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On the Solution Existence of Convex Quadratic Programming Problems in

Hilbert Spaces

Vu Van Dong* and Nguyen Nang Tam

Abstract. We provide solution existence results for the convex quadratic programming

problems in Hilbert spaces, which the constraint set is defined by finitely many convex

quadratic inequalities. In order to obtain our results, we shall use either the properties

of the Legendre form or the properties of the finite-rank operator. The existence

results are established without requesting neither coercivity of the objective function

nor compactness of the constraint set.

1. Introduction

Solution existence for convex quadratic programming problems (convex QP problems for

brevity) is an interesting question in optimization theory. This question in both the

finite-dimensional and infinite-dimensional setting has been studied extensively by several

authors. For example, B. G. Belousov [3,4], Z. Q. Lou [15], A. Auslender [2], Z. Dostál [8],

G. M. Lee et al. [13], D. S. Kim et al. [11], J. Semple [17], I. E. Schochetman et al. [16],

J. F. Bonnans [5] and K. C. Sivakumar et al. [19].

It is some well-known conditions which guarantee the solution existence of convex QP

problems. For example, if constraint set of the convex QP problem is nonempty and

bounded, objective function is weakly lower semicontinuous and bounded from below on

constraint set, then the existence of a solution follows by the compactness argument [12,

Theorem 7.3.4]. The coercivity of objective function is also one of the most useful assump-

tions which guarantee that there is a solution to convex QP problem [18, Theorem 6.2.4].

However, it is to see that a solution of convex QP problem may exist in more general cases

(see, for example, [3, 4, 15]).

The purpose of this paper is to extend the results of [3, 11, 15] on solution existence

for convex QP problems in Euclidean spaces to Hilbert spaces. By using either the Leg-

endre property of quadratic forms or the finite rank property of operators corresponding
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to quadratic forms, we give existence results of the solution for the problems without re-

questing neither coercivity of the objective function nor compactness of the constraint set.

The approach that we have taken here is quite similar to the finite-dimensional setting

which can be found in [3,11,15]. As concerning with the Hilbert space setting, our results

are completely new.

The idea of using the Legendre property of the quadratic form in objective function

in proving solution existence of quadratic programming problems with linear constraints

in Hilbert space is due to Bonnans and Shapiro in [5, Theorem 3.128]. We would like to

stress that the notion of the Legendre form, which has origin in the Calculus of Variations,

is crucial for the just cited solution existence theorem in [5]. In Section 3, we construct

an example to show that the conclusion of that theorem fails if the assumption on the

Legendre property of the quadratic form is omitted.

The remainder of the paper is structured as follows. In Section 2, we recall some nota-

tions and results that will be useful in the sequel. In Section 3, we establish the existence

of solutions for convex quadratic programming problems in Hilbert spaces. Finally, in

Section 4, we summarize the paper and give an open question.

2. Preliminaries

In this section we recall some basic definitions and facts that are used in the sequel

(see [5, 6, 9, 10] for more details).

Let H be a real Hilbert space with inner product 〈· , ·〉 and the induced norm ‖·‖. A

sequence
{
xk
}

in H is said to converge weakly to x0, the notation xk ⇀ x, if
〈
a, xk

〉
→

〈a, x0〉 for each a in H. A sequence
{
xk
}

in H is said to converge strongly to x0, the

notation xk → x, if
∥∥xk − x0∥∥→ 0.

In this paper, we will only consider the continuous quadratic forms in the following

form

Q(x) = 〈x, Tx〉 ,

where T : H → H is a continuous linear self-adjoint operator.

Definition 2.1. (See, for instance, [9]) A quadratic form Q(x) is said to be

(i) nonnegative if Q(x) ≥ 0 for all x ∈ H;

(ii) positive if Q(x) > 0 for all x ∈ H \ {0}.

The operator T : H → H is said to be positive semidefinite (positive definite) if the

quadratic form Q(x) = 〈x, Tx〉 is nonnegative (positive, respectively).

The following properties will be useful in the sequel.
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Proposition 2.2. (See, e.g., [5, Proposition 3.71]) A quadratic form Q(·) on a Hilbert

space H is convex on H if and only if it is nonnegative.

Proposition 2.3. (See, e.g., [10, Proposition 3, p. 269]) A nonnegative continuous quadra-

tic form on a Hilbert space is weakly lower semicontinuous.

Definition 2.4. (See, for instance, [9, p. 551]) A quadratic form Q(x) on the Hilbert

space H is said to be a Legendre form if

(i) it is weakly lower semicontinuous, and

(ii) xk → x0 whenever xk ⇀ x0 and Q(xk)→ Q(x0).

It is clear that in the case where H is of finite dimension, any quadratic form Q(x) on

H is a Legendre form.

Example 2.5. Let `2 denote the Hilbert space of all square summable real sequences.

Define T : `2 → `2 by Tx = (0, x2, x3, . . . , xn, . . .), where x = (x1, x2, x3, . . . , xn, . . .) ∈ `2.
Since 〈x, Tx〉 ≥ 0, 〈x, Tx〉 is convex. It is clear that 〈x, Tx〉 = ‖x‖2−x21 ≥ 0 for all x ∈ `2.
By [5, Proposition 3.79], 〈x, Tx〉 is a Legendre form.

Example 2.6. Let L2[0, 1] denote the real Hilbert space of all square integrable functions

on [0, 1]. Let T : L2[0, 1]→ L2[0, 1] be defined by

Tx(t) = tx(t).

It is easy to check that T is a continuous linear self-adjoint and positive semidefinite on

L2[0, 1]. The quadratic form associated with T given by 〈x, Tx〉 =
∫ 1
0 tx

2(t) dt is not a

Legendre form (see [7, Example 2.2]).

Let us recall the definition of the finite-rank operator.

Definition 2.7. (See, [6, p. 182]) An operator T : H → H is called a finite-rank operator

if its range is of finite dimension.

Recall that an operator T on a Hilbert space H is called a compact operator if, for

every bounded sequence {xn} inH, the sequence {Txn} contains a convergent subsequence

(see, [6, p. 180]).

Remark 2.8. Any bounded, finite-rank operator T on H is a compact operator with closed

range [6, p. 182], and any compact operator with closed range is a finite-rank operator [1,

p. 215].
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It is easy to see that in the infinite-dimensional Hilbert spaces, the quadratic form

〈x, Ix〉 is a Legendre form while the identity operator I is not compact, the quadratic

form 〈x, 0x〉 is not a Legendre form while the zero operator 0 is compact.

Throughout this paper, we consider the convex QP problems of the form

(CQP)
min f(x) :=

1

2
〈x, Tx〉+ 〈c, x〉

s.t. x ∈ H : gi(x) :=
1

2
〈x, Tix〉+ 〈ci, x〉+ αi ≤ 0, i = 1, 2, . . . ,m,

where T, Ti : H → H are positive semidefinite, continuous and linear self-adjoint, and

c, ci ∈ H, αi ∈ R, i = 1, 2, . . . ,m.

If for each i = 1, 2, . . . ,m, Ti is a zero operator, then we say that (CQP) is a convex

quadratic programming problem under linear constraints and denote it by (QPL). If T ,

Ti are zero operators for all i = 1, 2, . . . ,m, then (CQP) becomes a linear programming

problem and denoted by (LP).

It follows from Propositions 2.2 and 2.3 that f(x), gi(x), (i = 1, 2, . . . ,m) convex and

weakly lower semicontinuous.

Let

(C) F =

{
x ∈ H

∣∣∣ gi(x) =
1

2
〈x, Tix〉+ 〈ci, x〉+ αi ≤ 0 for all i = 1, 2, . . . ,m

}
denote the constraint set of (CQP).

Since gi, i = 1, 2, . . . ,m, are continuous and convex, F is closed and convex. Hence, the

constraint set F of (CQP) is convex and weakly closed (see, for instance, [5, Theorem 2.23,

p. 24]).

The recession cone of a nonempty closed convex set X ⊂ H plays an important role

in our results. Let X ⊂ H. The recession cone of X is defined (see [5, p. 33]) by

0+X = {v ∈ H | ∃x ∈ X with x+ tv ∈ X ∀ t ≥ 0}.
The recession of the constraint set of (CQP) can be described explicitly as follows.

Lemma 2.9. If F is nonempty, then

(2.1) 0+F = {v ∈ H | Tiv = 0, 〈ci, v〉 ≤ 0,∀ i = 1, 2, . . . ,m} .

Proof. This proof is similar to the proof of Lemma 1.1 in [11].

Remark 2.10. Suppose that xk ∈ F \ {0} for all k,
∥∥xk∥∥ → ∞ as k → ∞ and

∥∥xk∥∥−1 xk
weakly converges to v. Then, v ∈ 0+F (see, [7, Lemma 3.3]).
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3. Optimal solution existence

In this section, we provide existence solution results for (CQP). To prove our main results

we need the following lemma.

Lemma 3.1. Let f(x) = 1
2 〈x, Tx〉 + 〈c, x〉, where T : H → H is a positive semidefinite

continuous linear self-adjoint operator, and c ∈ H. Suppose that f is bounded from below

over H and one of the following conditions holds:

(i) 〈x, Tx〉 is a Legendre form,

(ii) T is a finite-rank operator.

Then, there exists x ∈ H such that f(x) ≤ f(x) for all x ∈ H.

Proof. Let f∗ = inf {f(x) | x ∈ H} > −∞. For each k, consider the set Sk = {x ∈ H |
f(x) ≤ f∗ + 1

k}. By assumption that f∗ > −∞, there exists xk ∈ H such that

(3.1) f(xk) =
1

2

〈
xk, Txk

〉
+
〈
c, xk

〉
≤ f∗ +

1

k
.

Thus Sk is nonempty. Since f is convex and continuous, each set Sk is convex and closed.

Hence, Sk admits the least norm element (see, for instance, [14, Theorem 1, p. 69]).

Without loss of generality, we can assume that xk in (3.1) is the least norm element in Sk.

Consider the sequence
{
xk
}

. We shall prove that
{
xk
}

is bounded. On the contrary,

suppose that
{
xk
}

is unbounded. Without loss of generality we may assume that
∥∥xk∥∥→

∞ as k → ∞,
∥∥xk∥∥ 6= 0 for all k. Put vk := xk/

∥∥xk∥∥, one has
∥∥vk∥∥ = 1. Then, there

exists a subsequence of
{
vk
}

which converges weakly to v. Without loss of generality we

can assume that vk ⇀ v as k →∞.

We will show that

(3.2) Tv = 0, 〈c, v〉 = 0.

Since T is positive semidefinite, by Proposition 2.3, 〈x, Tx〉 is weakly lower semicon-

tinuous. Dividing both sides of inequality in (3.1) by
∥∥xk∥∥2, letting k →∞, we have

0 ≤ 1

2
〈v, Tv〉 ≤ 1

2
lim inf
k→∞

〈
vk, T vk

〉
≤ 1

2
lim sup
k→∞

〈
vk, T vk

〉
≤ 0.

It follows that

(3.3) 〈v, Tv〉 = lim
k→∞

〈
vk, T vk

〉
= 0.

Since T is positive semidefinite, from the above we can deduce

(3.4) Tv = 0.
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By positive semidefiniteness of T , from (3.1) it follows that

(3.5)
〈
c, xk

〉
≤ f∗ +

1

k
.

Dividing both sides of inequality in (3.5) by
∥∥xk∥∥, letting k →∞ we obtain

〈c, v〉 ≤ 0.

We now show that 〈c, v〉 = 0. Indeed, suppose that 〈c, v〉 < 0. For fixed k and for all

t > 0, we have xk + tv ∈ H and

f(xk + tv) = f(xk) +
t2

2
〈v, Tv〉+ t

〈
Txk + c, v

〉
= f(xk) + t 〈c, v〉 → −∞ as t→ +∞.

This contradicts the fact that f is bounded from below over H. Thus, we have

(3.6) 〈c, v〉 = 0.

Combining (3.4) with (3.6) we obtain (3.2).

Consider the case where 〈x, Tx〉 is a Legendre form. Since 〈x, Tx〉 is a Legendre form

and vk ⇀ v as k → ∞, by (3.3), vk converges to v. Hence we have v 6= 0 and ‖v‖ = 1.

Let yk(t) := xk − tv, t ∈ R, by (3.2), we have

f(yk(t)) = f(xk − tv)

=
1

2

〈
xk, Txk

〉
+
〈
c, xk

〉
+
t2

2
〈v, Tv〉 − t

〈
xk, T v

〉
− t 〈c, v〉

= f(xk) ≤ f∗ +
1

k
.

This shows that yk(t) ∈ Sk for any real number t. On the other hand, we have

(3.7)
∥∥∥yk(t)

∥∥∥2 =
∥∥∥xk − tv∥∥∥2 =

∥∥∥xk∥∥∥2 − t(2
〈
xk, v

〉
+ t ‖v‖2

)
.

Since 〈v, v〉 = 1 and
〈
xk/
∥∥xk∥∥ , v〉→ 〈v, v〉, there exists k1 such that〈

xk, v
〉
> 0 ∀ k ≥ k1.

Therefore, for k ≥ k1, by (3.7) there exists γ > 0 such that

(3.8)
∥∥∥xk − tv∥∥∥2 < ∥∥∥xk∥∥∥2 ∀ t ∈ (0, γ).

From (3.8) it follows that
∥∥xk − tv∥∥ < ∥∥xk∥∥. This contradicts the fact that xk is the least

norm element in Sk. Thus
{
xk
}

is bounded.
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Consider the case where T is a finite-rank operator. Let L = H⊕R, where ⊕ denotes

the direct sum of Hilbert spaces, and let 〈· , ·〉L and ‖·‖L stand for the scalar product and

the norm on L, respectively. Let A : H → H ⊕ R be defined by Ax = (Tx, 〈c, x〉). Since

T is a finite-rank operator, it is compact with closed range (see Remark 2.8). Hence A is

compact with closed range. For each k, consider the linear system

(3.9) Ax = Axk.

Since A is compact with closed range, there exist the continuous pseudoinverse A+ of

A and a solution xk to (3.9) such that xk = A+Axk (see, for instance, [14, p. 163]).

Therefore, there exists ρ > 0, depending only on A, such that
∥∥xk∥∥ ≤ ρ

(∥∥Axk∥∥L). This

gives
∥∥xk∥∥ ≤ ρ (∥∥Txk∥∥+

∣∣〈c, xk〉∣∣). Since Axk = Axk, we can check that

f(xk) = f(xk) ≤ f∗ +
1

k
.

Since xk is the least norm element in Sk, we have∥∥∥xk∥∥∥ ≤ ∥∥∥xk∥∥∥ ≤ ρ(∥∥∥Qxk∥∥∥+
∣∣∣〈c, xk〉∣∣∣) ∀ k.

Dividing both sides of this inequality by
∥∥xk∥∥, letting k →∞ and by the compactness of

T , one has

1 ≤ ρ (‖Tv‖+ |〈c, v〉|) .

This contradicts the fact that Tv = 0 and 〈c, v〉 = 0. Thus we have shown that
{
xk
}

is

bounded.

The sequence
{
xk
}

is bounded and hence it has a weakly convergent subsequence.

Without loss of generality, we may assume that xk ⇀ x as k → ∞. Since T is positive

semidefinite, 〈x, Tx〉 is weakly lower semicontinuous. Hence, one has

1

2
〈x, Tx〉 ≤ lim inf

k→∞

1

2

〈
xk, Txk

〉
.

Therefore, by (3.1),

f(x) =
1

2
〈x, Tx〉+ 〈c, x〉 ≤ lim inf

k→∞

(
1

2

〈
xk, Txk

〉
+
〈
c, xk

〉)
≤ lim inf

k→∞

(
f∗ +

1

k

)
= f∗.

It follows that there exists x ∈ H such that f(x) ≤ f(x) for all x ∈ H.

We will now prove the existence results of (CQP) by using the Legendre property of

quadratic forms. In the following theorem we extend the result in [3,15] to Hilbert spaces.
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Theorem 3.2 (Frank-Wolfe-type Theorem 1). Consider convex quadratic programming

problem (CQP). Assume that 〈x, Tx〉 is a Legendre form and objective function f is

bounded from below over nonempty set F . Then, (CQP) has a solution.

Proof. Let f∗ = inf {f(x) | x ∈ F} > −∞. For each k, consider the set Sk = {x ∈ F |
f(x) ≤ f∗ + 1

k}. By assumption that f∗ > −∞, there exists xk ∈ H such that

f(xk) =
1

2

〈
xk, Txk

〉
+
〈
c, xk

〉
≤ f∗ +

1

k
,(3.10)

gi(x
k) =

1

2

〈
xk, Tix

k
〉

+
〈
ci, x

k
〉

+ αi ≤ 0, i = 1, 2, . . . ,m.(3.11)

Thus Sk is nonempty. Since f , gi are convex and continuous, each set Sk is convex and

closed. Hence, Sk admits the least norm element (see, for instance, [14, Theorem 1, p. 69]).

Without loss of generality, we can assume that xk in (3.10) and (3.11) is the least norm

element in Sk.

Let us consider the sequence
{
xk
}

. If
{
xk
}

is bounded, then it has a weakly convergent

subsequence. Without loss of generality, we may assume that xk ⇀ x as k → ∞. From

(3.11), it follows that xk ∈ F . By the weakly closedness of F , we have x ∈ F . Since

〈x, Tx〉 is a Legendre form, it is weakly lower semicontinuous. Consequently,

1

2
〈x, Tx〉 ≤ lim inf

k→∞

1

2

〈
xk, Txk

〉
.

From this, by (3.10),

f(x) =
1

2
〈x, Tx〉+ 〈c, x〉 ≤ lim inf

k→∞

(
1

2

〈
xk, Txk

〉
+
〈
c, xk

〉)
≤ lim inf

k→∞

(
f∗ +

1

k

)
= f∗.

Thus, x is a solution of (CQP).

Consider the case where
{
xk
}

is unbounded. Without loss of generality we may assume

that
∥∥xk∥∥ → ∞ as k → ∞,

∥∥xk∥∥ 6= 0 for all k. Put vk := xk/
∥∥xk∥∥, one has

∥∥vk∥∥ = 1.

Since
∥∥vk∥∥ is bounded, it has a weakly convergent subsequence. Without loss of generality

we can assume that vk ⇀ v as k →∞. By Remark 2.10, we have v ∈ 0+F . By repeating

similar arguments as in the proof of Lemma 3.1 we can deduce

(3.12) v 6= 0 and Tv = 0, 〈c, v〉 = 0.

We now consider three distinguish subcases:

Subcase 1: 〈ci, v〉 = 0 for all i = 1, 2, . . . ,m. Then,

Tv = 0, 〈c, v〉 = 0, Tiv = 0, ∀ i = 1, 2, . . . ,m.
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Let yk(t) := xk − tv, t > 0. It is easy to check that yk(t) := xk − tv ∈ F for all t > 0.

Since Tv = 0, 〈c, v〉 = 0, we have

f(yk(t)) = f(xk − tv)

=
1

2

〈
xk, Txk

〉
+
〈
c, xk

〉
+
t2

2
〈v, Tv〉 − t

〈
xk, T v

〉
− t 〈c, v〉

= f(xk) ≤ f∗ +
1

k
.

Thus, yk(t) ∈ Sk for all t > 0. On the other hand, we have

(3.13)
∥∥∥yk(t)

∥∥∥2 =
∥∥∥xk − tv∥∥∥2 =

∥∥∥xk∥∥∥2 − t(2
〈
xk, v

〉
+ t ‖v‖2

)
.

Since 〈v, v〉 = 1 and
〈
xk/
∥∥xk∥∥ , v〉→ 〈v, v〉, there exists k1 such that〈

xk, v
〉
> 0 ∀ k ≥ k1.

Therefore, for k ≥ k1, by (3.13) there exists γ > 0 such that

(3.14)
∥∥∥xk − tv∥∥∥2 < ∥∥∥xk∥∥∥2 ∀ t ∈ (0, γ).

From (3.14) it follows that
∥∥xk − tv∥∥ < ∥∥xk∥∥. This contradicts the fact that xk is the

least norm element in Sk, implying that Subcase 1 can never occur.

Subcase 2: 〈ci, v〉 < 0 for all i = 1, 2, . . . ,m.

Consider quadratic programming problem

min

{
f(x) :=

1

2
〈x, Tx〉+ 〈c, x〉

∣∣∣ x ∈ H} .
If f(x) is bounded from below over Hilbert space H then, by Lemma 3.1, there exists

x ∈ H such that f(x) ≤ f∗. If f(x) is unbounded from below over Hilbert space H then,

there exists x̂ ∈ H such that f(x̂) ≤ f∗. Hence, in both cases there exists x∗ ∈ H such

that f(x∗) ≤ f∗.
Let t∗ = max {−gi(x∗)/〈ci, v〉 , i = 1, 2, . . . ,m}. It is easy to check that x∗+ tv ∈ F for

all t ≥ t∗. Then, we have

f(x∗ + t∗v) =
1

2
〈x∗, Tx∗〉+ 〈c, x∗〉 ≤ f∗.

This shows that x∗ + t∗v is a solution of problem (CQP).

Subcase 3: There exist i and j such that 〈ci, v〉 = 0 and 〈cj , v〉 < 0. Let I =

{1, 2, . . . ,m}, I1 = {i ∈ I | 〈ci, v〉 = 0} and F1 = {x ∈ H | gi(x) ≤ 0, i ∈ I1}. Consider

the problem

min

{
f(x) :=

1

2
〈x, Tx〉+ 〈c, x〉

∣∣∣ x ∈ F1

}
.
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It is clear that xk in F1 for all k. In view of Subcase 1 above, there exists x∗1 ∈ F1 such

that f(x∗1) ≤ f∗. Put t∗1 = max {−gj(x∗1)/〈cj , v〉 , j ∈ I \ I1}. It is easy to check that

x∗1 + tv ∈ F for all t ≥ max {0, t∗1}. Then, we have

f(x∗1 + t∗v) =
1

2
〈x∗1, Tx∗1〉+ 〈c, x∗1〉 ≤ f∗.

It follows that x∗1 + t∗1v is a solution of (CQP). The proof is complete.

The referee asked for an example or evidences to see that in Hilbert spaces, the bound-

edness of a (CQP) generally does not imply the attainment as in Euclidean space Rn. We

now construct such an example.

Example 3.3. Let `2 denote the Hilbert space of all square summable real sequence,

`2 =
{
x = (x1, x2, . . . , xn, . . .)

∣∣ ∑∞
n=1 x

2
n <∞, xn ∈ R, n = 1, 2, . . .

}
. The scalar product

and the norm in `2 are defined, respectively, by

〈x, y〉 =
∞∑
n=1

xnyn, ‖x‖ =

( ∞∑
n=1

x2n

)1/2

.

For each x = (x1, x2, . . . , xn, . . .) ∈ `2, let us define T : `2 → `2 by

Tx =
(
x1,

x2
22
, . . . ,

xn
nn
, . . .

)
.

It is easily seen that T is a positive semidefinite continuous linear self-adjoint operator

and ‖T‖ = 1.

The quadratic form associated with T given by

Q(x) = 〈x, Tx〉 =

∞∑
n=1

x2n
nn
.

We claim that Q(x) = 〈x, Tx〉 =
∑∞

n=1 x
2
n/n

n is not a Legendre form. Indeed, let
{
ek
}

be a sequence in `2, where ek = (ek1, e
k
2, . . . , e

k
n, . . .) such that ekn = 1 for n = k, and ekn = 0

for n 6= k. It is easy to check that ek converges weakly to 0 in `2 but not strongly. We

also have 〈
ek, T ek

〉
=

1

kk
→ 0 = 〈0, T0〉 as k →∞.

Hence, Q(x) = 〈x, Tx〉 is not a Legendre form.

Since Q(x) = 〈x, Tx〉 =
∑∞

n=1 x
2
n/n

n ≥ 0 for all x ∈ `2, by Propositions 2.2 and 2.3,

〈x, Tx〉 is convex and weakly lower semicontinuous.

We now consider the programming problem (CQP)

(3.15) min f(x) =
1

2
〈x, Tx〉 subject to x ∈ `2 : 〈c1, x〉+ α1 ≤ 0.
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where

〈x, Tx〉 =
∞∑
n=1

x2n
nn
, c1 =

(
−1,−1

2
, . . . ,− 1

n
, . . .

)
∈ `2, α1 = 1.

Let

F =
{
x ∈ `2 | 〈c1, x〉+ α1 ≤ 0

}
=

{
x ∈ `2

∣∣∣ − ∞∑
n=1

xn
n

+ 1 ≤ 0

}
.

The set F is nonempty. Indeed, for any positive integer k, let xk = kek ∈ `2, where ek is

the above mentioned vector. It is easy to check that
〈
c1, x

k
〉

+ 1 = −1 + 1 = 0. Hence

xk ∈ F for all k.

Since 〈x, Tx〉 =
∑∞

n=1 x
2
n/n

n, 〈x, Tx〉 = 0 if and only if x = 0. It is easily seen that

0 /∈ F , we have

(3.16) f(x) =
1

2
〈x, Tx〉 =

1

2

∞∑
n=1

x2n
nn

> 0 for all x ∈ F .

On the other hand,

f(xk) =
1

2

〈
xk, Txk

〉
=

1

2

1

kk−2
→ 0 as k →∞.

This, together with (3.16), shows that the infimum of f over F is 0. Since 0 /∈ F , the

inequality (3.16) shows that the problem (3.15) has no solution.

The above example shows that the conclusion of Theorem 3.2 and the conclusion

Theorem 3.128 in [5] fail if the assumption on the Legendre property of the quadratic

form is omitted.

Remark 3.4. In finite-dimensional setting, the proof of Theorem 3.2 can be found in [4]

and [15]. Belousov and Klatte [4, p. 45] showed that there exists a nonconvex quadratic

program in R3 with two convex quadratic constraints whose objective function is bounded

from below over a nonempty constraint set, which has no solution. Thus, even in the

case of three-dimensional quadratic programs, the positive semidefiniteness of T cannot

be dropped from the assumptions of Theorem 3.2.

In order to apply Theorem 3.2, we have to find out whether the objective function f(x)

of (CQP) is bounded from below over F , or not. This is a rather difficult task. In the

following theorem we extend the result in [11] to Hilbert spaces which gives a necessary

condition and sufficient conditions for existence solution of (CQP).

Theorem 3.5 (Eaves-type Theorem). Consider problem (CQP) where F is nonempty

and 〈x, Tx〉 is a Legendre form. The following statements are valid:

(a) If (CQP) has a solution, then

(3.17) (v ∈ 0+F, Tv = 0) ⇒ 〈c, v〉 ≥ 0.
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(b) Problem (CQP) has a solution if one of the following conditions holds:

c = 0,(3.18) (
v ∈ (0+F ) \ {0} , T v = 0

)
⇒ 〈c, v〉 > 0,(3.19) (

v ∈ (0+F ), T v = 0
)
⇒ (〈c, v〉 ≥ 0, 〈ci, v〉 = 0,∀ i ∈ I1) ,(3.20)

where I = {1, 2, . . . ,m} and I1 = {i ∈ I | Ti 6= 0}.

Proof. (a) Suppose that (CQP) has a solution x. To obtain (3.17), let v ∈ 0+F be such

that Tv = 0. Since x+ v ∈ F and Tv = 0, we have

0 ≤ f(x+ v)− f(x)

=

[
1

2
〈x+ v, T (x+ v)〉+ 〈c, x+ v〉

]
−
[

1

2
〈x, Tx〉+ 〈c, v〉

]
= 〈c, v〉 .

We have thus proved that 〈c, v〉 ≥ 0 for any v ∈ 0+F satisfying Tv = 0.

(b) Suppose that c = 0. To prove that (CQP) has a solution, by Theorem 3.2, it

suffices to verify that f is bounded from below over F . Since 〈x, Tx〉 ≥ 0 for every x ∈ H,

we get

f(x) =
1

2
〈x, Tx〉+ 〈c, x〉 ≥ 0 ∀x ∈ H,

which shows that f admits 0 as a lower bound over F .

Next, suppose that (3.19) holds. We shall prove that f is coercive on F . On the

contrary, suppose that f is noncoercive on F . Then, one can find some a ∈ R and a

sequence
{
xk
}
⊂ F with

∥∥xk∥∥→∞ as k →∞ and

(3.21) f(xk) =
1

2

〈
xk, Txk

〉
+
〈
c, xk

〉
≤ a ∀ k.

We may assume that
∥∥xk∥∥ 6= 0 for all k, vk :=

∥∥xk∥∥−1 xk ⇀ v. By Remark 2.10, we have

v ∈ 0+F .

Multiplying the inequality 1
2

〈
xk, Txk

〉
+
〈
c, xk

〉
≤ a in (3.21) by

∥∥xk∥∥−2 and passing

to the limit as k →∞, we obtain

(3.22) 〈v, Tv〉 ≤ lim inf
k→∞

〈
vk, T vk

〉
≤ lim sup

k→∞

〈
vk, T vk

〉
≤ 0.

Combining this with positive semidefiniteness of T , we can deduce that

lim
k→∞

〈
vk, T vk

〉
= 〈v, Tv〉 = 0,(3.23)

Tv = 0.(3.24)
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Since 〈x, Tx〉 is a Legendre form and vk ⇀ v as k → ∞, by (3.23), vk converges to v.

Hence, we have v 6= 0.

As
〈
xk, Txk

〉
≥ 0, from (3.21) it follows that

(3.25)
〈
c, xk

〉
≤ a.

Multiplying the inequality
〈
c, xk

〉
≤ a by

∥∥xk∥∥−1 and letting k →∞, we get

(3.26) 〈c, v〉 ≤ 0.

This contradicts (3.19). Thus, f is coercive on F . By [18, Theorem 6.2.4], (CQP) has a

solution.

Finally, suppose that (3.20) holds. Then, all the assumptions of Theorem 3.3 in [7]

hold. By [7, Theorem 3.3], (CQP) has a solution. This completes the proof.

It is worthy stressing that condition (3.17) is necessary but not sufficient for the solution

existence of (CQP). We now construct such an example.

Example 3.6. Let H = `2, Tx = (0, 0, x3, . . . , xn, . . .), T1x = (0, x2, 0, 0, . . .) for x =

(x1, x2, x3, . . . , xn, . . .) ∈ `2, and let c = (0,−1, 0, 0, . . .), c1 = (1, 0, 0, . . .) ∈ `2, α1 = −1.

Then, (CQP) becomes

(3.27) min f(x) =
1

2
(0x21 + 0x22 + x23 + x24 + · · · )− x2 subject to x ∈ F ,

where F =
{
x = (x1, x2, . . .) ∈ `2 | 12x

2
2 + x1 − 1 ≤ 0

}
.

Since 〈x, Tx〉 ≥ 0 for all x ∈ F , f(x) is convex. It is easy to check that 〈x, Tx〉 =

‖x‖2−(x21+x22), and so the quadratic form 〈x, Tx〉 is the sum of an elliptic quadratic form

and a quadratic form of finite rank. From [5, Proposition 3.79] it follows that 〈x, Tx〉 is a

Legendre form. By (2.1), we have

0+F = {v ∈ F | T1v = 0, 〈c1, v〉 ≤ 0} =
{

(v1, 0, v3, v4, . . .) ∈ `2 | v1 ≤ 0
}
.

Note that if v = (v1, 0, v3, v4, . . .) ∈ 0+F and Tv = 0 then, 〈c, v〉 = −v2 = 0. Thus

condition (3.17) is satisfied. Since xk := (−1
2k

2, k, 0, . . .) ∈ F for each integer k ≥ 1

and f(xk) = −k, we infer that f is unbounded from below over F. Hence, (3.27) has no

solution.

Remark 3.7. Note that if either Ti = 0 for all i = 1, 2, . . . ,m or ci = 0 for all i ∈ I1, then

(3.17) is a necessary and sufficient condition for the solution existence of (CQP), provided

that F 6= ∅.

The following example shows that each of the conditions (3.18), (3.19), (3.20) is suffi-

cient but not necessary for the solution existence of (CQP).
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Example 3.8. Consider the programming problem

(3.28)
min f(x) =

1

2
〈x, Tx〉+ 〈c, x〉 ,

s.t. x = (x1, x2, . . .) ∈ `2 :
1

2
〈x, Tix〉+ 〈ci, x〉+ αi ≤ 0, i = 1, 2.

where Tx = (0, x2, x3, x4, . . .), c = (0, 1, 0, 0, . . .), T1x = (0, x2, x3, . . .), c1 = (0, 0, 0, . . .),

α1 = 0, T2x = (0, 0, x3, 0, 0, . . .), c2 = (1, 0, 0, . . .), α2 = 0.

Since 〈x, Tx〉 =
∑∞

n=1 x
2
n ≥ 0 for all x ∈ `2, 〈x, Tx〉 is convex.

It is easy to check that 〈x, Tx〉 = ‖x‖2−x21, and so the quadratic form 〈x, Tx〉 is the sum

of an elliptic quadratic form and a quadratic form of finite rank. By [5, Proposition 3.79],

〈x, Tx〉 is a Legendre form. From Lemma 2.9 it follows that

0+F = F =
{
v = (v1, 0, 0, . . .) ∈ `2 | v1 ≤ 0

}
,{

v ∈ 0+F | Tv = 0
}

=
{
v = (v1, 0, 0, . . .) ∈ `2 | v1 ≤ 0

}
.

Since f(x) = 0 on F , the solution set of (3.28) coincides with F .

We see that problem (3.28) has a solution while c = (0, 1, 0, 0, . . .) 6= 0, 〈c, v〉 = 0 and

〈c2, v〉 6= 0, where v := (−1, 0, . . . , 0, . . .). Thus, one of the conditions (3.18), (3.19), (3.20)

is sufficient but not necessary for the solution existence of (CQP).

In the remainder of this section we provide an existence result of the solution for

(CQP) under the assumption that all the operators corresponding to quadratic forms

are finite-rank operators. Note that this assumption is very restrictive but by using this

assumption we can investigate the solution existence for a class of (CQP) problems, where

the quadratic form in the objective function is not a Legendre form. The next statement

may be seen as a complement to Theorem 3.2.

Theorem 3.9 (Frank-Wolfe type Theorem 2). Consider the problem (CQP), where T

and Ti (i = 1, 2, . . . ,m) are positive semidefinite and finite-rank operators. Assume that

the objective function f is bounded from below over the nonempty F . Then, (CQP) has a

solution.

Proof. We shall prove this theorem by induction on the number m of quadratic functions

that define the constraint set F in (CQP).

For m = 1: For each k, consider the set Sk =
{
x ∈ F | f(x) ≤ f∗ + 1

k

}
. Since f∗ >

−∞, there exists
{
xk
}
⊂ H such that

f(xk) =
1

2

〈
xk, Txk

〉
+
〈
c, xk

〉
≤ f∗ +

1

k
,

g1(x
k) =

1

2

〈
xk, T1x

k
〉

+
〈
c1, x

k
〉

+ α1 ≤ 0.

(3.29)
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Suppose that xk is the least norm element in Sk. If
{
xk
}

is bounded then
{
xk
}

has a weakly

convergent subsequence. Without loss of generality, we may assume that xk converges

weakly to x. As T and T1 are finite-rank operators, they are compact. By [10, Theorem 1,

p. 261], f(x) and g1(x) are weakly continuous. Hence, taking the limits in (3.29) as xk ⇀ x

we see that x is a solution of (CQP).

Consider the case where
{
xk
}

is unbounded. Put vk := xk/
∥∥xk∥∥, one has

∥∥vk∥∥ = 1.

Without loss of generality, we may assume that vk := xk/
∥∥xk∥∥ ⇀ v as k → ∞. Since

T and T1 are positive semidefinite, by an argument analogous to those in the proof of

Theorem 3.2 we can deduce

Tv = 0, 〈c, v〉 = 0, T1v = 0, 〈c1, v〉 ≤ 0.

We now claim that 〈c1, v〉 < 0. Suppose, contrary to our claim, that 〈c1, v〉 = 0. Then,

Tv = 0, 〈c, v〉 = 0, T1v = 0, 〈c1, v〉 = 0.

Let L1 = H⊕H⊕R2, where ⊕ denotes the direct sum of Hilbert spaces, and let 〈· , ·〉L
and ‖·‖L stand for the scalar product and the norm on L, respectively.

Let A : H → L1 be defined by

Ax = (Tx, T1x, 〈c, x〉 , 〈c1, x〉).

Since T and T1 are finite-rank operators, so is A. For each k, consider the linear system

(3.30) Ax = Axk.

Since A is a finite-rank operator, A is a compact operator with closed range (see Re-

mark 2.8). Hence, there exist the continuous pseudoinverse A+ of A and a solution xk

to (3.30) such that xk = A+Axk (see, for instance, [14, p. 163]). Therefore, there exists

ρ > 0, depending on A, such that ∥∥∥xk∥∥∥ ≤ ρ(∥∥∥Axk∥∥∥
L

)
.

This gives ∥∥∥xk∥∥∥ ≤ ρ(∥∥∥Txk∥∥∥+
∥∥∥T1xk∥∥∥+

∣∣∣〈c, xk〉∣∣∣+
∣∣∣〈c1, xk〉∣∣∣) .

By (3.30), Axk = Axk, we can check that

f(xk) = f(xk) ≤ f∗ +
1

k
.

Since xk is the least norm element in Sk, we have∥∥∥xk∥∥∥ ≤ ∥∥∥xk∥∥∥ ≤ ρ(∥∥∥Txk∥∥∥+
∥∥∥T1xk∥∥∥+

∣∣∣〈c, xk〉∣∣∣+
∣∣∣〈c1, xk〉∣∣∣) ∀ k.
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By assumption that T and T1 are finite-rank operators, T and T1 are compact with closed

range (see Remark 2.8). Dividing both sides this inequality by
∥∥xk∥∥, letting k → ∞ and

by the compactness of T and T1, one has

1 ≤ ρ (‖Tv‖+ ‖T1v‖+ |〈c, v〉|+ |〈c1, v〉|) .

This contradicts the fact that Tv = 0, 〈c, v〉 = 0, T1v = 0, 〈c1, v〉 = 0. Thus 〈c1, v〉 < 0.

The claim is proved.

Consider quadratic programming problem

min

{
f(x) :=

1

2
〈x, Tx〉+ 〈c, x〉

∣∣∣ x ∈ H} .
If f(x) is bounded from below over Hilbert space H then, by Lemma 3.1, there exists

x ∈ H such that f(x) ≤ f∗. If f(x) is unbounded from below over H then, it is clear that

there exists x̂ ∈ H such that f(x̂) ≤ f∗. Hence, in both cases there exists x∗ ∈ H such

that f(x∗) ≤ f∗.
By 〈c1, v〉 < 0, we can check that x∗+ tv ∈ F for all t > 0 large enough. Choose t∗ > 0

so that x∗ + t∗v ∈ F and, by (3.29), we have

f(x∗ + t∗v) =
1

2
〈x∗, Tx∗〉+ 〈c, x∗〉 ≤ f∗.

This shows that x∗ + t∗v is a solution of problem (CQP). This completes the proof for

the case m = 1.

Suppose that the assertion is shown for all constraint sets F defined by m−1 quadratic

functions, and let now F defined by m quadratic functions. Let f∗ = inf {f(x) | x ∈ F} >
−∞. We define Sk =

{
x ∈ F | f(x) ≤ f∗ + 1

k

}
. Since f∗ > −∞, Sk is nonempty, convex

and closed. Hence Sk admits the least norm element (see, for instance, [14, Theorem 1,

p. 69]). Let xk be the least norm element in Sk, we have

f(xk) =
1

2

〈
xk, Txk

〉
+
〈
c, xk

〉
≤ f∗ +

1

k
,

gi(x
k) =

1

2

〈
xk, Tix

k
〉

+
〈
ci, x

k
〉

+ αi ≤ 0, i = 1, 2, . . . ,m.

If
{
xk
}

is bounded then
{
xk
}

has a weakly convergent subsequence. Without loss of

generality, we may assume that xk converges weakly to x. Then, it is easy to check that

x is a solution of (CQP).

Consider the case where
{
xk
}

is unbounded. Let vk := xk/
∥∥xk∥∥, one has

∥∥vk∥∥ = 1.

Without loss of generality, we may assume that vk := xk/
∥∥xk∥∥ ⇀ v as k → ∞. Since T

and Ti are positive semidefinite, by similar argument as in the case m = 1, we can deduce

that

Tv = 0, 〈c, v〉 = 0, Tiv = 0, 〈ci, v〉 ≤ 0, i = 1, 2, . . . ,m,
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and there exists j ∈ {1, 2, . . . ,m} such that 〈cj , v〉 < 0. Without loss of generality, we

may assume that 〈cm, v〉 < 0.

Consider the problem

(P1) min

{
f(x) :=

1

2
〈x, Tx〉+ 〈c, x〉

∣∣∣ x ∈ F1

}
where F1 := {x ∈ H : gi(x) ≤ 0, i = 1, 2, . . . ,m− 1}.

For this problem, either f is bounded from below over F1 or not. If f is bounded

from below over F1 then by the assumption of induction, the problem (P1) has a solution.

Hence in both cases, there exists x ∈ F1 such that f(x) ≤ f∗.
Consider the vector x(t) := x+ tv, t ≥ 0. We have, by 〈c, v〉 = 0,

f(x(t)) = f(x) + t 〈c, v〉 = f(x) ≤ f∗, ∀ t > 0.

Since

gm(x(t)) = gm(x) + t 〈cm, v〉 ,

and 〈cm, v〉 < 0, we can choose t∗ > 0 so that x(t∗) ∈ F and f(x(t∗)) ≤ f∗. This proves

that x(t∗) is a solution of (CQP).

The proof is complete.

Remark 3.10. Note in Example 3.3 that T is a compact operator whose range is not

closed, so T is not a finite-rank operator. Therefore, Theorem 3.9 does not hold true if

the assumption that T , Ti are finite-rank operators is replaced by the assumption that T ,

Ti are compact, i = 1, 2, . . . ,m.

In the case where T = 0 and Ti = 0 (i = 1, 2, . . . ,m), we obtain the following solution

existence of the linear programming problem (LP) in Hilbert spaces.

Corollary 3.11. Consider the linear programming problem (LP) (i.e., (CQP), where

T = 0 and Ti = 0 for all i = 1, 2, . . . ,m). Suppose that f(x) is bounded from below over

nonempty F . Then, problem (CQP) has a solution.

Proof. It is easy to see that the zero operator is a finite-rank operator. The assertion is

immediate from Theorem 3.9.

Remark 3.12. If H is of finite dimension then, any continuous operator T on H is a finite-

rank operator and 〈x, Tx〉 is a Legendre form. Therefore, in the finite-dimensional setting

Theorem 3.2 and Theorem 3.9 are identical.
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4. Conclusions

In this paper we consider convex quadratic programming problems in Hilbert spaces and

propose conditions for the solution existence of convex quadratic programming problems

whose constraint set is defined by finitely many convex quadratic inequalities. Our results

extend some previous existence results for convex quadratic programming problems in

finite-dimensional setting.

In connection with Theorem 3.5, Examples 3.6 and 3.8 the following question seems

to be interesting: Is there any verifiable necessary and sufficient condition (stronger than

(3.17), but weaker than (3.20)) for the solution existence of (CQP)?
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