendant P2 increases the number of Laplacian
eigenvalues in [0, 2) by one.

Theorem 4.2. Let T be a tree on n ≥ 2 vertices. Then mT [0, 2) =
⌈

n
2

⌉
if and

only if β(T ) =
⌊

n
2

⌋
.

Proof. If β(T ) =
⌊

n
2

⌋
, then by Theorem 3.2, we have

⌈n

2

⌉
≤ mT [0, 2) ≤ n −

⌊n

2

⌋
=

⌈n

2

⌉
,

and thus mT [0, 2) =
⌈

n
2

⌉
.

Suppose that mT [0, 2) =
⌈

n
2

⌉
. We will prove that β(T ) =

⌊
n
2

⌋
.

Claim 1. T is a tree obtainable from P2 if n is even and from P1 if n is odd by
sequentially adding pendant P2’s.
Applying a series of deleting pendant P2 operations from T , we may finally obtain

a tree T (1) without pendant P2. Let n(1) = |V (T (1))|. By Lemma 2.3, we have
mT (1)[0, 2) =

⌈
n(1)

2

⌉
.

If n(1) = 1 or 2, i.e., T (1) ∼= P1 or P2, then Claim 1 follows obviously. In the
following, we will prove that n(1) = 1 or 2.
Since T (1) has no pendant P2, we have n(1) �= 3, and if n(1) = 4, 5, then T (1) is a

star, and thus mT (1) [0, 2) = n(1) − 1 �=
⌈

n(1)

2

⌉
, which is a contradiction, implying that

n(1) �= 4, 5.
Suppose that n(1) ≥ 6. Let d be the diameter of T (1), and let P = v0v1 . . . vd be a

diametrical path of T (1). Note that both v1 and vd−1 are of degree at least three (since
T (1) has no pendant P2). If d = 2, 3, then T (1) is a double broom, by Theorem 3.3,
mT (1)[0, 2) ≥ n(1) − 2 >

⌈
n(1)

2

⌉
, which is a contradiction. Thus d ≥ 4.

Note that the deletion of edges in P from T (1) results in a forest with d + 1
components, each of which contains exactly one vertex of P . Among such d + 1
components, denote by Ti the one containing vi, where 0 ≤ i ≤ d.
Let T (2) be the tree obtained from T (1) by a series of generalized deleting pendant

P2 operations such that one vertex of Ti is left if |V (Ti)| is odd and two vertices of Ti

are left if |V (Ti)| is even for all 2 ≤ i ≤ d − 2. Let n(2) = |V (T (2))|.
Now by Lemmas 2.3, 2.4, and 4.1, we have
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⌈
n(1)

2

⌉
= mT (1) [0, 2) ≥ mT (2) [0, 2) +

n(1) − n(2)

2

≥
⌈

n(2)

2

⌉
+

n(1) − n(2)

2

=

⌈
n(1)

2

⌉
.

Thus mT (2) [0, 2) =
⌈

n(2)

2

⌉
.

Note that P = v0v1 . . . vd is still a diametrical path of T (2), v1 and vd−1 are both
of degree at least three, and the vertices v2, v3, . . . , vd−2 are all of degrees two or three.
This implies that the diameter, say d̄, of T (2) satisfies that 4 ≤ d̄ ≤ n(2) − 3.
If the vertices v2, v3, . . . , vd−2 in T (2) are all of degree two, then T (2) is a double

broom, and by Lemma 2.2, we have⌈
n(2)

2

⌉
= mT (2) [0, 2) =

⌊
2n(2) − d̄

2

⌋
≥

⌊
2n(2) − (n(2) − 3)

2

⌋
=

⌊
n(2) + 3

2

⌋
,

which is a contradiction.
Suppose that there is a vertex vi of degree three in T (2), where 2 ≤ i ≤ d−2. Denote

by v∗i the pendant neighbor of vi in T (2) outside P . Let T ′ = T (2) − vivi+1 + v∗i vi+1.
Note that T ′ has one less vertex of degree three than T (2). By Lemma 4.1, we have
mT (2)[0, 2) ≥ mT ′ [0, 2). Repeating the transformation from T (2) to T ′, we can finally
get a double broom T ∗ with n(2) vertices such that the degrees of v1 and vd−1 in T ∗

are the same as those in T (2), the vertices v2, v3, . . . , vd−2 and their pendant neighbors
in T (2) are all of degree two in T ∗, and

⌈
n(2)

2

⌉
= mT (2) [0, 2) ≥ mT ∗[0, 2). Note that

T ∗ has diameter at most n(2) − 3 (since v1 and vd−1 are both of degree at least three).
As above, we can deduce a contradiction.
Thus n(1) = 1 or 2, and Claim 1 follows.
Obviously, each operation of adding a pendant P2 increases the matching number by

one. By Claim 1, β(T ) = β(P2)+ n−2
2 = n

2 if n is even, and β(T ) = β(P1)+ n−1
2 =

n−1
2 if n is odd. Thus β(T ) =

⌊
n
2

⌋
.

5. REMARK

Recall that for a tree T on n ≥ 2 vertices, �n
2 
 ≤ mT [0, 2) ≤ n − 1.

Theorem 5.1. For positive integers n, k with n ≥ 2 and
⌈

n
2

⌉
≤ k ≤ n − 1, there

exists a tree T on n vertices such that mT [0, 2) = k.
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Proof. Observe that mS2k−n+2
[0, 2) = 2k − n + 1. Let T be the n-vertex tree

obtained by attaching a path on 2n − 2k − 2 vertices to a vertex of S2k−n+2. By
Lemma 2.3, we have

mT [0, 2) = mS2k−n+2
[0, 2) +

2n − 2k − 2
2

= k ,

as desired.
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