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On Henselian Rigid Geometry

Fumiharu Kato

Abstract. We overview some of the foundations of the so-called henselian rigid geom-

etry, and show that henselian rigid geometry has many aspects, useful in applications,

that one cannot expect in the usual rigid geometry. This is done by announcing a few

characteristic results, one of which is an analogue of Zariski Main Theorem.

1. Introduction

By the celebrated theorem by Raynaud, rigid geometry was suggested to have the char-

acteristic architecture, built upon what we call a model geometry, a suitable framework of

geometry equipped with a class of morphisms, called admissible blow-ups, from which the

rigid geometry is induced by inverting all admissible blow-ups. Here, one of the novelties

is the viewpoint that rigid geometry can be regarded as the “birational geometry” of the

model geometry, which allows one to envisage the so-called birational approach to the rigid

geometry, as pursued in our book [4]. Another novel point that arises from this doctrine is

that rigid geometry, as a whole, depends on the choice of the model geometry, for which,

while the usual choice being the geometry of formal schemes, one can take fairly freely

from diversity of geometries that appear in arithmetic or algebraic geometry. Other than

formal schemes, a promising candidate for a model geometry is the geometry of henselian

schemes, from which one obtains the so-called henselian rigid geometry.

It is expected that, at least in the foundational level, henselian rigid geometry in many

respects should go parallel to the usual rigid geometry without major modification; also

expected is that henselian rigid geometry, in many situations, should be technically easier

to develop than usual rigid geometry, due in large part to the fact that henselian rings and

henselization of rings are technically easier to handle than complete rings and completion.

However, although the first appearance of henselian rigid geometry in literature seems

in [3], henselian rigid geometry itself, since then and therein, seems not to have been

studied well as an independent and autonomous discipline, but rather treated only as a

passable substitute for the usual rigid geometry.

Received July 27, 2016; Accepted February 1, 2017.

Communicated by Baohua Fu.

2010 Mathematics Subject Classification. Primary: 32P05; Secondary: 14A20.

Key words and phrases. Rigid geometry, Henselian schemes.

531

http://journal.tms.org.tw


532 Fumiharu Kato

There should be several reasons for the sluggish pace of acceptance and development

of henselian rigid geometry. Perhaps the most important among them is that there have

been no clues how henselian rigid geometry is different from usual rigid geometry, and,

consequently, how it is especially useful in applications. Another reason, which we should

point out here, is that the geometry of henselian schemes, which henselian rigid geometry

adopt as its model geometry, has not yet been fully developed, although there are several

fairly systematic accounts on it, e.g., [2,8], especially those from italian school [5,6,9,10].

What is still missing is the henselian GAGA theory, or so to speak, GHGA (= géométrie

henselienne et géométrie algébrique), which should give us the comparison of the theories

of coherent sheaves, comparison of cohomologies and existence (algebrizability), between

henselian scheme geometry and the geometry of schemes, giving thereby the basis for

GAGA between henselian rigid geometry and algebraic geometry. In fact, it seems that

GHGA is a very difficult theorem, and we still do not know if the full version of it is true

or not, whereas we have some partial results (as indicated in §2.5).

This is the proceedings report of what the author has delivered in his talk at Algebraic

Geometry in East Asia 2016. In the talk, the author has reported his recent joint-work

with Shuji Saito (Tokyo Institute of Technology), the main result of which is an analogue of

Zariski Main Theorem in henselian rigid geometry, which, we think, together with a few of

its corollaries, very clearly illustrates how henselian rigid geometry is different from usualy

rigid geometry, and moreover, convinces us that henselian geometry is indeed useful, in a

way that classical theory could not afford, for application to algebraic geometry.

Our ZMT theorem gives, similarly to the classical one in algebraic geometry, an asser-

tion of the following sort: a quasi-finite mapping factorizes by an open immersion followed

by a finite map. Here, in our case, while the domain of the quasi-finite map can be an

arbitrary henselian affinoid space, the target has to be the analytification of an algebraic

variety. One can then show that the assertion of the above-mentioned type is true, where

the finite map in the factorization can be chosen to be algebraic.

Now let us describe our results. Let K be a non-trivially valued henselian valuation

field, i.e., the fractional field of an a-adically henselian valuation ring V , where a is a non-

zero element in the maximal ideal mV of V . Let X be a separated of finite type scheme

over K, and consider its analytification Xan, which is a separated locally of finite type

henselian rigid space over K.

Theorem 1.1. (= Theorem 3.7) Let ϕ : U ↪→ Xan be a quasi-finite K-map from a

henselian affinoid space U of finite type over K. Then there exists a finite morphism

g : W → X with the diagram

U
j
//

ϕ

))
W an

gan
// Xan
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where j is an open immersion.

From Theorem 1.1 and the techniques in the proof, one has several useful consequences;

the following is one of them:

Corollary 1.2. (= Corollary 3.8) Let X be a separated finite type scheme over K, U a

henselian rigid space of finite type over K, and ϕ : U ↪→ Xan an immersion. Then there

exists a closed subscheme W ⊆ X that is smallest among those containing the image of

U as an open subspace.

The point lies in that, in Corollary 1.2, the closed subscheme W ⊆ X gives the scheme-

theoretic closure of the affinoid subspace U in X. Notice that these kinds of results, ZMT

and scheme-theoretic closure, are far from being true in the usual rigid geometry, since,

for example, analytic subspaces can be highly transcendental.

It may be that, in view of the facts that “henselian” is like “algebraic”, and that

henselization is like algebraic closure, these results are not extremely surprising. But their

significance lies rather in the fact that several algebraic constructions in algebraic geometry

can be done analytic-locally first, and then, extended to the “closure”, as indicated the

above statements. In fact, these results were originally intended to apply to the theory

of algebraic cycles, in which Shuji Saito, by the joint-work with M. Kerz, tries to give

a construction of what they call analytic Chow groups. In this context, in particular,

the following theorem, which is also among the corollaries of our technique, should be

important: Let X be a proper scheme over K, and U (resp. U) a finite type henselian

rigid space (resp. finite type scheme) over K. As usual, a flat family of closed subspaces

in X over U (resp. U) is a closed subspace Y ⊆ Xan ×K U (resp. Y ⊆ X ×K U) that is

flat over U (resp. U).

Theorem 1.3. (= Theorem 3.9) For any flat family Y ⊆ Xan ×K U over finite type

henselian affinoid U , there exists an affine finite type scheme U such that

(a) Uan contains U as an affinoid subdomain;

(b) Y extends to a flat family Y ⊆ X ×K U over U .

The proofs of the above theorems, as well as the statements themselves, partly depend

on henselian rigid GAGA theorems. As mentioned above, these theories are still missing

in literature, and so one has to first work out these foundations, before coming up to the

proof of the above theorems. As this article is intended to give a first announcement of our

results, we are only to give a brief survey of our theory. The more precise and systematic

accounts will come elsewhere in the following form: The foundational part, consisting of

generalities of the geometry of henselian schemes, affineness criterion, cohomology calculus,
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and GHGA theorems, will be written by the author, and the henselian rigid ZMT, as well

as the related results, will be written by collaboration of Shuji Saito and the author.

Under these circumstances, the most reasonable role of this article is to give a survey of

these forthcoming papers. So, in the next section, we will give a survey of the first paper,

the one on the foundations of henselian scheme geometry, including some directions to

the part of GHGA theorems, which we can so far prove. Then, in Section §3, we describe

roughly the contents of what we will present in the second paper, including the sketches

of the proofs of the above results.

As already mentioned, this article is the proceedings report of my talk in the confer-

ence “Algebraic Geometry in East Asia 2016” in January 2016. The author thanks the

organizers of the conference for the invitation. Thanks are also due to the referee for the

valuable comments and suggestions, which fill in gaps and fix errors in the first draft of

this paper.

2. Henselian schemes

2.1. Henselian finite type algebras

We refer to [2,5,8] for the first generalities on henselian rings and henselian schemes. For

a ring A with an ideal I ⊆ A, the I-adic henselization is denoted by Ah. The natural

map A → Ah is always flat, and is faithfully flat if I-adically Zariskian, i.e., 1 + I ⊆ A×

(cf. [4, 0.7.3.8]).

Let A be an I-adically henselian ring by an ideal I ⊆ A. We denote by

A {X1, . . . , Xn}

the I-adic henselization of the polynomial ring A[X1, . . . , Xn]. We say that an A-algebra

B is of (henselian) finite type (resp. of (henselian) finite presentation) if B is isomorphic

to the A-algebra of the form A {X1, . . . , Xn} /a by an ideal (resp. finitely generated ideal)

a of A {X1, . . . , Xn}. Notice that these A-algebras are again I-adically henselian. One can

prove that the I-adic henselization of a finite type A-algebra is of henselian finite type.

Moreover, an A-algebra is of henselian finite presentation if and only if it is the I-adic

henselization of a finitely presented A-algebra.

Recall that an I-adically topologized ring A of finite ideal type is said to be I-adically

adhesive if the following conditions are satisfied (see [4, Chap. 0, §8.5.(a)]):

(a) SpecA \ V (I) is a Noetherian scheme;

(b) for any finitely generated A-module M , the I-torsion part MI−tor is finitely gener-

ated.
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If, moreover, any finite type A-algebra is I-adically adhesive, A is said to be I-adically

universally adhesive.

It is known [4, Chap. 0, §8.5.(c)] that I-adically adhesive ring A has the adicness-

preservation property (denoted by (AP) in [loc. cit.]), i.e., for any finitely generated A-

module M and any A-submodule N ⊆M , the subspace topology on N induced from the

I-adic topology on M is the I-adic topology on N . From this, it follows that I-adically

adhesive rings enjoy several pleasant properties; for example,

• the functor M 7→ M̂ by I-adic completion on the full subcategory of ModA consisting

of finitely generated A-modules is exact;

• M ⊗A Â ∼= M̂ for any finitely generated A-module M ;

• the I-adic completion map A→ Â is flat.

If, moreover, A is I-adically henselian, then (see [4, Chap. 0, (7.4.16)]):

• any finitely generated A-module is I-adically separated; in particular, A itself is

automatically I-adically separated;

• any A-submodule N of a finitely generated A-module M is closed in M with respect

to the I-adic topology.

Here is one more good thing about adhesiveness:

• if A is I-adically universally adhesive, and I-torsion free, then any finitely presented

A-algebra B is a coherent ring, and hence, any finitely presented B-module is a

coherent module.

(Recall that a module M over a ring A is said to be coherent if it is finitely generated,

and every finitely generated A-submodule is finitely presented, and that A is a coherent

ring if it is coherent as a module over itself, i.e., every finitely generated ideal is finitely

presented; cf. [1, Chap. I, §3, Exercise 11].)

Theorem 2.1. Let V be an a-adically henselian valuation ring, where a ∈ mV \{0}. Then

any henselian finite type V -algebra is a-adically universally adhesive.

To show that V is a-adically universally adhesive, we only need to show that A =

V [X1, . . . , Xn] is a-adically adhesive (cf. [4, Chap. 0, (8.5.7) (2)]). Since V is a-adically

adhesive [4, Chap. 0, (8.5.15)], V → V̂ is flat [4, Chap. 0, (8.2.18)], where V̂ is the a-

adic completion of V . Hence V [X1, . . . , Xn] → V̂ [X1, . . . , Xn] is flat. By [4, Chap. 0,

(9.2.7)], the map V̂ [X1, . . . , Xn] → V̂ 〈〈X1, . . . , Xn〉〉 is flat. Hence A = V [X1, . . . , Xn] →
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Â = V̂ 〈〈X1, . . . , Xn〉〉 is flat. Then by [4, Chap. 0, (9.2.7), (8.5.11)], we deduce that A is

a-adically adhesive.

Next we show that the a-adic henselization Ah = V {X1, . . . , Xn} is a-adically adhesive.

Take a filtered inductive system {Aλ}λ∈Λ consisting of finite type V -algebras with étale

maps such that Ah = lim−→λ∈Λ
Aλ and (Aλ)h ∼= Ah. We already know that each Aλ is a-

adically adhesive, and hence Aλ → Âλ = Â is flat. For any finitely generated ideal J ⊆ Ah,

take sufficiently large λ and a finitely generated ideal Jλ ⊆ Aλ such that J = JλA
h =

Jλ ⊗Aλ Ah. Since Â is flat over Aλ, we have J ⊗Ah Â = Jλ ⊗Aλ Â = JλÂ = JÂ. Thus

we deduce that Ah → Â is flat, in particular, faithfully flat. Now, since Â[ 1
a ] is known to

be Noetherian [4, Chap. 0, (9.2.7)], we deduce that Ah[ 1
a ] is Noetherian. By [4, Chap. 0,

(9.2.7), (8.5.11)], we conclude that Ah is a-adically adhesive, as desired.

2.2. Henselian schemes

Let A be an I-adically henselian ring by an ideal I ⊆ A. The henselian spectrum of

A, denoted by X = SphA, is the topologically locally ringed space defined as follows

(cf. [6, 1.8, 1.9]):

• it is, as a set, the subset V (I) of SpecA, or equivalently, the set of all open prime

ideals of A;

• the topology is the subspace topology induced from the Zariski topology of SpecA;

• for any f ∈ A, set D(f) = D(f) ∩X and OX(D(f)) = Ahf ; then this defines a sheaf

OX of rings on X.

Notice that, for any x = p ∈ X, the stalk OX,x is given by Ahp , the I-adic henselization

of Ap. The open subset D(f) = D(F ) ∩ X, considered as an open subspace of X, is

isomorphic to the henselian spectrum SphAhf .

Definition 2.2. (1) An affine henselian scheme is a topologically locally ringed space

isomorphic to (X = SphA,OX) for an I-adically henselian ring A.

(2) A topologically locally ringed space (X,OX) is called a henselian scheme if it has

an open covering X =
⋃
α∈L Uα by affine henselian schemes.

A morphism between henselian schemes is a morphism of topologically locally ringed

spaces. Any morphism f : SphB → SphA, where A (resp. B) is considered with the I-

adic (resp. J-adic) topology, comes uniquely from a continuous homomorphism ϕ : A→ B,

where the continuity is equivalent to that there exists n ≥ 0 such that InB ⊆ J ; viz.,

the functor A 7→ SphA gives the categorical equivalence between the opposite category

of the category of henselian rings with continuous homomorphisms to the category of
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affine henselian schemes. If, in the above situation, IB gives an ideal of definition of the

topological ring B, i.e., IB-adic topology coincides with the J-adic topology, then we say

that the morphisms f and ϕ are adic. Adic morphisms between general henselian schemes

are defined in the obvious manner.

2.3. Henselization of schemes

Let X be a scheme, and Y ⊆ X a closed subscheme. The henselization of X along Y ,

denoted by Xh|Y , or by Xh, is the henselian scheme defined as follows (cf. [2, I, §1]):

• the underlying topological space is given by the underlying topological space of Y ;

• for any affine open subset U ∼= SpecA of X, OXh(U ∩ Y ) is given by the I-adic

henselization Ah of A, where I ⊆ A is the defining ideal of Y ∩ U in U .

Notice that there is a natural morphism j : Xh|Y → X of locally ringed spaces, which

is flat in the sense that, for any x ∈ Xh, the morphism OX,j(x) → OXh,x is flat.

2.4. Quasi-coherent and coherent sheaves

The theory of quasi-coherent sheaves on henselian schemes has already been fully devel-

oped in [6]. Let X = SphA be an affine henselian scheme. X can be viewed as the

henselization of Y = SpecA along the closed subscheme V (I) corresponding to an ideal

of definition I ⊆ A. Let j : X → Y be the canonical morphism of locally ringed spaces.

For any A-module M , the pull-back j∗M̃ , which we again denote simply by M̃ , of the

quasi-coherent sheaf M̃ on Y is a quasi-coherent sheaf on X. As in the scheme case, the

functor by M 7→ M̃ is an exact equivalence between the category of A-modules and the

category of quasi-coherent sheaves on X, with the quasi-inverse given by F 7→ ΓX(F ).

Moreover, we have the following analogue of “Theorem B”:

Theorem 2.3. [6, 1.12] For any quasi-coherent sheaf F on X = SphA, we have Hq(X,F ) =

0 for q ≥ 1.

Let V be an a-adically henselian valuation ring, where a is a non-zero element in the

maximal ideal mV of V . It follows from Theorem 2.1 that, if X is a henselian scheme

flat of finite type over SphV , then the structure sheaf OX is coherent. In particular,

an OX -module F is coherent if and only if it is of finite presentation. In case X is

affine X = SphA, where A is an a-torsion free henselian of finite type V -algebra, then

M 7→ M̃ gives the exact equivalence between the category of coherent (equivalently, finitely

presented) A-modules to the category of coherent sheaves on X.
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2.5. GHGA

Let Y be a proper and flat scheme over SpecV , where V is an a-adically henselian valuation

ring, and X = Y h the a-adic henselization, which is a proper and flat henselian scheme

over SphV . We have moreover the a-adic completion X̂, which is a proper and flat formal

scheme over Spf V̂ . Notice that the completion map V → V̂ is fathfully flat. Consider the

maps

X̂
φ→ X

ϕ→ Y

of locally ringed spaces, which are flat. We have the chain of exact functors

ModY
ϕ∗→ ModX

φ∗→ Mod
X̂
,

which map coherent sheaves to coherent sheaves.

The GHGA (= henselian geometry and algebraic geometry) statements that we can

state here are as follows.

Theorem 2.4 (GHGA comparison for H0). For any coherent sheaf F on Y , the canonical

morphism

H0(Y,F )→ H0(X,ϕ∗F )

is an isomorphism.

Theorem 2.5 (GHGA existence for subquotients). For any coherent sheaf F on Y , any

coherent subsheaf G of ϕ∗F is algebrizable, i.e., G = ϕ∗H for a coherent subsheaf H of

F .

Let us show Theorem 2.4. We first claim the following.

Claim 2.6. Let A be a V -algebra of finite type, and Y a proper scheme over A. SetX = Y h,

which is a proper henselian scheme over SphAh. Let ϕ : X → Y be the canonical map.

Then, for any coherent sheaf F on Y , H0(X,ϕ∗F ) is a coherent A-module.

We first show the claim in case Y is projective over A. Take a closed immersion

ι : Y ↪→ PnA = ProjS, where S = A[x0, . . . , xn]. With suitable choice of n and the

homogeneous coordinates, we may assume that ι∗F is xi-torsion free for i = 0, 1, . . . , n.

Then, considering ι∗F in place of F , we may assume Y = PnA and that F is xi-torsion

free for i = 0, 1, . . . , n.

Set M =
⊕

k∈Z Γ(Y,F (k)), which is xi-torsion free for i = 0, 1, . . . , n. Let {Ui =

SpecS(xi) : i = 0, 1, . . . , n} be the standard affine covering of Y . Then {Uhi = Sph(S(xi))
h :

i = 0, 1, . . . , n} gives an affine covering of X. Since ϕ∗F is coherent on X, we have

Γ(Uhi , ϕ
∗F ) = Γ(Ui,F )⊗S(xi)

(S(xi))
h, which coincides with the homogenous degree-zero

part of M ⊗S (Sxi)
h for each i = 0, 1, . . . , n; note that (Sxi)

h = Ah
{
x0, . . . , xn, x

−1
i

}
has,
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viewed as a subring of formal power series rings, the natural notion of degree for monomials,

and the degree-zero part of (Sxi)
h is a closed (hence a-adically henselian) subring, which

thereby coincides with (S(xi))
h. Hence elements of H0(X,ϕ∗F ) are written as n+1-tuples

(s0, . . . , sn) with each homogenous si of degree zero in M ⊗S (Sxi)
h such that si and sj

coincide in M ⊗S (Sxixj )
h. Since M is xi-torsion free, these modules are submodules

in M ⊗S Ah
{
x±1

0 , . . . , x±1
n

}
. Then, similarly to the classical argument for calculating

cohomologies over the projective space, one shows that H0(X,ϕ∗F ) ∼= M0 ⊗A Ah =

H0(Y,F )⊗A Ah, which is a coherent V -module.

To proceed, we need to show the following.

Claim 2.7. Let π : Ỹ → Y be a projective morphism between V -schemes of finite type,

and set X = Y h and X̃ = Ỹ h. Consider the commutative diagram

X̃
ϕ̃ //

η

��

Ỹ

π

��
X ϕ

// Y

where the horizontal arrows are the canonical ones, and η = πh. Then, for any coherent

sheaf G on Ỹ , we have η∗ϕ̃
∗G ∼= ϕ∗π∗G .

To see this, it suffices to show that, for any affine open subset U = SpecA of Y , where

A is a V -algebra of finite type, H0(η−1ϕ−1(U), ϕ̃∗G ) ∼= H0(π−1(U),G ) ⊗A Ah. Hence we

may assume Y = SpecA, and what we need to show is that H0(X̃, ϕ̃∗G ) ∼= H0(Ỹ ,G )⊗AAh,

which we have already shown above.

Now, to show Claim 2.6 for general Y , by Carving lemma [4, Chap. I, (8.3.2)], one

can reduce to the following situation: There exists a closed immersion ι : Y1 ↪→ Y and

a projective morphism π : Ỹ → Y , which is isomorphic over Y \ Y1, such that the claim

is true for Y1 and that Ỹ is projective over V . In this situation, let N be the cokernel

of F ↪→ π∗π
∗F . Since the claim is true for the projective Ỹ , we already know that

H0(X,ϕ∗π∗π
∗F ), which is isomorphic to H0(X̃, ϕ̃∗π∗F ) due to Claim 2.7, is a coherent

V -module. Moreover, since N is coherent on Y1, we also know that H0(X,ϕ∗N ) is

coherent by our assumption. Having the exact sequence

0→ ϕ∗F → ϕ∗π∗π
∗F → ϕ∗N → 0

(due to the flatness of ϕ), we deduce the kernel H0(X,ϕ∗F ) of the map H0(X,ϕ∗π∗π
∗F )→

H0(X,ϕ∗N ) is also coherent, which finishes the proof of Claim 2.6.

Now, to show Theorem 2.4, take a finite affine covering U = {Uα = SpecAα} of Y ,

which induces affine coverings U h =
{
Uhα = SpecAhα

}
and Û =

{
Ûα = Spec Âα

}
of X
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and X̂, respectively. Set Mα0···αp = Γ(Uα0···αp ,F ) (where Uα0···αp = Uα0∩· · ·∩Uαp). Then

the Čech modules C p(U h, ϕ∗F ) is given by

C p(U h, ϕ∗F ) =
∏

α0,...,αp

Mα0···αp ⊗Aα0···αp A
h
α0···αp ,

and its a-adic completion coincides, up to canonical isomorphism, with C p(Û , φ∗ϕ∗F ).

Set Cp = C p(U h, ϕ∗F ) and Bp = C p(U h,OX) for p ≥ 0. K0 = H0(X,ϕ∗F ) is the kernel

of C0 → C1, and H0(X̂, φ∗ϕ∗F ) is the kernel of Ĉ0 → Ĉ1, where Ĉp denotes the a-adic

completion of Cp. We have an injection lim←−n≥0
K0/K0 ∩ anC0 ↪→ Ĉ0. Now, since C0 is

finitely generated over B0, which is a henselian of finite type (hence a-adically adhesive)

V -algebra, and since K0 ⊆ C0 is a submodule over B0, we deduce that the topology on

K0 by the filtration
{
K0 ∩ anC0

}
is a-adic, and hence that lim←−n≥0

K0/K0 ∩ anC0 ∼= K̂0,

the a-adic completion of K0. This shows that K̂0 → Ĉ0 is injective, and hence K̂0 →
H0(X̂, φ∗ϕ∗F ) is also injective; note that, as we already know by GFGA, H0(X̂, φ∗ϕ∗F ) is

a finitely generated (hence a-adically complete) V̂ -module. Since we have H0(X,ϕ∗F )⊗V
V̂ ∼= K̂0 due to Claim, we deduce that the morphism H0(X,ϕ∗F )⊗V V̂ → H0(X̂, φ∗ϕ∗F )

is injective.

Now, by GFGA comparison, the composition

H0(Y,F )⊗V V̂ → H0(X,ϕ∗F )⊗V V̂ ↪→ H0(X̂, φ∗ϕ∗F )

is an isomorphism, and hence the morphisms therein are all isomorphisms. Since V̂ is

faithfully flat over V , we have H0(Y,F ) ∼= H0(X,ϕ∗F ), which finishes the proof of The-

orem 2.4.

To show Theorem 2.5, note that, by GFGA, we have H such that φ∗G ∼= φ∗ϕ∗H .

Hence we need to show: For a coherent sheaf F on X and coherent subsheaves G1,G2 ⊆ F ,

φ∗G1 = φ∗G2 as a coherent subsheaf of φ∗F implies G1 = G2. The condition reads

G1/G1 ∩ anF = G2/G2 ∩ anF as a subsheaf of F/anF for any n, which means that the

“closures” of G1 and G2 in F are the same. More precisely, for any affine open U = SphA

of X, where M = Γ(U,F ), Ni = Γ(U,Gi) (i = 1, 2), the closures of N1 and N2 in M

coincide with each other. Now by adhesiveness of A, Ni’s are closed in M , which implies

N1 = N2. Hence G1 = G2, as desired.

As a corollary, we have the following result.

Corollary 2.8. For proper and flat schemes over SpecV , the map

HomSchV (X,Y )→ HomHs∗V
(Xh, Y h)

(where Hs∗V denotes the category of henselian schemes adic over SphV ) is bijective.
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Indeed, by GFGA, the map is injective. To show it is surjective, note that any mor-

phism Xh → Y h is represented by its graph Γ ∈ Xh ×V Y h, defined by a coherent ideal

of Xh ×V Y h = (X ×V Y )h. Hence the claim follows from Theorem 2.5.

3. Henselian rigid geometry

3.1. Henselian affinoid algebras

Let V be an a-adically henselian valuation ring of height one, where a ∈ mV \ {0}, and

K = Frac(V ) the fractional field. We write

K {X1, . . . , Xn} = V {X1, . . . , Xn} ⊗V K (= V {X1, . . . , Xn} [ 1
a ]),

and call it the henselian Tate algebra over K. K {X1, . . . , Xn} is a Noetherian K-algebra.

Definition 3.1. A henselian affinoid algebra over K is a K-algebra A of the form

A = K {X1, . . . , Xn} /a,

where a ⊆ K {X1, . . . , Xn} is an ideal.

Since K {X1, . . . , Xn} is Noetherian, there exists a finitely generated ideal ã ⊆ V {X1,

. . . , Xn} such that a = ã[ 1
a ]. One can replace ã by its a-saturation, which is still finitely

generated. Hence there exists a V -flat model A = V {X1, . . . , Xn} /ã such that A[ 1
a ] ∼= A.

It can be shown that henselian affinoid algebras are Jacobson (Nullstellensatz for

henselian affinoid algebras), and have Noether normalization.

3.2. Henselian rigid spaces

In order to define rigid spaces from henselian schemes, we need the notion of admissible

blow-ups, which can be defined quite similarly to the formal scheme case; it is defined

locally as the henselization of the usual algebraic blow-ups along the admissible ideals,

i.e., open finite type ideal sheaves. Then the category CRh of coherent (= quasi-compact

and quasi-separated) henselian rigid spaces is the quotient category of the category CHs∗

of coherent henselian schemes with adic morphisms, mod-out by all admissible blow-ups.

We have the quotient functor

rig : CHs∗ → CRh, X 7→ Xrig,

which we call, similarly to the usual situation, the “rig” functor.

General henselian rigid spaces (not necessarily quasi-compact, nor quasi-separated) can

be defined by means of “birational patching” similarly to the formal case as in [4, Chap. II,

2.2.(c)]
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One has the notion of affinoids in the similar way: A henselian rigid space X is an

affinoid if it is isomorphic to a henselian rigid space of the form (SphA)rig. If A is a

henselian of finite type algebra over V (where V is as in §3.1), then the affinoid (SphA)rig

is the finite type affinoid space over K corresponding to the affinoid algebra A = A[ 1
a ].

For a coherent henselian rigid space X = Xrig, the projective limit of all admissible

blow-ups of X

〈X 〉 = lim←−
X′→X

X ′

taken in the category of topological spaces is a quasi-compact space [4, Chap. 0, 2.2.(c)],

and is independent of the choice of the henselian model X. We call the topological space

〈X 〉 the Zariski-Riemann space associated to X (cf. [4, Chap. II, 3.1]). It comes with

the canonical sheaf of rings O int
X , the so-called integral structure sheaf (cf. [4, Chap. II,

3.2.(a)]), such that the pair (〈X 〉 ,O int
X ) gives the projective limit of all admissible blow-

ups X ′ of X in the category of locally ringed spaces. The rigid structure sheaf, denoted

by OX , is constructed as

OX = lim−→
n>0

HomO int
X

(I n
XO int

X ,O int
X ),

where IX is an ideal of definition of X. Similarly to the formal scheme situation,

(〈X 〉 ,OX ) is a locally ringed space (cf. [4, Chap. II, 3.2.(b)]). The Zariski-Riemann

space 〈X 〉, as well as the two structure sheaves, can be constructed by patching for

general henselian rigid spaces.

Again, similarly to the formal schemes case, points of the Zariski-Riemann space 〈X 〉
are classified by valuations (cf. [4, Chap. II, 3.3]). A rigid point on a henselian rigid

space X is a morphism of henselian rigid spaces of the form α : (SphV )rig → X , where

V is an a-adically henselian valuation ring (of arbitrary height), or equivalently, an adic

map SphV → 〈X 〉 (where ‘adic’ means the condition similar to that in [4, Chap. II,

3.3.(a)]). It follows that the points of 〈X 〉 are in natural one to one correspondence with

the equivalence class of rigid points, with the equivalence class generated by the relation

by “domination” of valuation rings (cf. [4, Chap. II, 3.3.(a)]).

3.3. Classical points

The henselian rigid spaces under our consideration in the sequel are henselian rigid spaces

of finite type over K.

A henselian rigid space Z is said to be point-like if it is coherent and reduced, having

a unique minimal point in 〈Z 〉.

Definition 3.2. Let X be a henselian rigid space of finite type over K. A classical point

of X is a point-like locally closed rigid subspace Z ⊆X .
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It can be shown (cf. [4, Chap. II, (8.2.9)]) that any classical point Z ↪→X is a closed

subspace. Moreover, it is of the form Z = (SphW )rig, where W is finite, flat, and finitely

presented over V , such that s(Z ) = SpecW [ 1
a ] is a point (cf. [4, Chap. II, (8.2.7)]). To

show this and the following results, we use the following fact, which follows from the

GHGA comparison for H0 (Theorem 2.4).

Proposition 3.3. Let A be a henselian finite type V -algebra, and X → SphA an admis-

sible blow-up. (Note that X → SphA is the henselization of a blow-up of SpecA.) Then

A′ = Γ(X,OX) is a finite A-algebra (hence a-adically henselian and a-adically universally

adhesive) such that A[ 1
a ] ∼= A′[ 1

a ].

Proposition 3.4. (cf. [4, Chap. II, (8.2.10)]) Let X = (SphA)rig be a finite type affinoid

over K, where A is V -flat henselian finite type V -algebra. For any classical point Z ↪→X ,

the image of the map s(Z ) → s(X ) = SpecA[ 1
a ] is a closed point. This establishes a

canonical bijection between the set of all classical points of X and the set of all closed

points of the Noetherian scheme s(X ).

Let us remark here that, to show Proposition 3.4, one needs Proposition 3.3, for which

the GHGA comparison for H0 (Theorem 2.4) is necessary.

We denote by X cl the set of all classical points of X . The formation X 7→ X cl is

functorial (cf. [4, Chap. II, (8.2.14)]).

3.4. GAGA

Let A be a henselian finite type V -algebra, and consider

U = SpecA[ 1
a ] ↪→ S = SpecA

and the closed subset D = SpecA/aA.

For a separated U -scheme f : X → U of finite type, we define the category EmbX|S

whose objects are the commutative diagrams

X �
� //

f
��

X

f
��

U �
� // S

where f : X → S is a proper S-scheme, and X ↪→ X is a birational open immersion, with

the S-morphisms X → X
′

that are X-admissible, i.e., isomorphisms on X. The category

EmbX|S is cofiltered, and essentially small (cf. [4, Chap. II, (9.1.1)]). For any object given
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by the diagram above, we set

Z = (X ×S U) \X,

Z = the closure of Z in X,

X̃ = X \ Z.

Consider the a-adic henselization X̃h ↪→ X
h

of the open immersion X̃ ↪→ X, which gives

rise to an open immersion (X̃h)rig ↪→ (X
h
)rig of henselian rigid spaces. Define

Xan = lim−→(X̃h)rig,

where the inductive limit is taken along Embopp
X|S . This gives rise to a functor, called the

GAGA functor, from the category of separated of finite type U -schemes to the category of

henselian rigid spaces locally of finite type over K. It can be shown that GAGA functor

commutes with fiber products (cf. [4, Chap. II, (9.1.10)]).

As in the usual rigid geometry case, the GAGA theorems should follow from GHGA

theorems, some of which we have mentioned in §2.5, which are sufficient for our later

discussion.

3.5. Quasi-finite morphisms

Let ϕ : X → Y be a morphism between locally of finite type henselian rigid spaces over

K.

Definition 3.5. We say that the morphism ϕ is quasi-finite if for any point x ∈ 〈Y 〉, the

fiber 〈ϕ〉−1 (x) is a finite set.

Note that, if x is a classical point, then 〈ϕ〉−1 (x) consists of finitely many classical

points of X .

A morphism ϕ : X → Y of coherent henselian rigid spaces is said to be finite, if it

has a finite henselian model, i.e., there exists a finite morphism f : X → Y of henselian

schemes such that ϕ = f rig. (A morphism f : X → Y of henselian schemes is finite if

for any affine open V = SphB ⊆ Y , f−1(V ) is affine SphA with A finite over B.) By

the description of points of the associated Zariski-Riemann spaces in §3.2, one sees the

following: For a finite morphism ϕ : X → Y between locally of finite type henselian rigid

spaces over K, and for any point y ∈ 〈Y 〉, the fiber 〈ϕ〉−1 (y) is a finite set. Hence, in

particular, finite morphisms are quasi-finite.

Remark 3.6. It will follow from the proof of our henselian version of ZMT (Theorem 3.7

below) that a quasi-compact ϕ : X → Y is quasi-finite if and only if for any classical

point x of Y the fiber 〈ϕ〉−1 (x) is a finite set, since the proof only uses the finiteness of
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the fibers over classical points. Indeed, to apply Theorem 3.7, one first reduce to the case

where X and Y are affinoids, and if Y = (SphA)rig, then take a finite type ring B over

V such that Bh ∼= A, and replace Y by (SpecB[ 1
a ])an.

3.6. Zariski Main Theorem

Let X be a separated of finite type scheme over K.

Theorem 3.7. Let ϕ : U ↪→ Xan be a quasi-finite K-map from a henselian affinoid space

U of finite type over K. Then there exists a finite morphism g : W → X with the diagram

U
j
//

ϕ

))
W an

gan
// Xan

where j is an open immersion.

Proof. Let us sketch the proof. Write A as the inductive limit of the inductive system

{Aλ} of finite type V -algebras such that each transition map Aλ → Aµ is étale with

Aλ/aAλ ∼= Aµ/aAµ, and that the henselization of each Aλ coincides with A. One can

show, similarly to [4, Chap. II, §9.2], that the given map ϕ : U = (SphA)rig → Xan comes

from ϕ̃ : SpecA[ 1
a ]→ X; this is where we have to use a GHGA theorem.

Here let us sketch the construction of ϕ̃. In the notation as in §3.4, the given map

ϕ can be extended to a map of henselian schemes W → X̃h (for a suitable Nagata com-

pactification X of X), where W is an admissible blow-up of SphA. Notice that W is

the henselization of a blow-up T → SpecA along an ideal supported in the closed fiber;

i.e., W is algebrizable W = T h. Now, by Corollary 2.8, one has a morphism T → X of

schemes, which clearly gives T → X̃. Since T ⊗V V [ 1
a ] ∼= SpecA[ 1

a ], we get the desired

ϕ̃ : SpecA[ 1
a ]→ X by passage to the generic fibers.

Now, there exists λ such that ϕ̃ factors by ϕ̃λ : SpecAλ[ 1
a ]→ X, which one can show

to be quasi-finite. This follows from the classical Chevalley’s Theorem [7, IV, (13.1.1)] and

the comparison of classical points and closed points as in Proposition 3.4. Then, since the

original U = (SphA)rig is an affinoid subdomain of (SpecAλ[ 1
a ])an, the desired theorem

follows from the classical ZMT.

Corollary 3.8. Let X be a separated finite type scheme over K, U a henselian rigid

space of finite type over K, and ϕ : U ↪→ Xan an immersion. Then there exists a closed

subscheme W ⊆ X that is smallest among those containing the image of U as an open

subspace.

Indeed, it suffices to show that there exists at least one closed W containing U as an

open subspace, and so we may assume U is an affinoid. Then we apply ZMT to obtain

W finite over X, and replace it by the scheme-theoretic image (in the usual sense).
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3.7. Family of closed spaces

Theorem 3.9. Let X be a proper scheme over K. For any flat family Y ⊆ Xan ×K U

of closed subspaces in Xan over finite type henselian affinoid U = (SphA)rig, there exists

an affine finite type K-scheme U such that

(a) Uan contains U as an affinoid subdomain;

(b) Y extends to a flat family Y ⊆ X ×K U over U .

To sketch the proof, write A = lim−→λ
Aλ as before, and let Yλ be the scheme-theoretic

image of Y in Xan×KUan
λ , where Uλ = SpecAλ[ 1

a ]. One sees that, since Y → U is proper,

the projective limit of Yλ → Uλ recovers Y → U on passage to the analytification. By a

standard limit argument, there exists λ such that Yλ → Uλ is flat, which gives, therefore,

a desired extension.

Added in proof

After the acceptance of this paper, the author has been informed from Quentin Guignard

that he has a counterexample to the main results of the paper by Greco and Strano,

referred to as [6] in this paper. Consequently, their results that we have referred to in §2.4

are not true in general, and we have to replace them by a weaker result in [8, 7.1.3.1]. As

far as the author has checked, this replacement does not affect the rest of the arguments

in this paper.
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