On Generalized Folkman Numbers

Yusheng Li and Qizhong Lin*

Abstract

For graphs G, G_{1} and G_{2}, let $G \rightarrow\left(G_{1}, G_{2}\right)$ signify that any red/blue edge-coloring of G contains a red G_{1} or a blue G_{2}, and let $f\left(G_{1}, G_{2}\right)$ be the minimum N such that there is a graph G of order N with $\omega(G)=\max \left\{\omega\left(G_{1}\right), \omega\left(G_{2}\right)\right\}$ and $G \rightarrow\left(G_{1}, G_{2}\right)$. It is shown that $c_{1}(n / \log n)^{(m+1) / 2} \leq f\left(K_{m}, K_{n, n}\right) \leq c_{2} n^{m-1}$, where $c_{i}=c_{i}(m)>0$ are constants. In particular, $c n^{2} / \log n \leq f\left(K_{3}, K_{n, n}\right) \leq 2 n^{2}+2 n-1$. Moreover, $f\left(K_{m}, T_{n}\right) \leq m^{2}(n-1)$ for all $n \geq m \geq 2$, where T_{n} is a tree on n vertices.

1. Introduction

For graphs G, G_{1} and G_{2}, let $G \rightarrow\left(G_{1}, G_{2}\right)$ signify that any red/blue edge-coloring of G contains a red G_{1} or a blue G_{2}. The Ramsey number $r\left(G_{1}, G_{2}\right)$ is the smallest N such that $K_{N} \rightarrow\left(G_{1}, G_{2}\right)$, for which $r\left(K_{m}, K_{n}\right)$ is written as $r(m, n)$ for short. Define

$$
\mathcal{F}\left(G_{1}, G_{2} ; p\right)=\left\{G: \omega(G) \leq p, G \rightarrow\left(G_{1}, G_{2}\right)\right\},
$$

where $\omega(G)$ is the clique number of G. We call

$$
f\left(G_{1}, G_{2} ; p\right)=\min \left\{|V(G)|: G \in \mathcal{F}\left(G_{1}, G_{2} ; p\right)\right\}
$$

Folkman number. We admit $f\left(G_{1}, G_{2} ; p\right)=\infty$ if $\mathcal{F}\left(G_{1}, G_{2} ; p\right)=\emptyset$. Let us write $\mathcal{F}(m, n ; p)$ and $f(m, n ; p)$ for $\mathcal{F}\left(K_{m}, K_{n} ; p\right)$ and $f\left(K_{m}, K_{n} ; p\right)$, respectively; and call $f(m, n ; p)$ classical Folkman number, and $f\left(G_{1}, G_{2} ; p\right)$ generalized Folkman number if one of G_{1} and G_{2} is non-complete. Let us point out that the above classical Folkman number $f(3,3 ; 3)$ is always instead denoted by $f(2,3,4)$, see [3] for example. However, in this note, it maybe convenient to use $f\left(G_{1}, G_{2} ; p\right)$ to denote the generalized Folkman number.

The investigation of Folkman number was motivated by a question of Erdős and Hajnal [6] who asked what was the minimum p such that $\mathcal{F}(3,3 ; p) \neq \emptyset$. Folkman [9] proved that $\mathcal{F}(m, n ; p) \neq \emptyset$ for $p \geq \max \{m, n\}$. Subsequently, Nešetřil and Rödl 18 generalized it by showing that $\mathcal{F}\left(G_{1}, G_{2} ; p\right) \neq \emptyset$ when $p \geq \max \left\{\omega\left(G_{1}\right), \omega\left(G_{2}\right)\right\}$.

Received May 22, 2016; Accepted August 7, 2016.
Communicated by Xuding Zhu.
2010 Mathematics Subject Classification. 05C35, 05C55, 05D10.
Key words and phrases. Generalized Folkman number, Construction, Probabilistic method.
This paper is supported by the NSFC and the second author is also supported in part by NSFFP.
*Corresponding author.

Lemma 1.1. 9, 18 If $p \geq \max \left\{\omega\left(G_{1}\right), \omega\left(G_{2}\right)\right\}$, then

$$
\mathcal{F}\left(G_{1}, G_{2} ; p\right) \neq \emptyset
$$

It is easy to see that $f\left(G_{1}, G_{2} ; p\right)$ is decreasing on p, and $f\left(G_{1}, G_{2} ; p\right)=r\left(G_{1}, G_{2}\right)$ if $p \geq r\left(G_{1}, G_{2}\right)$. Consequently, for any p,

$$
\begin{equation*}
f\left(G_{1}, G_{2} ; p\right) \geq r\left(G_{1}, G_{2}\right) \tag{1.1}
\end{equation*}
$$

For $p=r(m, n)-1$, Lin [13] proved that $f(m, n ; p)=r(m, n)+2$ in some cases. It is known that $f(3,3 ; 5)=8$ and $f(3,3 ; 4)=15$ due to Graham [11], Lin [13], and Piwakowski, Radziszowski and Urbanski [19], respectively.

Clearly, among all $f\left(G_{1}, G_{2} ; p\right)$ with different parameters p, the crucial case is $p=$ $\max \left\{\omega\left(G_{1}\right), \omega\left(G_{2}\right)\right\}$. So we write

$$
f\left(G_{1}, G_{2}\right)=f\left(G_{1}, G_{2} ; p\right), \quad \text { where } p=\max \left\{\omega\left(G_{1}\right), \omega\left(G_{2}\right)\right\}
$$

It is known that $f(3,3) \leq 3 \times 10^{9}$ due to Spencer 21, which improved an upper bound 7×10^{11} of Frankl and Rödl 10]. Chung and Graham [3] conjectured that $f(3,3)<$ 1000, which was confirmed by Dudek and Rödl [5] with a computer assisted proof, and independently Lu [16] obtained that $f(3,3) \leq 9697$. Recently, Lange, Radziszowski and Xu 12 obtained $f(3,3) \leq 786$.

It is trivial that $f(2, n)=n$. For $n \geq m \geq 3$, the upper bounds for $f(m, n)$ and $f\left(G_{1}, G_{2}\right)$ deduced from [9] and [18] are huge. In particular, such an upper bound $g(n)$ for $f(n, n)$ or even $f(3, n)$ is a tower, whose height is larger than the value of $g(n-1)$. It is widely believed that such huge upper bounds for Folkman numbers are far away from the truth. However, for bipartite graphs B_{1} and B_{2}, the upper bound for $f\left(B_{1}, B_{2}\right)$ is more reasonable. Let bipartite Ramsey number $\operatorname{br}\left(G_{1}, G_{2}\right)$ be the smallest N such that $K_{N, N} \rightarrow\left(B_{1}, B_{2}\right)$. The following relationship says that $f\left(B_{1}, B_{2}\right)$ is close to $\operatorname{br}\left(B_{1}, B_{2}\right)$:

$$
\operatorname{br}\left(B_{1}, B_{2}\right) \leq f\left(B_{1}, B_{2}\right) \leq 2 \operatorname{br}\left(B_{1}, B_{2}\right)
$$

Indeed, let $N=\operatorname{br}\left(B_{1}, B_{2}\right)$. We have $f\left(B_{1}, B_{2}\right) \leq 2 N$ since $K_{N, N} \in \mathcal{F}\left(B_{1}, B_{2} ; 2\right)$. On the other hand, if B is a graph of order $N=f\left(B_{1}, B_{2}\right)$, then the fact that $B \rightarrow\left(B_{1}, B_{2}\right)$ implies that $K_{N, N} \rightarrow\left(B_{1}, B_{2}\right)$, and so $\operatorname{br}\left(B_{1}, B_{2}\right) \leq N=f\left(B_{1}, B_{2}\right)$.

In this paper, we have the following results.
Theorem 1.2. For fixed $m \geq 3$,

$$
c\left(\frac{n}{\log n}\right)^{(m+1) / 2} \leq f\left(K_{m}, K_{n, n}\right) \leq(m-1)\left(n^{m-1}+n-1\right)+1,
$$

where $c=c(m)>0$.

Note that $f\left(K_{3}, K_{n, n}\right) \geq r\left(K_{3}, K_{n, n}\right)$, and $r\left(K_{3}, K_{n, n}\right) \geq c n^{2} / \log n$ by Lin and Li 14 which extended a method of Bohman [2], and hence we have the following result.

Corollary 1.3. There exists a constant $c>0$ such that

$$
\frac{c n^{2}}{\log n} \leq f\left(K_{3}, K_{n, n}\right) \leq 2 n(n+1)-1
$$

for sufficiently large n.
However, there still exists a gap between the lower bound and the upper bound.
Theorem 1.4. Let T_{n} be a tree of order n. If $m, n \geq 2$, then

$$
f\left(K_{m}, T_{n}\right) \leq m^{2}(n-1) .
$$

Remark 1.5. From the well-known result by Chvátal [4] that $r\left(K_{m}, T_{n}\right)=(m-1)(n-1)+1$, we have $f\left(K_{m}, T_{n}\right) \geq(m-1)(n-1)+1$ immediately. We do not know which direction is right.

2. Proofs for the main results

Let us denote by $K_{m}\left(n_{1}, \ldots, n_{m}\right)$ the complete m-partite graph, in which the i th part has n_{i} vertices. For convenience, write $K_{m, n}$ for $K_{2}(m, n)$ and $K_{m}(n)$ for $K_{m}(n, \ldots, n)$.

Proof of the upper bound of Theorem 1.2. The upper bound comes from the fact that $\mathcal{F}\left(K_{m}, K_{n, n} ; m\right)$ contains a graph of order at most $(m-1)\left(n^{m-1}+n-1\right)+1$, which we shall prove.

Lemma 2.1. Let $m \geq 2$ and $n \geq 1$ be integers, and let $N=n^{m-1}$. Then

$$
K_{m}(N, \ldots, N,(m-1)(n-1)+1) \rightarrow\left(K_{m}, K_{n, n}\right)
$$

Proof. We shall prove the lemma by induction on m. As it is trivial for $m=2$, we assume that $m \geq 3$ and the assertion holds for $m-1$. Let $N=n^{m-1}$, and let $V_{1}, V_{2}, \ldots, V_{m}$ be the parts of vertex set of $K_{m}(N, \ldots, N,(m-1)(n-1)+1)$, where

$$
\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{m-1}\right|=N, \quad\left|V_{m}\right|=(m-1)(n-1)+1 .
$$

Let (R, B) be an edge-coloring of $K_{m}(N, \ldots, N,(m-1)(n-1)+1)$ by red and blue. Assume that there is neither red K_{m} nor blue $K_{n, n}$. We will show that this assumption leads to a contradiction.

Note that $K_{m-1}\left(N^{\prime}, \ldots, N^{\prime},(m-2)(n-1)+1\right)$ is a subgraph of $K_{m-1}\left(N^{\prime}, \ldots, N^{\prime}\right)$, where $N^{\prime}=n^{m-2} \geq(m-2)(n-1)+1$ (This is a routing proof by induction on $m \geq 2$), and the inductive assumption implies that

$$
\begin{equation*}
K_{m-1}\left(N^{\prime}, \ldots, N^{\prime}\right) \rightarrow\left(K_{m-1}, K_{n, n}\right) \tag{2.1}
\end{equation*}
$$

For each vertex v, denote by $d_{r}^{(i)}(v)$ and $d_{b}^{(i)}(v)$ the number of red-neighbors and blueneighbors of v in V_{i}, respectively. If there is some vertex $v \in V_{m}$, such that $d_{r}^{(i)}(v) \geq N^{\prime}$ for each i with $1 \leq i \leq m-1$, then, by (2.1), we have either a red K_{m-1} or a blue $K_{n, n}$ in the red-neighborhood of v in $V_{1} \cup V_{2} \cup \cdots \cup V_{m-1}$. Since there is no blue $K_{n, n}$, we have a red K_{m-1}, which together with the vertex v form a red K_{m}. This is impossible. Thus for each vertex v of V_{m}, there is some i with $1 \leq i \leq m-1$ such that $d_{r}^{(i)}(v) \leq N^{\prime}-1$, which implies that

$$
d_{b}^{(i)}(v) \geq N-N^{\prime}+1 \quad \text { for some } i \text { with } 1 \leq i \leq m-1
$$

For $1 \leq i \leq m-1$, let $U_{i}=\left\{v \in V_{m}: d_{b}^{(i)}(v) \geq N-N^{\prime}+1\right\}$. Then $V_{m}=\bigcup_{i=1}^{m-1} U_{i}$. Since $\left|V_{m}\right|=(m-1)(n-1)+1$, there is some U_{i}, say U_{1}, such that $\left|U_{1}\right| \geq n$. Labeling these n vertices of $U_{1} \subseteq V_{m}$ as $v_{1}, v_{2}, \ldots, v_{n}$. Then

$$
d_{b}^{(1)}\left(v_{j}\right) \geq N-N^{\prime}+1 \quad \text { for } 1 \leq j \leq n
$$

If the number of common blue-neighbors of $v_{1}, v_{2}, \ldots, v_{n}$ in V_{1} is at least n, then we can find a blue $K_{n, n}$. This can be seen as follows. As each v_{i} is blue-adjacent to all but at most $N^{\prime}-1$ vertices of V_{1}, and v_{1}, v_{2} are commonly blue-adjacent to at least $N-2\left(N^{\prime}-1\right)$ vertices in V_{1}. Similarly, $v_{1}, v_{2}, \ldots, v_{n}$ are commonly blue-adjacent to at least $N-n\left(N^{\prime}-1\right)$ vertices in V_{1}. Note that

$$
N-n\left(N^{\prime}-1\right)=n^{m-1}-n\left(n^{m-2}-1\right)=n,
$$

hence we indeed obtain a blue $K_{n, n}$ and reach the desired contradiction.
Now, let us turn to the lower bound for Theorem 1.2. In fact, this can be deduced from (1.1) and the lower bound for $r\left(K_{m}, K_{n, n}\right)$, whose proof is similar to that for $r(m, n)$ by using Lovász local lemma, see [7,20]. Here we shall have a slightly easier proof with a slightly better multiplicative constant. We will adopt the form of the lemma obtained by Erdős and Spencer [8], see also Alon and Spencer [1, p. 70], or Lu and Székely 17.

A graph F on $[n]$ (the set of indices for the events) is called negative dependency graph (see [17], which is called lopsidependency graph in [8]) of events $A_{1}, A_{2}, \ldots, A_{n}$ if for each $i \in[n]$ and any set $S \subseteq[n] \backslash N[i]$,

$$
\operatorname{Pr}\left(A_{i} \mid \bigcap_{j \in S} \bar{A}_{j}\right) \leq \operatorname{Pr}\left(A_{i}\right)
$$

where $N[i]=N(i) \cup\{i\}$ is the closed neighborhood of i in F.
Lemma 2.2. 1, 8, 17 Let $A_{1}, A_{2}, \ldots, A_{n}$ be events in a probability space ($\Omega, \operatorname{Pr}$) with negative dependency graph F. If there exist $x_{1}, x_{2}, \ldots, x_{n}$ such that $0<x_{i}<1$ and

$$
\begin{equation*}
\operatorname{Pr}\left(A_{i}\right) \leq x_{i} \prod_{j: i j \in E(F)}\left(1-x_{j}\right) \tag{2.2}
\end{equation*}
$$

for each i, then $\operatorname{Pr}\left(\bigcap_{i=1}^{n} \bar{A}_{i}\right)>0$.
By taking $y_{i}=x_{i} / \operatorname{Pr}\left(A_{i}\right)$, then, (2.2) is equivalent to find positive numbers y_{1}, y_{2}, \ldots, y_{n} such that $0<y_{i} \operatorname{Pr}\left(A_{i}\right)<1$, and

$$
\begin{equation*}
\log y_{i} \geq-\sum_{j: i j \in E(F)} \log \left(1-y_{j} \operatorname{Pr}\left(A_{j}\right)\right) \tag{2.3}
\end{equation*}
$$

By using Lemma 2.2, we can see the following proof of the lower bound for $r\left(K_{m}, K_{n, n}\right)$ is slightly simpler.

Proof of the lower bound of Theorem 1.2. Let $m \geq 3$ be fixed integer, and n a sufficiently large integer. We shall prove $r\left(K_{m}, K_{n, n}\right) \geq N$, where $N=N(n)$ is to be chosen. Color the edges of K_{N} by red and blue randomly and independently, so that each edge is colored red with probability p and blue with probability $q=1-p$. For subsets S with $|S|=m$, and $T=T_{1} \cup T_{2}$ with $T_{1} \cap T_{2}=\emptyset$ and $\left|T_{1}\right|=\left|T_{2}\right|=n$, let A_{S} be the event that S spans a red K_{m} and B_{T} the event that T spans a blue $K_{n, n}$ on color classes T_{1} and T_{2}. Then $\operatorname{Pr}\left(A_{S}\right)=p^{\binom{m}{2}}$ and $\operatorname{Pr}\left(B_{T}\right)=q^{n^{2}}$.

Suppose S and S^{\prime} have $r \geq 2$ vertices in common. Then

$$
\operatorname{Pr}\left(A_{S} \mid \bar{A}_{S^{\prime}}\right)=\frac{\operatorname{Pr}\left(A_{S} \bar{A}_{S^{\prime}}\right)}{\operatorname{Pr}\left(\bar{A}_{S^{\prime}}\right)}=\frac{\operatorname{Pr}\left(A_{S}\right) \cdot\left(1-p^{\binom{m}{2}-\binom{r}{2}}\right)}{1-p^{\binom{m}{2}}}<\operatorname{Pr}\left(A_{S}\right) .
$$

Similarly, B_{T} and $\bar{B}_{T^{\prime}}$ satisfy that $\operatorname{Pr}\left(B_{T} \mid \bar{B}_{T^{\prime}}\right)<\operatorname{Pr}\left(B_{T}\right)$ if the corresponding subgraphs have an edge in common.

Label such events A_{S} and B_{T} as A_{1}, \ldots, A_{k} and B_{1}, \ldots, B_{ℓ}, where $k=\binom{N}{m}$ and $\ell=\binom{N}{n}\binom{N-n}{n}$. Define the graph F on those events, in which two events A_{i} and B_{j} are adjacent in F if and only if they have an edge in common. From the above observation, it is not difficult to check that F is a negative dependency graph, which is bipartite indeed.

Note that m is fixed and n is sufficiently large. In F, we have that each A-event is adjacent to $d_{A B} \leq\binom{ m}{2}\binom{N-2}{n-1}\binom{N-n-1}{n-1} \leq N^{2(n-1)} B$-events, and each B-event is adjacent to $d_{B A} \leq n^{2}\binom{N-2}{m-2} \leq n^{2} N^{m-2} A$-events. We shall find positive numbers a and b with
$y_{i}=a$ for each A event and $y_{j}=b$ for each B event that satisfy (2.3). Namely, ap $\binom{m}{2}<1$, $b q^{n^{2}}<1$ and

$$
\begin{align*}
& \log a \geq-d_{A B} \log \left(1-b q^{n^{2}}\right) \tag{2.4}\\
& \log b \geq-d_{B A} \log \left(1-a p^{\binom{m}{2}}\right) \tag{2.5}
\end{align*}
$$

If such a and b are available, then there exists a red/blue edge-coloring of K_{N} such that there is neither red K_{m} nor blue $K_{n, n}$, implying $f\left(K_{m}, K_{n, n}\right)>N$. To this end, let us set $a=2$,

$$
p=\frac{(m+3) \log n}{n}, \quad b=\exp \{n \log n\}, \quad N=\left(\frac{c n}{\log n}\right)^{(m+1) / 2}
$$

where $c=c(m)>0$ is a constant to be determined. Using $q=1-p<e^{-p}$ for $p>0$, we have

$$
\begin{aligned}
N^{2 n} b q^{n^{2}} & \leq N^{2 n} b e^{-p n^{2}}=\exp \left\{2 n \log N+\log b-p n^{2}\right\} \\
& \leq \exp \{-n \log n\} \rightarrow 0
\end{aligned}
$$

So $\log (1-x) \sim-x$ for $x=b q^{n^{2}}$, and the right-hand side of (2.4) is

$$
-N^{2(n-1)} \log \left(1-b q^{n^{2}}\right) \sim N^{2(n-1)} b q^{n^{2}} \rightarrow 0
$$

Thus (2.4) holds for all large n. Finally, note that the right-hand side of (2.5) is asymptotically

$$
n^{2} N^{m-2} a p\binom{m}{2}=2 c^{(m+1)(m-2) / 2}(m+3)^{\binom{m}{2}} n \log n
$$

So 2.5 holds if we choose $c>0$ such that

$$
1>2 c^{(m+1)(m-2) / 2}(m+3){ }^{\binom{m}{2}}
$$

This completes the proof.
In the following, we will give a proof of the upper bound for $f\left(K_{m}, T_{n}\right)$. First, we define a special Turán number. For integers $k \geq 1$ and $r \geq 2$, let $t_{r}(k)$ be the maximum number of edges of a subgraph of $K_{r}(k)$ that contains no K_{r}. Clearly, $t_{2}(k)=0$ and $t_{r}(1)=\binom{r}{2}-1$. One can find the following result in 15] we include the proof here for completeness.

Lemma 2.3. Let $t_{r}(k)$ be defined as above. Then

$$
t_{r}(k)=\left[\binom{r}{2}-1\right] k^{2}
$$

Proof. The lower bound for $t_{r}(k)$ follows by deleting all edges between a pair of color classes of $K_{r}(k)$. On the other hand, we shall prove by induction on k that if a subgraph $G=G\left(V^{(1)}, \ldots, V^{(r)}\right)$ of $K_{r}(k)$ contains no K_{r}, then $e(G) \leq\left[\binom{r}{2}-1\right] k^{2}$. Suppose $k \geq 2$ and $r \geq 3$ as it is trivial for $k=1$ or $r=2$. Now, suppose that G has the maximum possible number of edges subject to this condition. Then G must contain $K_{r}-e$ as a subgraph, otherwise we could add an edge and the resulting graph would still contain no K_{r}. Denote the vertex set of this $K_{r}-e$ by X. We have $\left|X \cap V^{(i)}\right|=1$ for $i=1,2, \ldots, r$. Without loss of generality, suppose $e=\left\{v_{1}, v_{2}\right\}$, where $v_{1} \in V^{(1)}$ and $v_{2} \in V^{(2)}$. Let G^{\prime} be the r-partite subgraph of G that induced by $\left(\bigcup_{i=1}^{r} V^{(i)}\right) \backslash X$. Clearly, G^{\prime} contains no K_{r} as a subgraph since G contains no K_{r}. Hence, from the induction hypothesis, we have $e\left(G^{\prime}\right) \leq\left[\binom{r}{2}-1\right](k-1)^{2}$. Moreover, since G contains no K_{r}, we have that for $i=1,2$ there is no vertex in $V^{(i)} \backslash\left\{v_{i}\right\}$ is adjacent to all the vertices of $X \backslash\left\{v_{i}\right\}$. Thus, there are at least

$$
(k-1)^{2}+2(k-1)+1=k^{2}
$$

edges that should be deleted from $K_{r}(k)$, which completes the induction step and hence the proof.

Proof of Theorem 1.4. Consider a red-blue edge-coloring of $K_{m}(N)$, where $N=m(n-1)$. Let R and B be the subgraphs induced by red edges and blue edges, respectively. Assume that R contains no K_{m}. Then $e(R)<t_{m}(N)=\frac{(m+1)(m-2)}{2} N^{2}$ by Lemma 2.3, and hence

$$
e(B)=\binom{m}{2} N^{2}-e(R)>N^{2}=\frac{N}{m}(m N)=(n-1)(m N) .
$$

Note that each graph F of order k with at least $(\ell-1) k$ edges contains T_{ℓ} as a subgraph. (Indeed, F contains a subgraph F^{\prime} with minimum degree at least $\ell-1$. Thus, F^{\prime} and hence F contains any T_{ℓ} as a subgraph.) Therefore, B contains T_{n} as a subgraph as claimed.

Finally, let us propose the following problem.
Problem 2.4. Prove or disprove that the asymptotic order of $f\left(K_{3}, K_{n, n}\right)$ is $n^{2} / \log n$.

Acknowledgments

The authors are grateful to the anonymous referees for their invaluable comments, which improved the presentation of the manuscript greatly.

References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, Third edition, John Wiley \& Sons, Hoboken, NJ, 2008. https://doi.org/10.1002/9780470277331
[2] T. Bohman, The triangle-free process, Adv. Math. 221 (2009), no. 5, 1653-1677. https://doi.org/10.1016/j.aim.2009.02.018
[3] F. Chung and R. Graham, Erdős on Graphs: His Legacy of Unsolved Problems, A K Peter, 1999.
[4] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977), no. 1, 93. https://doi.org/10.1002/jgt. 3190010118
[5] A. Dudek and V. Rödl, On the Folkman number f(2,3,4), Experiment. Math. 17 (2008), no. 1, 63-67. https://doi.org/10.1080/10586458.2008.10129023
[6] P. Erdős and A. Hajnal, Research problem 2-5, J. Combin. Theory 2 (1967), 104.
[7] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions, in Infinite and Finite Sets, (A. Hajnal et al., eds), North-Holland, Amsterdam, 609-627, 1975.
[8] P. Erdős and J. Spencer, Lopsided Lovász Local lemma and Latin transversals, Discrete Appl. Math. 30 (1991), no. 2-3, 151-154. https://doi.org/10.1016/0166-218x(91)90040-4
[9] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970), no. 1, 19-24. https://doi.org/10.1137/0118004
[10] P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without K_{4}, Graphs Combin. 2 (1986), no. 1, 135-144. https://doi.org/10.1007/bf01788087
[11] R. L. Graham, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combinatorial Theory 4 (1968), no. 3, 300. https://doi.org/10.1016/s0021-9800(68)80009-2
[12] A. R. Lange, S. P. Radziszowski and X. Xu, Use of MAX-CUT for Ramsey arrowing of triangles, J. Combin. Math. Combin. Comput. 88 (2014), 61-71.
[13] S. Lin, On Ramsey numbers and K_{r}-coloring of graphs, J. Combinatorial Theory Ser. B 12 (1972), no. 1, 82-92. https://doi.org/10.1016/0095-8956(72)90034-2
[14] Q. Lin and Y. Li, Ramsey numbers of K_{3} and $K_{n, n}$, Appl. Math. Lett. 25 (2012), no. 3, 380-384. https://dx.doi.org/10.1016/j.aml.2011.09.018
[15] _ , A Folkman linear family, SIAM J. Discrete Math. 29 (2015), no. 4, 19881998. https://doi.org/10.1137/130947647
[16] L. Lu, Explicit construction of small Folkman graphs, SIAM J. Discrete Math. (2008), no. 4, 1053-1060.https://doi.org/10.1137/070686743
[17] L. Lu and L. Székely, Using Lovász local lemma in the space of random injections, Electron. J. Combin. 14 (2007), no. 1, 63.
[18] J. Nešetřil and V. Rödl, The Ramsey property for graphs with forbidden complete subgraphs, J. Combinatorial Theory Ser. B 20 (1976), no. 3, 243-249.
https://doi.org/10.1016/0095-8956(76)90015-0
[19] K. Piwakowski, S. P. Radziszowski and S. Urbański, Computation of the Folkman number $F_{e}(3,3 ; 5)$, J. Graph Theory 32 (1999), no. 1, 41-49.
https://doi.org/10.1002/(sici)1097-0118(199909)32:1<41::aid-jgt4>3.3.co;2-g
[20] J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20 (1977), no. 1, 69-76. https://doi.org/10.1016/0012-365x(77)90044-9
[21] , Three hundred million points suffice, J. Combin. Theory Ser. A 49 (1988), no. 2, 210-217. https://doi.org/10.1016/0097-3165(88)90052-0

Yusheng Li
Department of Mathematics, Tongji University, Shanghai 200092, China
E-mail address: li_yusheng@tongji.edu.cn

Qizhong Lin
Center for Discrete Mathematics, Fuzhou University, Fuzhou 350108, China
E-mail address: linqizhong@fzu.edu.cn

