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Homological Mirror Symmetry for Local Calabi-Yau Manifolds via SYZ

Kwokwai Chan

Abstract. This is a write-up of the author’s talk in the conference Algebraic Geom-

etry in East Asia 2016 held at the University of Tokyo in January 2016. We give

a survey on the series of papers [16, 23–25] where the author and his collaborators

Daniel Pomerleano and Kazushi Ueda show how Strominger-Yau-Zaslow (SYZ) trans-

forms can be applied to understand the geometry of Kontsevich’s homological mirror

symmetry (HMS) conjecture for certain local Calabi-Yau manifolds.

1. Introduction

The homological mirror symmetry (HMS) conjecture, proposed by Kontsevich in his 1994

ICM address [58], asserts that the derived Fukaya category of a Calabi-Yau manifold X

should be equivalent to the derived category of coherent sheaves over its mirror X̌ and vice

versa. This gives a beautiful categorical formulation of mirror symmetry which is expected

to imply the original enumerative predictions of mirror symmetry (see the recent work of

Ganatra-Perutz-Sheridan [45]). The conjecture has been verified for elliptic curves [65],

abelian varieties [7,39,60], quartic surfaces [72], quintic 3-folds [64] and higher-dimensional

Calabi-Yau hypersurfaces in projective spaces [74].

There is also a formulation of the HMS conjecture for a Fano manifold X, again pro-

posed by Kontsevich [59]. In this case, the mirror is given by a Landau-Ginzburg (LG)

model (X̌,W ) – a pair consisting of a noncompact Kähler manifold X̌ and a holomorphic

function W : X̌ → C (called the superpotential). More generally, one can consider mani-

folds with an effective anti-canonical divisor [11] or even general type manifolds [47,55,57],

for which mirrors are again given by LG models. In this setting, the HMS conjecture has

been verified for P2 and P1 × P1 [67,68], toric del Pezzo surfaces [77,78], weighted projec-

tive planes and Hirzebruch surfaces [14], del Pezzo surfaces [13], projective spaces [34] and

more general projective toric varieties [1,2,35–37]1, higher genus Riemann surfaces [33,71]

and Fano hypersurfaces in projective spaces [73]2.
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1A forthcoming work by Abouzaid-Fukaya-Oh-Ohta-Ono [6] proves the other direction of the HMS con-

jecture for compact toric manifolds, building on previous works of Fukaya-Oh-Ohta-Ono [41–44].
2There are also many papers on the study of HMS for singularities which we do not attempt to list here.
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The proofs of these HMS statements, though often involve deep and ingenious argu-

ments (e.g., the deformation technique pioneered by Seidel [69, 70]), are usually done by

separate computations on the two sides and an explicit identification between the gener-

ators. In particular, there is often little discussion on explicit constructions of geometric

functors implementing the HMS equivalences and the underlying geometry is hidden.

On the other hand, the proposal [75] by Strominger, Yau and Zaslow in 1996 provides

a geometric explanation for mirror symmetry – the celebrated SYZ conjecture asserts that

a pair of mirror manifolds should admit fiberwise dual Lagrangian torus fibrations (SYZ

fibrations) over the same base and there should exist Fourier-Mukai–type transforms (SYZ

transforms) responsible for the interchange of the symplectic and complex geometries over

the mirror manifolds.

In the case when quantum corrections are absent, this has been exploited to understand

the geometry of the HMS conjecture. Namely, for dual Lagrangian torus bundles over

affine manifolds, a geometric functor realizing the HMS equivalences was constructed by

Arinkin-Polishchuk [9] and Leung-Yau-Zaslow [63] using SYZ transforms (cf. the recent

work by Tu [76] and Abouzaid [3,4]). Their functor is a real version of the Fourier-Mukai

transform on families of real tori and it takes a Lagrangian section to a holomorphic line

bundle over the mirror. This was applied in the study of HMS for elliptic curves [9],

abelian varieties [39,60] and toric varieties [1, 2, 34–37,76].

To extend the constructions in [9, 63] to more general cases, a major difficulty lies

in the presence of singularities in the SYZ fibrations. When singular fibers exist, the

construction of the mirror manifold has to be modified by instanton corrections coming

from holomorphic disks bounded by the regular Lagrangian fibers, as have been shown by

Fukaya [40], Kontsevich-Soibelman [61], Gross-Siebert [49–52,54,66] and Auroux [11,12].

Accordingly, the constructions of the desired functors have to be modified. In this article,

we will demonstrate how this can be done when X is the mirror of a toric Calabi-Yau

manifold X̌, following [16,23–25] (cf. also Gross-Matessi [48]). Our slogan is:

“The geometry of HMS is revealed by SYZ.”

2. Semi-flat SYZ transform

To begin with, let us briefly recall the constructions by Arinkin-Polishchuk [9] and Leung-

Yau-Zaslow [63]; the exposition here mainly follows the latter.

Let B be an n-dimensional tropical manifold, meaning that the transition maps are

elements of the group Rn o GLn(Z). Denote by Λ ⊂ TB the bundle of lattices locally

generated by the coordinate vector fields ∂
∂x1

, . . . , ∂
∂xn

, where x1, . . . , xn are (local) affine

coordinates on B. Dually, let Λ∨ ⊂ T ∗B be the family of lattices locally generated by the
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coordinate one-forms dx1, . . . , dxn. Then we have a pair of manifolds

X := T ∗B/Λ∨, X̌ := TB/Λ,

together with fibrations

ρ : X → B, ρ̌ : X̌ → B,

which are fiberwise dual to each other.

Observe that X is naturally a symplectic manifold: Let ξ1, . . . , ξn be the fiber co-

ordinates on T ∗B, i.e., (x1, . . . , xn, ξ1, . . . , ξn) ∈ T ∗B represents the cotangent vector∑n
j=1 ξjdxj at the point x = (x1, . . . , xn) ∈ B. Then the canonical symplectic structure

ω :=

n∑
j=1

dxj ∧ dξj

on T ∗B descends to a symplectic structure on X (which, by abuse of notation, will still

be denoted by ω).

On the other hand, X̌ is naturally a complex manifold: Let y1, . . . , yn be the dual

fiber coordinates on TB, i.e., (x1, . . . , xn, y1, . . . , yn) ∈ TB represents the tangent vector∑n
j=1 yj

∂
∂xj

at the point x ∈ B. Then the complex coordinates on X̌ are given by

wj := exp 2π(xj + iyj), j = 1, . . . , n.

Note that X̌ is equipped with the holomorphic volume form

Ω̌ := d logw1 ∧ · · · ∧ d logwn.

We can also equip X and X̌ with compatible complex and symplectic structures re-

spectively by choosing a Hessian metric (a metric given locally by the Hessian of a convex

function) on B, hence giving both X and X̌ a Kähler structure. If we further assume that

the metric on B satisfies the real Monge-Ampère equation, we would obtain Tn-invariant

Ricci-flat metrics on X and X̌ making them semi-flat Calabi-Yau manifolds. Then the

SYZ conjecture [75] suggests that X and X̌ form a mirror pair; see [21,62] or [10, Chapter

6] for more discussion on this so-called mirror symmetry without corrections.

To construct the semi-flat SYZ transform [9, 63], we first view the dual T ∗ of a torus

T as the moduli space of flat U(1)-connections on the trivial line bundle C := C× T over

T . If we are now given a section

L = {(x, ξ(x)) ∈ X | x ∈ B}

of the fibration ρ : X → B, then each point (x, ξ(x)) ∈ L corresponds to a flat U(1)-

connection ∇ξ(x) over the dual fiber ρ̌−1(x) ⊂ X̌. The family of connections{
∇ξ(x) | x ∈ B

}
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patch together to give a U(1)-connection ∇̌ over X̌. A straightforward calculation (which

we leave to the reader) then shows the following

Proposition 2.1. The (0, 2)-part of the curvature two-form F of ∇̌ vanishes if and only

if L is Lagrangian with respect to ω.

Hence ∇̌ determines a holomorphic line bundle L over X̌ precisely when L is a La-

grangian section.

Definition 2.2. We define the semi-flat SYZ transform of the Lagrangian section L in

X to be the holomorphic line bundle L over X̌, i.e.,

F semi-flat(L) := L.

Remark 2.3. More generally, one can consider Lagrangian submanifolds obtained from

the conormal bundle construction and also equip them with flat U(1)-connections; see [63,

Sections 3.2 and 3.3] or [16, Section 2].

The semi-flat SYZ transform can be applied to understand the mirror symmetry and

in particular the HMS conjecture for compact toric manifolds [1, 2, 20,21,34–37,76].

X = C×

L

B = R

Figure 2.1: A Lagrangian section in C× with prescribed asymptotic behavior.

For example, let B be the real line R equipped with its natural Z-affine structure.

Then X = T ∗B/Λ∨ is given by the punctured complex plane

T ∗R/Z = C× = C \ {0}

with coordinates x, ξ and symplectic structure ω = dx ∧ dξ, and the fibration ρ : X → B

is nothing but the log function

Log : C× → R, z := x+ iξ 7→ log |z| .

In this case, a Lagrangian section L (with certain asymptotic behavior controlled by the

Laurent polynomial W = z + q/z) is a real curve like the one shown in Figure 2.1.
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Its semi-flat SYZ transform produces a holomorphic line bundle

L = F semi-flat(L)

over the toric variety YΣ = P1; here the mirror

X̌ = TR/Z ∼= C×

should be regarded as the open dense orbit in YΣ. Furthermore, the degree of L is precisely

given by the winding number w(L) of L (or its number of intersections with a radial axis,

say, the negative real axis) so that

L = OP1(w(L)).

More generally, the mirror of a smooth projective toric variety YΣ is given by an LG

model (X,W ) where X = (C×)n and W ∈ C
[
z±1

1 , . . . , z±1
n

]
is a Laurent polynomial whose

Newton polytope coincides with the fan polytope (convex hull of the primitive generators

of rays in Σ). In this case, (one direction of) the HMS conjecture asserts that the derived

Fukaya-Seidel category Dπ Fuk(X,W ) is equivalent to the derived category of coherent

sheaves Db Coh(YΣ).

From the SYZ perspective, one wants to view X = (C×)n as T ∗B/Λ∨ where B = Rn

is equipped with its natural Z-affine structure. The log map

Log : (C×)n → Rn, (z1, . . . , zn) 7→ (log |z1| , . . . , log |zn|)

provides a natural SYZ fibration (which is nothing but the projection X = T ∗B/Λ∨ → B).

The semi-flat SYZ dual

X̌ = TB/Λ ∼= (C×)n

is then precisely the open dense torus orbit sitting inside YΣ. Now the semi-flat SYZ

transform F semi-flat again carries Lagrangian sections in X, with certain asymptotic be-

havior specified by the superpotential W , to holomorphic line bundles over X̌ which can

be extended over YΣ [15].

Remark 2.4. For the applications of SYZ transforms to the other direction of HMS for

compact toric manifolds, we refer the readers to [22,27,30].

3. SYZ transforms for local Calabi-Yau manifolds

To see how SYZ transforms can be constructed when quantum corrections are present, we

will consider mirror symmetry for certain local Calabi-Yau manifolds.3

3In this article, a variety Y is called Calabi-Yau if it is Gorenstein and its canonical line bundle KY is

trivial.
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3.1. Local mirror symmetry by SYZ

Let

f = f(z1, . . . , zn−1) ∈ C
[
z±1

1 , . . . , z±1
n−1

]
be a Laurent polynomial in n−1 variables with complex coefficients. Then the hypersurface

X =
{

(x, y, z1, . . . , zn−1) ∈ C2 × (C×)n−1 | xy = f(z1, . . . , zn−1)
}

in C2 × (C×)n−1 is a noncompact Calabi-Yau variety since it admits the following holo-

morphic volume form:

Ω := Res

[
dx ∧ dy ∧ d log z1 ∧ · · · ∧ d log zn−1

xy − f(z1, . . . , zn−1)

]
.

It has long been known that the mirror of X should be given by a toric Calabi-Yau

manifold. Let N ∼= Zn be a rank n lattice. Let Y = YΣ be a toric variety defined by a fan Σ

in NR = N ⊗ZR. The primitive generators of rays in Σ will be denoted by ν1, . . . , νm ∈ N
which correspond to the toric prime divisors D1, . . . , Dm ⊂ Y respectively. The toric

variety Y is Calabi-Yau if and only if there exists a lattice point η ∈ M = Hom(N,Z)

such that 〈η, νi〉 = 1 for i = 1, . . . ,m [31]. This in turn is equivalent to the existence

of η ∈ M such that the corresponding character χη ∈ Hom(M ⊗Z C×,C×) defines a

holomorphic function on Y which has simple zeros along each toric prime divisor Di and

is non-vanishing elsewhere. Note that Y is necessarily noncompact in this case.

Let Y = YΣ be a toric Calabi-Yau variety of complex dimension n. We further assume

that Y is smooth and the fan Σ has convex support. These conditions are satisfied if

and only if Y is a crepant resolution of an affine toric variety (defined by the cone |Σ|)
with Gorenstein canonical singularities, which in turn is equivalent to saying that Y is

semi-projective [31, p. 332].

Important examples of toric Calabi-Yau manifolds are given by total spaces of canon-

ical line bundles KZ over compact toric manifolds Z. (In this case, semi-projectivity is

equivalent to requiring that the base manifold Z is semi-Fano, i.e., its canonical line bun-

dle KZ is nef.) For example, the total space of KP2 = OP2(−3) is a toric Calabi-Yau 3-fold

whose fan Σ has rays generated by the vectors

ν0 = (0, 0, 1), ν1 = (1, 0, 1), ν2 = (0, 1, 1), ν3 = (−1,−1, 1) ∈ Z3.

Mirror symmetry in this setting is called local mirror symmetry because it originated

from applying mirror symmetry techniques to Fano surfaces (e.g., P2) contained inside

compact Calabi-Yau manifolds, and could be derived using physical arguments from mirror

symmetry for compact Calabi-Yau hypersurfaces in toric varieties by taking certain limits

in the complexified Kähler and complex moduli spaces [56]. There is a large body of work,
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by both mathematicians and physicists, on this mirror symmetry; see e.g., [17, Section 4]

and the references therein.

In order to construct the mirror of X using SYZ, one should find a Lagrangian torus

fibration ρ : X → B with a Lagrangian section, and proceed in the following steps4:

Step 1. Over the smooth locus B0 ⊂ B, the pre-image

X0 := ρ−1(B0)

can be identified with the quotient T ∗B0/Λ
∨ by Duistermaat’s action-angle coordinates

[32].

Step 2. Then we have the semi-flat mirror

X̌0 := TB0/Λ,

which is naturally a complex manifold because the fibration ρ induces a tropical affine

structure on B0. However, this is not quite the correct mirror because we want to com-

pactify X̌0 but the complex structure on X̌0 cannot be extended further to any (even

partial) compactification due to nontrivial monodromy of the tropical affine structure

around the discriminant locus Γ = B \B0.

Step 3. To obtain the correct and (partially) compactified mirror X̌, we need to modify

the complex structure on X̌0 by instanton corrections coming from holomorphic disks in

X bounded by the Lagrangian torus fibers of ρ.

For the examples we consider here, such a construction was carried out by Abouzaid-

Auroux-Katzarkov [5]. The resulting SYZ mirror of X is given by

X̌ = YΣ \H,

where YΣ is a toric Calabi-Yau n-fold whose fan consists of cones over a regular subdivision

of the Newton polytope of f , and the hypersurface H is a smoothing of the union of toric

prime divisors in YΣ.

For example, the mirror of

X =
{

(x, y, z1, z2) ∈ C2 × (C×)2 | xy = 1 + z1 + z2

}
is given by

C3 \ {w1w2w3 = 1} ,

where w1, w2, w3 are standard coordinates on (C)3, while the mirror of

X =

{
(x, y, z1, z2) ∈ C2 × (C×)2

∣∣∣ xy = t+ z1 + z2 +
1

z1z2

}
4Such a procedure was pioneered by Auroux in [11,12], and later generalized to toric Calabi-Yau manifolds

in [19] and certain blowups of toric varieties in [5]; see also [53].
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is given by

KP2 \H,

where H is a smoothing of the union of the four toric prime divisors in KP2 . We will

briefly review the construction in [5] in some explicit examples below.

3.2. The 2-dimensional case

Let us consider

X =
{

(x, y, z) ∈ C2 × C× | xy = f(z)
}
,

where f(z) ∈ C
[
z, z−1

]
is a Laurent polynomial in one variable. We equip X with the

symplectic structure given by restriction of the standard one

ω = − i

2

(
dx ∧ dx+ dy ∧ dy +

dz ∧ dz
|z|2

)
on C2 × C× to X.

Then a Lagrangian torus fibration on X is given explicitly by the map

ρ : X → B := R2, (x, y, z) 7→ (log |z| , µ(x, y, z)) ,

where

µ(x, y, z) =
1

2

(
|x|2 − |y|2

)
: X → R

is the moment map associated to the Hamiltonian S1-action:

eiθ · (x, y, z) = (eiθx, e−iθy, z).

log |z|

µ

s1 s2

u−1
0

w

u1

w

u−1
1

w

u2

w

Figure 3.1: The base of SYZ fibration for X and its chamber structure.
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For a more concrete example, we may consider

f(z) = (z − a)(z − b),

where 1 < a < b are real numbers. Then the base of the SYZ fibration is displayed in

Figure 3.1. Let s1 := log a and s2 := log b. Then we have precisely two singular fibers

(which are pinched 2-tori) over the points

Γ = {(s1, 0), (s2, 0)} ⊂ B.

Also, the locus of Lagrangian torus fibers which bound nontrivial holomorphic disks is

given by the union of two vertical lines (the cyan dashed lines in Figure 3.1):

{s1} × R, {s2} × R ⊂ B.

We call each of these vertical lines a wall in B. (For a more general f(z) which has k

zeros (with distinct absolute values), there will be k singular fibers and k walls which are

all vertical lines; all constructions which follow work in exactly the same way as in this

particular example.)

U0 U1 U2

Figure 3.2: Connected components of the complement of walls in B.

To see how the SYZ mirror is constructed, we consider the connected components

(chambers) of the complement of the walls in B (see Figure 3.2):

U0 := (−∞, s1)× R, U1 := (s1, s2)× R, U2 := (s2,∞)× R.

Let ui (i = 1, 2, 3, 4) and w be exponentiation of complexification of the affine coordinates

as shown in Figure 3.1. Note that w is a global coordinate since it comes from the moment

map of the global Hamiltonian S1-action on X.
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Remark 3.1. The reader may complain that the open sets U0, U1 and U2 do not form

an open cover of the smooth locus B0 = B \ Γ. We are indeed cheating a little bit here

because we want to simplify the exposition. To be more precise, one should consider, for

example, the following open subsets in B (see Figure 3.3):

V1 := ((−∞, s2)× R) \ ((s1, s2)× {0}),

V2 := ((−∞, s2)× R) \ ((−∞, s1)× {0}),

V3 := ((s1,∞)× R) \ ((s1, s2)× {0}),

V4 := ((s1,∞)× R) \ ((s2,∞)× {0}).

The following constructions work in exactly the same way using this set of open charts.

s1 s2

V1

s1 s2

V2

s1 s2

V3

s1 s2

V4

Figure 3.3: The open sets V1, V2, V3 and V4 in B.

Using the fact that the monodromy of the tropical affine structure going counter-

clockwise around both (s1, 0) and (s2, 0) is given by the matrix1 1

0 1

 ,
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we see that the semi-flat SYZ mirror X̌0 is given by

(TU0/Λ) ∪ (TU1/Λ) ∪ (TU2/Λ)

via the näıve gluing:

ui = ui+1 on Ui ∩ Ui+1 ∩B+,

ui = ui+1w on Ui ∩ Ui+1 ∩B−
for i = 0, 1, where B+ (resp. B−) is the upper half-plane R× R>0 (resp. lower half-plane

R× R<0).

log |z|

µ

log a log b

Figure 3.4: Holomorphic disks bounded by fibers over the walls.

As we explained before, this is not quite the correct mirror because nontrivial mon-

odromy around the discriminant locus Γ makes it impossible to extend the complex struc-

ture of X̌0 any further. The corrections we need come precisely from the nontrivial holo-

morphic disks bounded by fibers over the walls [5,11,12,19] as shown in Figure 3.4. This

leads to the corrected gluing given by

(3.1)
ui = ui+1(1 + w) on Ui ∩ Ui+1 ∩B+,

ui = ui+1w(1 + w−1) on Ui ∩ Ui+1 ∩B−,

which can simply be written as

ui = ui+1(1 + w) on Ui ∩ Ui+1

for i = 0, 1.

In fact this is exactly the gluing of complex charts in T ∗P1 (see Figure 3.5), which is

the toric resolution of the A1-singularity C2/Z2. Hence we conclude that the SYZ mirror

of

X =
{

(x, y, w) ∈ C2 × C× | xy = (w − a)(w − b)
}
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is given by

X̌ = T ∗P1 \H,

where H is a smoothing of the union of the three toric divisors in T ∗P1.

u−1
0 w

u1

w

u−1
1

w u2w

Figure 3.5: The corrected gluing in the SYZ mirror of X.

Now we turn to the construction of SYZ transforms in this example. First of all,

Lagrangian sections of the SYZ fibration ρ : X → B can be constructed by considering

(admissible) paths γ in the base of the conic fibration

π : X → C×, (u, v, z) 7→ z.

An example is shown in Figure 3.6. Taking the subset in X swept by the parallel transports

of the real locus of a fixed conic fiber, we get a Lagrangian section L = Lγ of ρ : X → B

which is topologically a copy of R2.

a b

Figure 3.6: An admissible path in C×.

To construct the SYZ transform of L, we first note that the semi-flat SYZ transform

of L over each chamber Ui (i = 0, 1, 2) gives a U(1)-connection ∇̌i over the open chart
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UC
i := TUi/Λ ∼= (C×)2 in X̌, but they do not quite agree over the walls due to correction

of the gluing (3.1). More precisely, we have

∇̌i − ∇̌i−1 = −iξ1(si)d arg(1 + w)

over the wall {si} × R for i = 1, 2.

The key observation is that, although the connections do not match over the walls,

they only differ by a gauge! So after modification by adding a gauge, the connections ∇̌0

and ∇̌1 (resp. ∇̌1 and ∇̌2) can patch together to give us a U(1)-connection ∇̃1 (resp. ∇̃2)

over the open chart UC
01 := V C

1 ∪ V C
2 (resp. UC

12 := V C
3 ∪ V C

4 ).

This produces a global U(1)-connection over the mirror X̌, whose curvature has van-

ishing (0, 2)-part again because L is Lagrangian. Hence we can define the SYZ transform

of L as a holomorphic line bundle L over X̌. Moreover, in the overlap UC
01 ∩UC

12, we have

∇̃2 − ∇̃1 = i (ξ(s2)− ξ(s1)) d arg(1 + w),

implying that the transition function for L from U01 to U02 is given by

(1 + w)−(ξ(s2)−ξ(s1)).

Using this, one can show that the degree of L over the exceptional P1 ⊂ X̌ (which de-

termines the isomorphism class of the line bundle) is precisely given by the intersection

number γ · [a, b].
Similar techniques work for all mirrors of An-resolutions (or toric Calabi-Yau 2-folds)

[25] and also for the deformed conifold and mirrors of other small toric Calabi-Yau 3-

folds [23]. Moreover, this SYZ transform, which is defined only on the object level, in fact

induces HMS equivalences as predicted by Kontsevich; the readers may consult [23,25] for

the precise statements and proofs.

3.3. The 3-dimensional case

In the general 3-dimensional case, construction of Lagrangian torus fibrations becomes

more subtle. Given

X =
{

(x, y, z1, z2) ∈ C2 × (C×)2 | xy = f(z1, z2)
}
,

where f(z1, z2) ∈ C
[
z±1

1 , z±1
2

]
is a Laurent polynomial in two variables, we first regard X

as an open dense subset in the blowup

p : Bl0×Z
(
C× (C×)2

)
→ C× (C×)2
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of C× (C×)2 along the codimension two locus 0×Z; here, Z ⊂ (C×)2 is the hypersurface

defined by f(z1, z2), i.e.,

Z =
{

(z1, z2) ∈ (C×)2 | f(z1, z2) = 0
}
.

Then we equip X with the blowup symplectic structure ωε where ε > 0, the symplectic

area of the exceptional P1’s (i.e., fibers of p over 0× Z), is sufficiently small5.

As in the 2-dimensional case, we have a Hamiltonian S1-action

eiθ · (x, y, z1, z2) = (eiθx, e−iθy, z1, z2)

and the associated moment map µ : X → R>0. For each λ ∈ R>0, Abouzaid-Auroux-

Katzarkov [5] showed that there exists a symplectomorphism6

φλ : Xred,λ → (C×)2

intertwining between the reduced symplectic form on the reduced space

Xred,λ := µ−1(λ)/S1

and (a constant multiple of) the standard symplectic structure on (C×)2. Now the map

ρ : X → B := R2 × R>0, p ∈ µ−1(λ) 7→ ((Log ◦φλ)([p]), λ) ,

where Log : (C×)2 → R2 is the usual log map, defines a Lagrangian torus fibration on

X [5, Section 4].

The discriminant locus of the fibration ρ is given by the amoeba-shaped subset

Γ = A× {ε} = (Log ◦φε)(Z)× {ε} .

In contrast to the 2-dimensional case, the discriminant locus here is of real codimension one

in B, and the walls, i.e., the locus of the Lagrangian torus fibers which bound nontrivial

holomorphic disks, is given by

H = A× R,

which is an open subset (though we still call them walls). The complement of the walls

gives a natural chamber structure, which is invariant under vertical translations, in B.

5We do not use the restriction of the standard symplectic structure on C2 × (C×)2 to X because the

constructions in [5] are more adapted to this blowup symplectic structure.
6The map φε is a homoeomorphism which is a diffeomorphism only away from Z; see [5, Lemma 4.1].
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ε

Figure 3.7: The base of SYZ fibration for X.

Uα

Uγ

Uβ

uγ,0
uγ,1

uα,1
uα,2

uβ,0

uβ,2

Figure 3.8: (Left) Chamber structure in the base of SYZ fibration for X. (Right) Local

affine coordinates on B.

For illustration, let us look at the simplest possible example:

X =
{

(x, y, z1, z2) ∈ C2 × (C×)2 | xy = 1 + z1 + z2

}
,

for which the base of the SYZ fibration is shown in Figure 3.7. There are 3 chambers in



520 Kwokwai Chan

the complement of the walls in B which we denote by

Uα, Uβ, Uγ

as shown on the left of Figure 3.8. The semi-flat SYZ mirror X̌0 is given by

(TUα/Λ) ∪ (TUβ/Λ) ∪ (TUγ/Λ)

using the näıve gluing. Note that each chart UC
] := TU]/Λ (] ∈ {α, β, γ}) is a copy of the

algebraic torus (C×)3. Let u],j (] ∈ {α, β, γ}, j = 1, 2) be exponentiation of complexifi-

cation of the affine coordinates as shown in Figure 3.8(right), and w be exponentiation of

complexification of the vertical affine coordinate; again w is a global coordinate since it

comes from the moment map of the global Hamiltonian S1-action on X.

By analyzing counting of Maslov index two disks (in the blowup Bl0×Z
(
C× (C×)2

)
,

not X!), one can see that the corrected gluing should be given by

uα,1 = (1 + w)β1−α1uβ,1,

uα,2 = (1 + w)β2−α2uβ,2
(3.2)

over UC
α ∪ UC

β and similarly for other pairs of open charts. In the general case, this gives

exactly the gluing of charts in the toric Calabi-Yau 3-fold YΣ whose fan consists of cones

over a regular subdivision of the Newton polytope of f . Indeed, the above coordinates are

related to the coordinates (t1, t2, t3) of the open dense orbit (C×)3 ⊂ YΣ by

uα,1 = t1t
−α1
3 ,

uα,2 = t2t
−α2
3 ,

w = t3 − 1,

and H is the hypersurface defined by t3 = 1. For the above example, the SYZ mirror

precisely is given by

X̌ = C3 \ {w1w2w3 = 1} ,

where w1, w2, w3 are standard coordinates on (C)3.

Before describing the SYZ transform in this case, let us briefly explain the class of

Lagrangian sections that we are going to look at. We fix a simplex in the regular sub-

division of the Newton polytope of f and label its 3 vertices as α, β and γ as shown in

Figure 3.9(right).

In [24], we employ the technique of so-called tropical localization devised by Abouzaid

in his work [1, 2] on HMS for toric varieties. Namely, we consider a family ft(z1, z2) of

functions deforming f(z1, z2) so that in the limit, where Z becomes Ztrop, the “legs” of the

discriminant locus Γ get slimmed down, giving rise to the picture shown in Figure 3.9(left).
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Uα

Uγ

Uβ
α β

γ

Figure 3.9: (Left) The discriminant locus after tropical localization. (Right) A simplex in

the regular subdivision of the Newton polytope of f .

We require that our Lagrangian section L is fibered over a Lagrangian submanifold L

in (C×)2 \ UZtrop (where UZtrop is a tubular neighborhood of Ztrop in (C×)2), i.e.,

L = R>0 × L ⊂ C×
(
(C×)2 \ UZtrop

)
.

Note that p is an isomorphism outside of a neighborhood of 0×Ztrop. In fact L is a section

of the log map Log : (C×)2 → R2 which is disjoint from UZtrop .

We further require that over each chamber U], L is a tropical Lagrangian section,

meaning that its boundary lies in Ztrop. In particular, this implies that over a leg l of Γ

which is dual to the edge connecting two vertices, say α and β, we have

(3.3) 〈dg, β − α〉 ∈ Z,

where g denotes the primitive function of L. This condition is crucial to the construction

of the SYZ transform of L.

A prototypical example of such a Lagrangian section is given by the positive real locus

L0 = (R>0)3, which we regard as the zero section of the SYZ fibration ρ : X → B.

As in the 2-dimensional case, over each chamber U], the semi-flat SYZ transform

F semi-flat produces a U(1)-connection ∇̌] over the open chart UC
] = TU]/Λ in the mirror

X̌. Due to the modified gluing (3.2), the connections ∇̌] do not agree over the walls: For

example, we have

(3.4) ∇̌β − ∇̌α = −i 〈dg, β − α〉 d arg(1 + w)

over l × R where l is the leg of Γ dual to the edge connecting α and β.

Remember we have the condition (3.3): 〈df, β − α〉 ∈ Z over the leg l. So, once again,

the connections ∇̌] only differ by a gauge over the intersection of open charts in X̌. Hence,
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after modifying by a gauge, they still patch together to give us U(1)-connections ∇̃αβ, ∇̃βγ ,

∇̃γα over the open charts

UC
αβ = UC

α ∪ UC
β , UC

βγ = UC
β ∪ UC

γ , UC
γα = UC

γ ∪ UC
α

respectively. Curvatures of these connections have vanishing (0, 2)-parts as L is La-

grangian, and they satisfy the cocycle condition since the gauge is of the form specified as

in (3.4). Thus they determine a holomorphic line bundle L over X̌, which we define to be

the SYZ transform of L.

As an example, the SYZ transform of the zero section L0 = (R>0)3 is given by the

structure sheaf OX̌ over X̌. In [24], we computed the wrapped Floer cohomology of L0

and showed that it is isomorphic to the group H0(X̌,OX̌) of holomorphic functions over

X̌ (see [24, Theorem 1.2]). This result has several interesting applications. We applied it

to give a computation of the 0-th symplectic cohomology of X and a proof of HMS for

toric Calabi-Yau orbifold quotients of the form C3/G in [24, Section 8]. Recently, it was

also used by Ganatra-Pomerleano [46] in giving a complete classification of diffeomorphism

types of exact Lagrangian submanifolds in 3-dimensional conic bundles over (C×)2.

Finally, let us give a couple of remarks regarding the constructions in this article.

First of all, we do not expect that the SYZ transform of a general Lagrangian submanifold

will be defined in the same way as described here. Indeed one should also take into

account the instanton corrections coming from nontrivial holomorphic disks bounded by

the Lagrangian itself. In all the examples we consider here (and in the papers [16,23–25]),

the mirrors of the Lagrangian submanifolds only receive corrections coming from nontrivial

holomorphic disks bounded by the SYZ fibers just because the Lagrangians themselves do

not bound nontrivial disks. However, this is certainly not the case in general. For instance,

in a joint work [18] with S.-W. Chung, we see that the SYZ transforms of Aganagic-Vafa

A-branes [8] must take into account those disks bounded by the Lagrangian itself.

Related to this, we should point out that a more natural approach is to make direct

use of the Floer theory of the Lagrangian submanifolds concerned. More precisely, one

may attempt to construct the mirror B-branes (as coherent sheaves over subvarieties) by

applying family Floer theory, as done (in the case without quantum corrections) earlier

by Fukaya [38, 39] and more recently by Tu [76] and Abouzaid [3, 4]. Unfortunately, as

it is still not known how to deal with family Floer theory for SYZ fibrations containing

singular fibers, a general definition of SYZ transforms still eludes us.7

7See, however, the recent works of Cho-Lau-Hong [26–29] for a generalization of the SYZ approach which

hopefully works in more general cases.
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