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Isomorphic Quartic K3 Surfaces in the View of Cremona and Projective

Transformations

Keiji Oguiso

Abstract. We show that there is a pair of smooth complex quartic K3 surfaces S1 and

S2 in P3 such that S1 and S2 are isomorphic as abstract varieties but not Cremona

isomorphic. We also show, in a geometrically explicit way, that there is a pair of

smooth complex quartic K3 surfaces S1 and S2 in P3 such that S1 and S2 are Cremona

isomorphic, but not projectively isomorphic. This work is much motivated by several

e-mails from Professors Tuyen Truong and János Kollár.

1. Introduction

Throughout this note we work over C.

Let X and Y be closed subvarieties of Pn, i.e., irreducible reduced closed subschemes

of Pn. We say that X and Y are Cremona equivalent (resp. Cremona isomorphic) if there

is f ∈ Bir(Pn) such that f is defined at the generic point of X and f |X : X 99K Y is a

birational map (resp. an isomorphism). We say that X and Y are projectively equivalent

if there is f ∈ Aut(Pn) = PGL(n+ 1,C) such that f |X : X → Y is an isomorphism.

This note is, in some sense, a continuation of our previous paper [14], has some overlap

with an unpublished note [16] and is much inspired by the following question asked by

Tuyen Truong to me [21]:

Question 1.1. Assume that X and Y , subvarieties of Pn, are birational as abstract

varieties. Are then X and Y Cremona equivalent in Pn?

Answers are known in both affirmative and negative directions. This was pointed out

by Massimiliano Mella to me after the first version of this note. In fact, in an affirmative

direction, Mella and Polastri [10] proved the following satisfactory:

Theorem 1.2. Question 1.1 is affirmative if n− dimX ≥ 2.
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In a negative direction, they also proved

Theorem 1.3. [11] Let Z be a smooth projective variety of dimension n−1. Assume that

2 ≤ n ≤ 15. Then there are birational morphisms onto the images ϕi : Z → Pn (i = 1, 2)

such that X := ϕ1(Z) and Y := ϕ2(Z) are (necessarily birational, but) not Cremona

equivalent in Pn.

In their construction in Theorem 1.3, degX 6= deg Y , and therefore, either X or Y has

a singular point worse than canonical singularities if KZ is nef.

The aim of this note is to give another negative answer to Question 1.1 under the

stronger constraint that both X and Y are smooth hypersurfaces in Pn and X and Y are

isomorphic as abstract varieties. Note then that degX = deg Y if n ≥ 3.

Our main results are the following:

Theorem 1.4. There are smooth quartic K3 surfaces Si ⊂ P3 (i = 1, 2) such that S1 and

S2 are isomorphic as abstract varieties but they are not Cremona equivalent in P3.

Theorem 1.5. (1) Let S be a surface. Then, the following (a) and (b) are equivalent:

(a) S is a smooth K3 surface with two very ample divisors h1 and h2 such that

((hi, hj)S) =

4 6

6 4

 .

(b) S is isomorphic to a smooth complete intersection of four hypersurfaces Qk

(k = 1, 2, 3, 4) of bidegree (1, 1) of P := P3 × P3:

S = Q1 ∩Q2 ∩Q3 ∩Q4 ⊂ P,

such that the i-th projection pi|S : S → Si := pi(S) ⊂ P3 (i = 1, 2) is an

isomorphism and is given by the complete linear system |hi|.

Moreover, under this equivalence, the surfaces Si ⊂ P3 (i = 1, 2) are Cayley’s K3

surfaces (see, [5]) in the sense of [7], i.e., determinantal smooth quartic surfaces.

(2) For any surface S in (1)(b), set V := Q1 ∩Q2 ∩Q3 ⊂ P . Then

τ := p2|V ◦ (p1|V )−1 ∈ Bir(P3) \Aut(P3),

and Si (i = 1, 2) are Cremona isomorphic under τ .

(3) If Qk (k = 1, 2, 3, 4) are very general hypersurfaces of bidegree (1, 1) in P = P3×P3,

then S := Q1 ∩Q2 ∩Q3 ∩Q4 satisfies the condition (1)(b) and the surfaces Si ⊂ P3

(i = 1, 2) in (1)(b) are smooth quartic surfaces which are Cremona isomorphic but

not projectively equivalent in P3.
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Remark 1.6. (1) We call a quartic surface S ⊂ P3 (linear) determinantal if S=(detM(x)

= 0) for some 4× 4 matrix M(x) whose entries are homogeneous linear forms of the

homogeneous coordinates x = [x1 : x2 : x3 : x4] of P3.

(2) Theorem 1.5(1) states the result for fixed polarizations h1 and h2. So, as the referee

pointed out, it is stronger than what we actually need for Theorem 1.5(3). I believe

that Theorem 1.5(1) has its own interest and some other applications besides The-

orem 1.5(3); See e.g., the second paragraph after Proposition 1.7. Theorem 1.5(1),

(2) are valid over any algebraically closed field k, as our proof shows.

(3) The condition very general in Theorem 1.5(3) will be made more explicit by Propo-

sitions 6.1, 6.2 in Section 6.

Our proof of Theorem 1.4 is indirect. In fact, as in [14], we prove Theorem 1.4 by

combining standard results on K3 surfaces with the following special case of a more general

theorem due to Takahashi (see, [20, Theorem 2.3, Remark 2.4]), whose proof, being based

on the Noether-Fano inequality [20, Theorem 1.4], is given in Appendix.

Proposition 1.7. Let S, S′ ⊂ P3 be smooth quartic K3 surfaces and ϕ ∈ Bir(P3) such that

ϕ∗S = S′. Here ϕ∗S is the Zariski closure of the image ϕ(ηS) of the generic point ηS ∈ S
in P3. Assume that ϕ /∈ Aut(P3). Then, there is an irreducible reduced curve C ⊂ S

such that degC := (C,H)P3 < 16 and the classes C and H|S are linearly independent in

NS(S). Here H is the hyperplane class of P3.

Theorem 1.5 is much inspired by several constructive comments from János Kollár [8]

on the first version of this note and beautiful works by Beauville [2, Corollay 6.6] on a

characterization of Cayley’s K3 surfaces and by D. Festi, A. Garbagnati, B. van Geemen

and R. van Luijk [7] on automorphisms of Cayley’s K3 surfaces of Picard number 2 (see

also [3,4] for interesting relevant works). So, the surfaces Si are known ones. The novelty

of Theorem 1.5 is to provide examples of pairs of smooth quartic surfaces that are Cremona

isomorphic but not projectively equivalent in geometrically simple and concrete terms.

Quite recently, I. Shimada also informed me T. Shioda’s observation that the Fermat

quartic K3 surface F , which contains exactly 48 lines, has yet another smooth quartic

surface model F ∗ which contains exactly 56 lines (see, [18, 19]). It is then clear that

they are isomorphic but not projectively equivalent. The corresponding two polarizations

satisfy the condition in Theorem 1.5(1). So, some isomorphism between F and F ∗ can

be obtained as a Cremona transformation via a suitable complete intersection F̃ in P as

in Theorem 1.5(1), (2). It may be interesting to find an explicit equations of F̃ ⊂ P and

explicit determinantal descriptions of F and F ∗.

We note that the following classical result, essentially due to Matsumura-Monsky [9],

may justify our restriction to smooth quartic surfaces in P3 in Theorems 1.4 and 1.5.
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Theorem 1.8. Let X and Y be smooth hypersurfaces of Pn of degree d. Assume that

n ≥ 3 and (n, d) 6= (3, 4). Then X and Y are projectively equivalent, in particular, X and

Y are Cremona isomorphic, if X and Y are isomorphic as abstract varieties.

2. Notations and preliminary results

Throughout this note, we denote L ⊗Z K by LK for a Z-module L and a Z-algebra K.

We denote the cyclic group of order n by Zn. We call a closed point P of a variety V

general (resp. very general) if P belongs to the complement of the union of finitely many

(resp. countably many) prescribed closed proper subvarieties of V . We denote by ηV the

generic point of the corresponding irreducible reduced scheme of V .

Let S be a projective K3 surface. We denote by σS a nonzero holomorphic 2-form on

S and by NS(S) the Néron-Severi group of S. The Picard group Pic(S) is isomorphic to

NS(S) by the cycle map. We identify Pic(S) with the sublattice NS(S) of H2(S,Z) with

the intersection form (∗, ∗∗)S . The lattice (H2(S,Z), (∗, ∗∗)S) is isomorphic to the K3

lattice ΛK3 := U⊕3 ⊕E8(−1)⊕2. We denote the self-intersection number (x, x)S by (x2)S .

The orthogonal complement

T (S) := NS(S)⊥H2(S,Z)

of NS(S) in H2(S,Z) is the transcendental lattice. T (S) is then the minimal primitive

sublattice T of H2(S,Z) such that H0(S,Ω2
S) = C · σS ⊂ TC. The dual lattice of NS(S) is

NS(S)∗ := {x ∈ NS(S)Q | (x,NS(S))S ⊂ Z} .

We have a natural inclusion NS(S) ⊂ NS(S)∗ and similarly for T (S) ⊂ T (S)∗. As the

lattice (H2(S,Z), (∗, ∗∗)S) is unimodular, there is a natural isomorphism

NS(S)∗/NS(S) ' T (S)∗/T (S)

which is compatible with the action of Aut(S) (see, [13, Proposition 1.6.1]).

The positive cone P (S) is the connected component of the subset {x ∈ NS(S)R |
(x2)S > 0} of NS(S)R, containing the ample classes. Let P (S) be the closure of P (S) in

the topological vector space NS(S)R. The nef cone Amp(S) is the closure of the ample

cone Amp(S) in NS(S)R. Note that Amp(S) ⊂ P (S).

The following lemma is well-known and is proved in several ways (see e.g., [15, Propo-

sition 2.4]).

Lemma 2.1. Let S be a projective K3 surface and g ∈ Aut(S) such that g∗|NS(S) is of

finite order. Then g is of finite order.

Our references on basic facts on K3 surfaces, their projective models and lattice po-

larized K3 surfaces are [1, Chapter VIII], [17] and [6, Sections 1-3] respectively.
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3. Proof of Theorem 1.4

In this section we shall prove Theorem 1.4. Let ` be an integer such that ` ≥ 5. Choose

and fix such an `. We freely use the notation introduced in Section 2.

Throughout this section, S is a K3 surface such that NS(S) = L, where

L := Zh1 + Zh2, ((hi, hj)S) =

 4 4`

4` 4

 .

As the lattice L is even and of signature (1, 1), there is a unique primitive embedding

L→ ΛK3, up to O(ΛK3) and such K3 surfaces S certainly exist (see, [12, Corollary 2.9], [13,

Theorem 3.1]). They are all projective and very general in the 18-dimensional family of

the L-polarized K3 surfaces (see, [6, Sections 1-3]).

In what follows, we choose and fix a very general S which also enjoys the property in:

Lemma 3.1. g∗σS = ±σS and g∗|T (S) = ± id for all g ∈ Aut(S), if S is very general.

Proof. By the minimality of T (S), it suffices to show that g∗σS = ±σS if S is very general.

We have g∗σS = ασS for some α ∈ C. As S is projective, α is a cyclotomic integer

(see, [22, Theorem 14.10]). We have σS ∈ V (α) ⊂ T (S)⊗ZC. Here V (α) is the eigenspace

of g∗|T (S) of eigenvalue α. The space V (α) is a proper linear subspace of T (S) ⊗Z C if

α 6= ±1, as α has then a Galois conjugate β with β 6= α. Thus, the set of periods of all such

S that α 6= ±1 belongs to some countable union of hypersurfaces in the 18-dimensional

period domain of L-polarized K3 surfaces. This implies the result.

Replacing (h1, h2) by (−h1,−h2) if necessary, we may and will assume that h1 ∈ P (S).

By the shape of NS(S), one readily obtains the following

Lemma 3.2. (1) Let xh1 + yh2 ∈ NS(S)R. Then

((xh1 + yh2)
2)S = 4x2 + 8`xy + 4y2 = 4

(
(x+ `y)2 − (`2 − 1)y2

)
.

(2) NS(S) represents neither 0 nor ±2, i.e., (d2)S 6= 0,±2 for d ∈ NS(S) \ {0}.

(3)

T (S)∗/T (S) ' NS(S)∗/NS(S) =

〈
h1
4
,
h2 − `h1
4(`2 − 1)

〉
' Z4 ⊕ Z4(`2−1).

We set v1 := (−`+
√
`2 − 1)h1 + h2, v2 := h1 + (−`+

√
`2 − 1)h2 ∈ NS(S)R.

Lemma 3.3. Amp(S) = P (S) = R≥0v1 + R≥0v2.

Proof. As h1 ∈ P (S), the second equality follows from Lemma 3.2(1). As NS(S) does not

represent −2 by Lemma 3.2(2), S contains no P1. This implies the first equality.
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Lemma 3.4. Aut(S) has no element of finite order other than idS.

Proof. Let g ∈ Aut(S). Then, either g∗v1 = αv1 and g∗v2 = βv2 (first case) or g∗v1 = αv2

and g∗v2 = βv1 (second case), for some positive real numbers α and β.

Assume that g is of finite order.

Then, in the first case, α = β = 1, whence g∗|NS(S) = id. Then g∗|NS(S)∗/NS(S) = id.

Hence g∗|T (S)∗/T (S) = id as well. On the other hand, g∗|T (S) = ± id by Lemma 3.1. It

follows that g∗|T (S) = id by Lemma 3.2(3), as g∗|T (S)∗/T (S) = id. Hence g = idS by the

global Torelli theorem for K3 surfaces.

In the second case, (g2)∗v1 = α2v1 and (g2)∗v2 = β2v2. Hence g2 = idS as we have

shown. Thus α = β = 1. Therefore g∗v1 = v2 and g∗v2 = v1. This implies that

g∗h1 = h2 and g∗h2 = h1.

Then g∗|NS(S)∗/NS(S) 6= ± id by Lemma 3.2(3). Indeed, we have (h1±h2)/4 /∈ NS(S), as h1

and h2 form Z-basis of NS(S). On the other hand, g∗|T (S)∗/T (S) = ± id, as g∗|T (S) = ± id

by our choice of S, a contradiction. This proves the assertion.

We set H :=
{
h ∈ Amp(S) ∩NS(S) | (h2)S = 4

}
. Then, h1, h2 ∈ H by Lemma 3.3

and the action of Aut(S) on NS(S)R preserves H.

Lemma 3.5. (1) Any h ∈ H is very ample.

(2) There is no g ∈ Aut(S) such that g∗h1 = h2.

Proof. As S contains no P1, the complete linear system |h| is free (see, [17, 2.7]). Also,

there is no d ∈ NS(S)\{0} with (d2)S ∈ {0,±2} by Lemma 3.2(2). The assertion (1) then

follows from [17, Theorem 5.2].

Let us show the assertion (2). Assume to the contrary that there is g ∈ Aut(S) such

that g∗h1 = h2. Write g∗h2 = ah1 + bh2. Then

g∗(h1, h2) = (h1, h2)

0 a

1 b

 .

As det g∗|NS(S) = ±1, it follows that a = ±1. We have b = −`(a− 1) by

4` = (h1, h2)S = (g∗h1, g
∗h2)S = (h2, ah1 + bh2)S = 4a`+ 4b.

Hence (a, b) is either (1, 0) or (−1, 2`).

Assume that (a, b) = (1, 0). Then (g∗)2h1 = h1 and (g∗)2h2 = h2. Thus g2|NS(S) = id.

Hence g is of finite order by Lemma 2.1. However, then g = idS by Lemma 3.4, a

contradiction to h1 6= h2 in NS(S).
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Assume that (a, b) = (−1, 2`). Then, by g∗h1 = h2 and g∗h2 = −h1 + 2`h2, we have

(g∗)2
h1
4

= g∗
h2
4

=
−h1 + 2`h2

4
.

By Lemma 3.1, we have (g∗)2 = id on T (S)∗/T (S) ' NS(S)∗/NS(S). Hence

−h1 + `h2
2

= (g∗)2
h2
4
− h1

4
∈ NS(S),

a contradiction to the fact that h1 and h2 form Z-basis of NS(S). This proves (2).

Let h ∈ H and Φ|h| : S → P3 be the embedding defined by the complete linear system

|h| (see, Lemma 3.5(1)). We set Sh := Φ|h|(S) ⊂ P3. Then Sh is a smooth quartic K3

surface isomorphic to S, as h is very ample and (h2)S = 4.

Lemma 3.6. Let H be the hyperplane class of P3 and C be any effective curve on Sh such

that (C,H)P3 < 16. Then, the classes C and H|S are linearly dependent in NS(Sh).

Proof. Identify Sh with S by Φ|h|. Assuming to the contrary that there would be an effective

curve C ⊂ Sh such that the class c := [C] is linearly independent to h = H|S in NS(S), we

shall derive a contradiction. Then N := 〈c, h〉 is a sublattice of NS(S) of the same rank 2.

In particular, the signature is (1, 1). Then

|N | :=

∣∣∣∣∣∣det

 (c2)S (c, h)S

(c, h)S (h2)S

∣∣∣∣∣∣ = (c, h)2S − (c2)S · (h2)S > 0

and |N | is divisible by |NS(S)| := |det(hi.hj)|. Since c = [C] is an effective class and

C 6' P1 by Lemma 3.2(2), we have (c2)S ≥ 0. Hence

|N | ≤ (c, h)2S = (C,H)2P3 < 162.

On the other hand, by ` ≥ 5,

|NS(S)| = 16`2 − 16 > 16 · 17− 16 = 162.

However, then |N | is not divisible by |NS(S)|, a contradiction.

Let Si := Φ|hi|(S) ⊂ P3 (i = 1, 2). Then S1 and S2 are smooth quartic K3 surfaces in

P3 such that S1 ' S2 ' S. The next lemma completes the proof of Theorem 1.4.

Lemma 3.7. There is no ϕ ∈ Bir(P3) such that ϕ∗S2 = S1.
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Proof. Assuming to the contrary that there would be ϕ ∈ Bir(P3) such that ϕ∗(S2) = S1,

we shall derive a contradiction.

By Proposition 1.7 and Lemma 3.6, ϕ ∈ Aut(P3). Hence

g := (Φ|h1||S1)−1 ◦ (ϕ|S2) ◦ Φ|h2| ∈ Aut(S).

We also note that h1 = Φ∗|h1|H, h2 = Φ∗|h2|H for the hyperplane class H of P3. We have

ϕ∗H = H, as ϕ ∈ Aut(P3) = PGL(4,C). However, then g∗h1 = h2, a contradiction to

Lemma 3.5(2).

4. Proof of Theorem 1.5(1)

In this section we shall prove Theorem 1.5(1). We freely use the notations introduced in

Section 2 and Theorem 1.5. Let

P = P3 × P3 = P3
1 × P3

2,

and pi : P → P3
i be the i-th projection (i = 1, 2). We denote the homogeneous coordinates

of P by

(x,y) = ([x1 : x2 : x3 : x4], [y1 : y2 : y3 : y4]) .

We denote by xt (resp. yt) the transpose of x (resp. y).

Let H1 and H2 be divisors on P = P3 × P3 of bidegree (1, 0) and (0, 1) respectively.

Then

OP (H1) = OP (1, 0) = p∗1OP3
1
(1) and OP (H2) = OP (0, 1) = p∗2OP3

2
(1).

First, we show that (b) implies (a). S is a K3 surface by the adjunction formula.

Let `i be the hyperplane class of Si ⊂ P3 and hi = p∗i (`i). Then h1 and h2 satisfy the

requirement in (a).

Next we show that (a) implies (b). Consider the embedding

Φ := Φ|h1| × Φ|h2| : S → P = P3 × P3

given by the very ample complete linear systems |hi|.
We denote S̃ := Φ(S). Then we have hi = Hi|S̃ (i = 1, 2) and

Si := pi(S̃) = Φ|hi|(S) ' S.

In what follows, whenever we write S = S̃ (resp. S = Si (i = 1, 2)), we understand that

the identification is made by Φ (resp. Φ|hi|).

We note that

C4 ' C 〈x1, x2, x3, x4〉 = H0(P3
1,OP3

1
(1)) ' H0(S,OS(h1))
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under the restriction map and the identification of S with S1 by Φ|h1|. Similarly

C4 ' C 〈y1, y2, y3, y4〉 = H0(P3
2,OP3

2
(1)) ' H0(S,OS(h2)).

Now we identify S with S1 by Φ|h1|. As h1 and h2 are very ample with (h2i )S = 4 and

(h1, h2)S = 6, we have an exact sequence of sheaves on P3
1:

0→ OP3
1
(−1)⊗C H

0(P3
2,OP3

2
(1))

M(x)·→ OP3
1
⊗C H

0(P3
2,OP3

2
(1))

m→ OS(h2)→ 0

by Beauville [2, Corollary 6.6, Proposition 1.11]. Then, by tensoring OP3
1
(1), we obtain an

exact sequence:

0→ OP3
1
⊗C H

0(P3
2,OP3

2
(1))

M(x)·→ OP3
1
(1)⊗C H

0(P3
2,OP3

2
(1))

m→ OS(h1 + h2)→ 0.

In both exact sequences, the first map M(x)· is the multiplication map

yt 7→M(x) · yt

by a 4× 4 matrix M(x) = (mij(x)) whose (i, j)-entry

mij(x) = aij1x1 + aij2x2 + aij3x3 + aij4x4

is a linear homogeneous form of x. The second map m is the natural multiplication map

through the isomorphism H0(P3
2,OP3

2
(1)) ' H0(S,OS(h2)) induced by the restriction map

and Φ∗|h2|. Taking the cohomology exact sequence of the second exact sequence above, we

obtain the exact sequence

0→ C⊗C H
0(P3

2,OP3
2
(1))

M(x)·→ H0(P,OP (1, 1))
m→ H0(S,OS(h1 + h2))→ 0.

Here we used H1(P3,OP3) = 0, and the Kunneth isomorphism for the middle factor above:

H0(P3
1,OP3

1
(1))⊗C H

0(P3
2,OP3

2
(1)) ' H0(P,OP (1, 1)).

Thus

S̃ ⊂ (M(x) · yt = 0t) = Q1 ∩Q2 ∩Q3 ∩Q4 ⊂ P.

Here Qk is a hypersurface of bidegree (1, 1) defined by

Qk = (x · (aijk)i,j · yt = 0) ⊂ P.

Note that
4∑
j=1

(
4∑

k=1

aijkxk

)
yj =

4∑
k=1

 4∑
j=1

aijkyj

xk.

Then we have an identity

M(x) · yt = N(y) · xt.
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Here N(y) = (nik(y))i,k is the 4× 4 matrix whose (i, k)-entry is

nik(y) = ai1ky1 + ai2ky2 + ai3ky3 + ai4ky4.

The next proposition completes the proof of the fact that (a) implies (b) and the last

statement of Theorem 1.5(1). Our trivial identity above plays an important role in the

proof and also shows a way to obtain explicit equations of Si (i = 1, 2) from S̃.

Proposition 4.1. As closed subschemes, we have

(1) S1 = (detM(x) = 0) in P3
1.

(2) S̃ = Q1 ∩Q2 ∩Q3 ∩Q4 in P .

(3) S2 = (detN(y) = 0) in P3
2.

Proof. As OS1(h1+h2) is torsion as a sheaf on P3, the matrix M(a) is of rank 4 for general

a ∈ P3. Thus (detM(x) = 0) is a hypersurface of degree 4 in P3. Set

T := (detM(x) = 0) ⊂ P3.

Let a ∈ S1. Then there is a point b ∈ P3 such that (a, b) ∈ S̃, as S1 = p1(S̃). As

S̃ ⊂ (M(x) · yt = 0), it follows that

M(a) · bt = 0.

As b 6= (0, 0, 0, 0) as vectors, it follows that detM(a) = 0. Hence S1 ⊂ T as sets. As both

S1 and T are hypersurfaces of degree 4, it follows that S1 = T as schemes. This shows (1).

We show (2). As S1 = (detM(x) = 0) is smooth, M(a) is of rank 3 for each a ∈ S1.
This directly follows from the Jacobian criterion and the chain rule applied for the cofactor

expansion of detM(x) (see e.g., the first four lines in the proof of [7, Proposition 2.2]).

Set, as closed subschemes,

W := Q1 ∩Q2 ∩Q3 ∩Q4 ⊂ P.

Then p1(W ) = S1, as the defining equation of W is M(x) · yt = 0 and y 6= 0 as vectors.

Choose and fix a point a ∈ S1. Again, as M(a) is of rank 3, there is exactly one point b ∈
P3 such that M(a)·bt = 0, i.e., the fiber (p1|W )−1(a) is exactly one point. As p1|S̃ : S̃ → S1

is an isomorphism and S̃ ⊂ W , it follows that S̃ = Wred. Here Wred is the reduction of

W . In particular, W is of pure dimension 2. It follows that W = Q1 ∩Q2 ∩Q3 ∩Q4 is a

complete intersection as schemes.

We now show that S̃ = W as schemes. We have a natural exact sequence

0→ I → OW → OS̃ → 0,
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as S̃ is a closed subscheme of W . Tensoring the invertible sheaf OP (n, n) (n ∈ Z>0), we

have an exact sequence

0→ I(n, n)→ OW (n, n)→ O
S̃

(n, n)→ 0.

Note that O
S̃

(n, n) = OS(n(h1 +h2)) under the identification S̃ = S by Φ. Then, we have

h0(S̃,O
S̃

(n, n)) = h0(S,OS(n(h1 + h2))) =
n2((h1 + h2)

2)S
2

+ χ(OS) = 10n2 + 2.

As W is a complete intersection of four hypersurfaces Qi of bidegree (1, 1) in P , we also

readily obtain that

h0(W,OW (n, n)) = χ(OW (n, n))) = 10n2 + 2

for all sufficiently large n, say n ≥ n1. Hence

h0(W,OW (n, n)) = h0(S̃,O
S̃

(n, n))

for all n ≥ n1. AsOP (1, 1) is ample, there is an integer n2 ≥ n1 such thatH1(W, I(n, n)) =

0 for all n ≥ n2. Then H0(W, I(n, n)) = 0 for all n ≥ n2 from

0→ H0(W, I(n, n))→ H0(W,OW (n, n))→ H0(S̃,O
S̃

(n, n))→ H1(W, I(n, n)) = 0.

It follows that I = 0 as sheaves, as OP (1, 1) is ample. Hence S̃ = W as claimed. This

completes the proof of (2).

We show (3). We have S̃ = (M(x) ·yt = 0t) = (N(y) ·xt = 0t) by (2) and by definition

of N(y). Then S2 = p2(S̃) ⊂ (detN(y) = 0) ⊂ P3
2. The matrix N(b) is of rank 4 for

each b ∈ P3
2 \ S2. Indeed, otherwise, for some b ∈ P3

2 \ S2, there is a vector a 6= 0 such

that N(b) · at = 0t. This means that there is a point (a, b) ∈ S̃ such that b /∈ S2, a

contradiction to the fact that S2 = p2(S̃).

Hence detN(y) is a nonzero homogeneous polynomial of degree 4. As S2 is a smooth

quartic surface, it follows that S2 = (detN(y) = 0) as claimed.

5. Proof of Theorem 1.5(2)

In this section we shall prove Theorem 1.5(2). We freely use the notations introduced in

Section 2 and Theorem 1.5.

By Theorem 1.5(1), Si ⊂ P3 are determinantal smooth quartic surfaces in P3.

V = Q1∩Q2∩Q3 ⊂ P is a complete intersection as so is S = V ∩Q4 and Q4 is ample.

As S = V ∩Q4 is smooth, it follows that V is normal. Indeed, otherwise, V would have a

singular locus of codimension one, as V is a complete intersection, hence Cohen-Macaulay.
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Then, the ample Cartier divisor Q4 intersects with the singular locus of V , at which V ∩Q4

is necessarily singular, as Q4 is Cartier. This contradicts the smoothness of S. Hence V

is normal.

The morphism p1|V : V → P3 is birational, as the matrix M(a) is of rank 4 for general

a ∈ P3 (see Section 4 for the definition of M(x)). Changing the roles of x and y by

taking the transpose, we see that the morphism p2|V : V → P3 is also birational. Thus

τ ∈ Bir(P3).

Let H be the hyperplane bundle of P3 and Hi := p∗iH. Then Hi|V are line bundles on

V with intersection numbers

((H1|V )3)V = (H3
1 (H1 +H2)

3)P = 3, ((H1|V )2H2|V )V = (H2
1H2(H1 +H2)

3)P = 6.

If τ ∈ Aut(P3), then τ∗H = H. As τ ◦ (p1|V ) = p2|V , it follows that H1|V = H2|V as

line bundles on V . However, then ((H1|V )3)V = ((H1|V )2H2|V )V , a contradiction to the

computation above. Hence τ /∈ Aut(P3).

As V is normal, the fibers of p1|V are connected by the Zariski main theorem. Thus

(p1|V )−1(a) is connected for all a ∈ P3. As S1 is of codimension one in P3 and p1|V is

birational, it follows that (p1|V )−1 is an isomorphism over some Zariski open dense subset

of S1, in particular, at the generic point ηS1 of S1. As p1|V (ηS) = ηS1 by (p1|V )(S) = S1,

it follows that (p1|V )−1(ηS1) = ηS , and therefore, τ(ηS1) = ηS2 by p2|V (ηS) = ηS2 . Thus

τ induces a birational map τ |S1 from S1 to S2. The map τ |S1 is then an isomorphism,

as both Si are smooth surfaces with nef canonical divisors. This completes the proof of

Theorem 1.5(2).

6. Proof of Theorem 1.5(3)

In this section we shall prove Theorem 1.5(3). We freely use the notations introduced in

Section 2 and Theorem 1.5.

Throughout this section, S = Q1∩Q2∩Q3∩Q4 is a complete intersection in P = P3×P3

of four hypersurfaces Qk of bidegree (1, 1). We denote by H the hyperplane bundle of P3.

We set Hi = p∗iH and hi = Hi|S . Here pi : P → P3 is the i-th projection. Then

((hi, hj)S) =

4 6

6 4


provided that S = Q1 ∩Q2 ∩Q3 ∩Q4 is a complete intersection in P .

Let V = Q1 ∩Q2 ∩Q3 ⊂ P . If Qk ⊂ P (k = 1, 2, 3, 4) are general (here we do not need

they are very general), V is a smooth Fano threefold and S is a smooth K3 surface, by

the Bertini theorem and the adjunction formula.
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Proposition 6.1. If Qk ⊂ P (k = 1, 2, 3) are general and Q4 is very general, then

NS(S) = Zh1 ⊕ Zh2.

Proof. As Pic(P ) = ZH1 ⊕ ZH2, we have Pic(V ) = ZH1|V ⊕ ZH2|V by the Lefschetz

hyperplane theorem. Observe that the natural restriction map H0(OP (H1 + H2)) →
H0(OV ((H1 + H2)|V )) is surjective. Then S = Q4|V is also very general in the very

ample linear system |(H1 +H2)|V |. In addition, we have H2,0(S) 6= 0 but H2,0(V ) = 0,

as S is a K3 surface and V is a Fano threefold. Now we can apply the Noether-Lefschetz

theorem [23, Theorem 3.33] for S ⊂ V and obtain the result.

Set Si = pi(S) ⊂ P3 (i = 1, 2). Note that if S satisfies the condition (1)(b) in

Theorem 1.5, then Si are smooth quartic K3 surfaces which are Cremona isomorphic by

Theorem 1.5(2). So, Theorem 1.5(3) now follows from

Proposition 6.2. If S is smooth and NS(S) = Zh1 ⊕ Zh2, then S satisfies the condi-

tion (1)(b) in Theorem 1.5 and S1 and S2 are not projectively equivalent in P3.

Proof. As hi = p∗iH|S , the complete linear systems |hi| are free and pi = Φ|hi|. There is

no d ∈ NS(S) \ {0} with (d2)S ∈ {0,±2}, by NS(S) = Zh1 ⊕ Zh2 and by the shape of

((hi, hj)S). Thus hi are very ample by [17, Theorem 5.2]. Hence S satisfies the condi-

tion (1)(b) in Theorem 1.5.

We show that Si (i = 1, 2) are not projectively equivalent. Using the shape of

((hi, hj)S) again, we also find that

NS(S)∗/NS(S) =

〈
h1
2

〉
⊕
〈
h2
2

〉
⊕
〈
h1 + h2

5

〉
' Z2 ⊕ Z2 ⊕ Z5.

Moreover, by [7, Theorem 1.1 and proof], we have

Lemma 6.3. f∗σS = ±σS, whence f∗|NS(S)∗/NS(S)) = ± idNS(S)∗/NS(S) for any f ∈
Aut(S).

Lemma 6.4. There is no f ∈ Aut(S) such that f∗h1 = h2.

Proof. Otherwise, f∗|NS(S)∗/NS(S) would satisfy

f∗
h1
2

=
h2
2
,

in particular, f∗|NS(S)∗/NS(S) 6= ± id, a contradiction to Lemma 6.3.

If g(S2) = S1 under g ∈ Aut(P3) = PGL(4,C), then g∗H = H. However, then

f∗h1 = h2 for f = (p1|S)−1 ◦ g ◦ (p2|S) ∈ Aut(S), a contradiction to Lemma 6.4. This

completes the proof of Proposition 6.2.
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7. Appendix: Proof of Proposition 1.7

In this appendix, we shall give a proof of Proposition 1.7 as it is not explicit in [20].

However, we should emphasize that all the arguments below are found in [20].

As S and S′ are both smooth, the pairs (P3, (1− ε)S) and (P3, (1− ε)S′) are both klt

for any 0 < ε < 1. In particular, one can use Noether-Fano inequality [20, Theorem 1.4]

to study the birational map Φ: P3 99K P3 with Φ∗(S) = S′. We will make a more specific

choice of ε later.

Let p : Y → P3 be a Hironaka resolution of indeterminacy of Φ. We denote by p′ : Y →
P3 the morphism such that p′ = Φ ◦ p. We denote SY = p−1∗ S. Then SY = (p′)−1∗ S′ as

well. Denote by {Ej | j ∈ J} the set of exceptional prime divisors of p.

Let L := Φ−1∗ |H| be the proper transform of the complete linear system |H| = |OP3(1)|
by Φ−1. Then L is a linear subsystem of |dH| for some d ≥ 1 and L has no fixed component.

By abuse of notation, we also denote by L a general element of the linear subsystem L.

We define a ∈ Q>0 by

a =
degS

degL
=

4

d
.

We choose 0 < ε < 1 so that

aε < 1, adε = 4ε < 1.

As KP3 = −4H, S = 4H and L = dH = 4H/a in NS(P3)R = R ·H, we have

KP3 + (1− ε)S + aεL = 0

in NS(P3)R. We set

D(t) := KY + (1− ε)SY + tp−1∗ L − p∗(KP3 + (1− ε)S + tL)

and define the rational number c by

c := max {0 < t ≤ 1 | D(t) ≥ 0} .

Here the inequality means that the R-linear extension of the vanishing order ordE(D(t))

at all prime divisor E ⊂ Y , or equivalently at all Ej (j ∈ J), is nonnegative. Note that

D(t) ≥ 0 if t ≤ c. We also define the slope µ ∈ Q>0 by

L = µ(−(KP3 + (1− ε)S))

in NS(P3)R = R ·H. In our case

µ =
1

aε
.
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Note that KP3 + (1− ε)S+ aεL = 0 and this is nef. Thus, by the Noether-Fano inequality

[20, Theorem 1.4], Φ is an isomorphism if c ≥ aε. As Φ is not an isomorphism by our

assumption, it follows that

c < aε.

As 0 < c < aε < 1, there is then E := Ej (j ∈ J) such that

ordE(D(aε)) < 0.

We choose and fix such an E and set F := p(E)red. Then F is either a closed point or an

irreducible reduced curve on P3. Let

π : Z → P3

be the blow up of F and E′ ⊂ Z be the unique exceptional prime divisor that dominates

F . Note that π is the usual blow up over P3 \SingF . Hence, Z is smooth over P3 \SingF .

Here SingF is the singular locus of F . In particular, Z is smooth around the generic

point ηE′ of E′. Note that ordE(D(t)) is determined at the generic point ηE and does not

depend on the birational model we choose. So, to compute ordE(D(t)), we may (and will)

identify (Y,E) = (Z,E′).

If P is a point, then

ordE(D(aε)) ≥ 2− (1− ε)− aε ·multP L ≥ 1 + ε− adε > 0

by our choice of ε. Here multP L is the multiplicity of (a general element of) L at P .

Similarly, if F is a curve such that F 6⊂ S, then

ordE(D(aε)) = 1 + 0− aε ·multF L ≥ 1− adε > 0

by our choice of ε. Here multF L is the multiplicity of L at a general point P ∈ F . Thus

F has to be a curve and F ⊂ S, as ordE(D(aε)) < 0.

From now, we will work in π : Z → P3 and will write E′ by E. Set

m := multF L.

Then

0 > ordE(D(aε)) = 1− (1− ε)− aεm = ε(1− am),

and therefore

am > 1.

Take a general plane H ⊂ P3. Then

H ∩ F = {p1, . . . , pdegF } ⊂ F \ SingF.
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In particular, π|π∗H : π∗H → H is a usual blow-up at the k points pi ∈ H. Let ei be the

exceptional curve over pi. As H ∩ SingF = ∅, it follows that, around π∗H ⊂ Z, the Weil

divisor LZ := π−1∗ L is Cartier and is of the form

LZ = π∗L −mE.

Thus

LZ |π∗H = π∗(L|H)−
degF∑
i=1

mei.

Combing this with the fact that the linear system L is movable and H is general, we have

0 ≤ ((LZ |π∗H)2)π∗H = (degL)2 −m2 degF.

As degL = d = 4/a and am > 1, it follows that

degF ≤
(

4

am

)2

< 16.

Now it suffices to prove that F and h := H|S are linearly independent in NS(S). Assume

to the contrary that they are linearly dependent. Then F = bh for some b ∈ Q>0. As

(h2)S = 4 and (F 2)S is even as S is a smooth K3 surface, it follows that b is a positive

integer. As Pic(S) ' NS(S) and they are torsion free, it follows that F = ah in Pic(S).

As H1(P3,OP3(n)) = 0 for all n ∈ Z, it follows that the restriction map

H0(P3,OP3(b))→ H0(S,OS(bh))

is surjective. So, there is a surface T ⊂ P3 of degree b such that F = S ∩ T as schemes.

Let R be the proper transform of T ∩H under the morphism π : Z → P3. Here we recall

that H ⊂ P3 is a general plane. Then we have

0 ≤ (LZ .R)Z = (L.T.H)P3 −m(F.T )P3 = (1− am)(L.T.H)P3 .

For the last equality we used F = S ∩ T and S = aL in NS(P3)R. However, then am ≤ 1

as (L.T.H)P3 > 0, a contradiction to the previous inequality am > 1. This completes the

proof of Proposition 1.7.
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