TAIWANESE JOURNAL OF MATHEMATICS Vol. 20, No. 6, pp. 1393-1400, December 2016 DOI: 10.11650/tjm.20.2016.7100 This paper is available online at http://journal.tms.org.tw

Orthogonality Preservers of JB*-triple-valued Functions

Dongyang Chen, Lei Li* and Qing Meng

Abstract. Let X, Y be locally compact Hausdorff spaces, and V, W be JB*-triples such that W is prime. Let $T: C_0(X, V) \to C_0(Y, W)$ be an orthogonality preserving linear operator with dense range. We show that T can be written as a weighted composition operator.

1. Introduction

A complex Banach space V is a JB^* -triple if and only if its open unit ball is a symmetric manifold. This is equivalent to the condition that V admits a continuous triple product

$$\{\cdot, \cdot, \cdot\}: V^3 \to V,$$

which is symmetric and linear in the outer variables, conjugate linear in the middle variable, and satisfies

- (i) $\{a, b, \{c, d, e\}\} = \{\{a, b, c\}, d, e\} \{c, \{b, a, d\}, e\} + \{c, d, \{a, b, e\}\},\$
- (ii) $\|\exp it(a \Box a)\| = 1$ for all $t \in \mathbb{R}$,
- (iii) $a \square a$ has a nonnegative spectrum,

(iv)
$$||a \square a|| = ||a||^2$$
,

for $a, b, c, d, e \in V$. Here, the box operator $a \square b \colon V \to V$ is defined by

$$(a \square b)(\cdot) = \{a, b, \cdot\}.$$

See the monographs of Chu [5] and Upmeier [12] for details.

Received December 7, 2015; Accepted May 19, 2016.

Communicated by Xiang Fang.

2010 Mathematics Subject Classification. Primary: 46B20, 46E15; Secondary: 17C65.

Li is partly supported by the NSF of China (11301285).

*Corresponding author.

Key words and phrases. JB*-triples, Orthogonality preservers, Strictly separating, Weighted composition operators.

Chen's project was supported by the Natural Science Foundation of Fujian Province of China (No. 2015J01026).

A C*-algebra \mathcal{A} is a JB*-triple when it is equipped with the triple product

$$\{a, b, c\} = \frac{1}{2}(ab^*c + cb^*a) \quad (a, b, c \in \mathcal{A}).$$

Other examples of JB*-triples are all Hilbert spaces, the Banach spaces of bounded linear operators between Hilbert spaces, and some exceptional Jordan algebras.

Let V be a JB*-triple, we call two elements a, b in V orthogonal if $a \square b = 0$ (see [8, p. 194]). Note that $a \square b = 0$ if and only if $b \square a = 0$ (see [5, Lemma 1.2.32]). Two elements a, b in a C*-algebra \mathcal{A} are orthogonal exactly when $ab^* = b^*a = 0$ (see [2, p. 221]).

Following Wolff [13] and Wong [14, 15], Burgos, Fernández-Polo, Gacés, Moreno and Peralta [2] studied orthogonality preserving linear operators between C*-algebras, JB*algebras and JB*-triples. Burgos, Garcés and Peralta [4] studied the automatic continuity of biorthogonality linear preservers between JB*-triples, while Tsai [11] and Leung, Tsai and Wong [10] studied the cases of zero product preservers of CCR C*-algebras and W*-algebras, respectively. Roughly speaking, various zero products and orthogonality preservers arise from Jordan or algebra (*-)homomorphisms followed by multipliers.

In this paper, we will study those linear maps T from $C_0(X, V)$ into $C_0(X, W)$ preserving (JB*-triple) orthogonality, that is,

$$f(x) \square g(x) = 0$$
 for all $x \in X \implies (Tf)(y) \square (Tg)(y) = 0$ for all $y \in Y$.

Here, X, Y are locally compact spaces and V, W are JB*-triples. We show that T can be written as a weighted composition operator if T has dense range and W is prime in Theorem 2.1. This supplements results in [9, 11]. We also establish the automatic continuity of such bijective preservers in Theorem 2.3 when V, W are prime von Neumann algebras.

2. Results

Recall that a *triple ideal* of V is a subspace J of V such that $\{a, b, c\} \in J$ whenever one of a, b and c belongs to J. A JB*-triple V is said to be *prime* if $J = \{0\}$ or $K = \{0\}$ whenever J, K are norm closed triple ideals of V with $J \cap K = \{0\}$ (see [1]).

Let X be a locally compact Hausdorff space. Denote by $X_{\infty} = X \cup \{\infty\}$ the one-point compactification of X. In case X is already compact, ∞ is an isolated point in X_{∞} . For a JB*-triple V, let

$$C_0(X, V) = \{ f \in C(X, V) : f(\infty) = 0 \}$$

be the Banach space of all continuous vector-valued functions from X into V vanishing at infinity.

Denote by $coz(f) = \{x \in X : f(x) \neq 0\}$ the *cozero set* of an f in $C_0(X, V)$. We note that a subset U of X is the cozero set of a continuous function in $C_0(X, V)$ if and only if

U is σ -compact and open. For a σ -compact open subset U of X, denote by $C_0(U, V)$ the subspace of all f in $C_0(X, V)$ with $coz(f) \subset U$.

Theorem 2.1. Suppose that X, Y are locally compact spaces and V, W are JB*-triples with W being prime. Assume that T is a bounded linear orthogonality preserver from $C_0(X,V)$ into $C_0(Y,W)$ with dense range. Then there exist a continuous map $\sigma: Y \to X$ and, for each y in Y, a bounded linear orthogonal preserving map $J_y: V \to W$ with dense range such that

$$Tf(y) = J_y f(\sigma(y)), \quad \forall f \in C_0(X, V), \ y \in Y.$$

Proof. For any y in Y, define

 $S_y = \{x \in X_\infty : \text{for each } \sigma\text{-compact open neighbourhood } U \text{ of } x,$ there exists an $f \in C_0(U, V)$ such that $Tf(y) \neq 0\}.$

Claim 1. $S_y \neq \emptyset$.

Suppose on the contrary that for each $x \in X_{\infty}$, there is a σ -compact open neighbourhood U of x such that (Tf)(y) = 0 for all f in $C_0(U, V)$. Since X_{∞} is compact, there exist σ -compact open neighbourhoods U_0, U_1, \ldots, U_n of $x_0 = \infty, x_1, \ldots, x_n$, respectively, such that $X_{\infty} = U_0 \cup U_1 \cup \cdots \cup U_n$. Let $1 = f_0 + f_1 + \cdots + f_n$ be a continuous partition of unity such that $\cos(f_i) \subset U_i$ for each $i = 0, 1, 2, \ldots, n$. Then for each $f \in C_0(X, V)$, one can derive that

$$Tf(y) = T(f_0f + f_1f + \dots + f_nf)(y) = 0,$$

since $coz(f_i f) \subset U_i$ for i = 0, 1, 2, ..., n. This conflicts with the assumption that T has dense range.

Claim 2. S_y is a singleton.

Suppose on the contrary that two distinct points $x_1, x_2 \in S_y$. Let Z_1 and Z_2 be disjoint σ -compact open neighbourhoods of x_1 and x_2 , respectively. We have

(2.1)
$$(Tf_1) \square (Tf_2) = 0, \quad \forall f_i \in C_0(Z_i, V), \ i = 1, 2.$$

Let I_1 be the closed subtriple of the JB*-triple W spanned by the set

$$\{T(f')(y) : f' \in C_0(X, V) \text{ with a compact support contained in } Z_1\}$$

Let Z_0 be a nonempty open set in X with compact closure $\overline{Z_0} \subset Z_1$. Let g be in $C_0(X)$ with a compact support contained in Z_1 such that g = 1 on Z_0 . For each f in $C_0(X, V)$, we have $\cos(f(1-g)) \cap Z_0 = \emptyset$. Therefore, $T(f(1-g))(y) \square T(f')(y) = 0$, and thus,

(2.2)
$$(Tf)(y) \square (Tf')(y) = T(fg)(y) \square (Tf')(y), (Tf')(y) \square (Tf)(y) = (Tf')(y) \square T(fg)(y), \quad \forall f' \in C_0(Z_0, V).$$

Let $f' \in C_0(X, V)$ with compact support $\overline{Z_0} \subset Z_1$ and $g \in C_0(X)$ as above. For any h_1, h_2 in $C_0(X, V)$, it follows from (2.2) that

$$\{T(h_1)(y), T(f')(y), T(h_2)(y)\} = T(h_1)(y) \square T(f')(y)(T(h_2)(y))$$

= $T(gh_1)(y) \square T(f')(y)(T(h_2)(y)) = \{T(gh_1)(y), T(f')(y), T(h_2)(y)\}$
= $\{T(h_2)(y), T(f')(y), T(gh_1)(y)\} = T(h_2)(y) \square T(f')(y)(T(gh_1)(y))$
= $T(gh_2)(y) \square T(f')(y)(T(gh_1)(y)) = \{T(gh_2)(y), T(f')(y), T(gh_1)(y)\} \in I_1.$

Let $g' \in C_0(X)$ with a compact support contained in Z_1 such that g' = 1 on the compact support of g. A similar argument gives

$$\{T(f')(y), T(h_1)(y), T(h_2)(y)\} = T(f')(y) \square T(h_1)(y)(T(h_2)(y))$$

= $T(f')(y) \square T(gh_1)(y)(T(h_2)(y)) = \{T(f')(y), T(gh_1)(y), T(h_2)(y)\}$
= $\{T(h_2)(y), T(gh_1)(y), T(f')(y)\} = T(h_2)(y) \square T(gh_1)(y)(T(f')(y))$
= $T(g'h_2)(y) \square T(gh_1)(y)(T(f')(y)) = \{T(g'h_2)(y), T(gh_1)(y), T(f')(y)\} \in I_1.$

So I_1 is a triple ideal of V.

Similarly, we get another triple ideal of W, which is the closed span of

 $\{T(f')(y) : f' \in C_0(X, V) \text{ with a compact support contained in } Z_2\}.$

By (2.1), we have $I_1 \square I_2 = 0$, and hence $I_1 \cap I_2 = \{0\}$. By the primeness assumption on W, we have $I_1 = \{0\}$ or $I_2 = \{0\}$. But both possibilities conflict with the construction of S_y .

Claim 3. If $S_y = \{x\}$, then we have that

$$f(x) = 0 \implies Tf(y) = 0.$$

By Urysohn's Lemma and the boundedness of T, we can assume that f vanishes in a neighborhood of x. Thus, $x \notin \overline{\operatorname{coz}(f)}$, which is compact in X_{∞} . For any x' in $\overline{\operatorname{coz}(f)}$, and thus $x' \notin S_y$, there is a σ -compact open neighborhood U' of x' such that (Tk)(y) = 0 for each $k \in C_0(U', V)$. By a compactness argument similar to the one proving Claim 1, one can derive that Tf(y) = 0.

It follows from Claim 3 and the assumption on the denseness of the range of T that $S_y \neq \{\infty\}$ for all y in Y. Denote by $\sigma(y) = x$ if $S_y = \{x\}$ (as in [7], x is called the *support* point of $\delta_y \circ T$). Consequently, there is a linear map $J_y: V \to W$ such that

$$Tf(y) = J_y f(\sigma(y)), \quad \forall y \in Y, \ f \in C_0(X, V)$$

For any $y \in Y$ and any a, b in V with $a \square b = 0$. Choose a function $\tilde{g} \in C_0(X)$ such that $\tilde{g}(\sigma(y)) = 1$. Then

$$T(\widetilde{g}a)(y) = J_y(a)\widetilde{g}(\sigma(y)) = J_y(a)$$

and

$$T(\widetilde{g}b)(y) = J_y(b)\widetilde{g}(\sigma(y)) = J_y(b).$$

Since $(\widetilde{g}a)(x) \square (\widetilde{g}b)(x) = 0$ for all x in X, one can derive that

$$T(\widetilde{g}a)(y) \square T(\widetilde{g}b)(y) = 0, \quad \forall y \in Y.$$

Therefore, $J_y(a) \square J_y(b) = 0$, and hence J_y is orthogonality preserving.

The boundedness and dense range properties of each J_y follow easily from those properties of T. To complete the proof, we show that $\sigma: Y \to X$ is continuous. Suppose on the contrary that $\{y_{\lambda}\}$ is a net converging to y_0 in Y such that $\sigma(y_{\lambda}) \to x_0 \neq \sigma(y_0)$ in X_{∞} . Then there exist disjoint neighborhoods U_1 and U_2 of x_0 and $\sigma(y_0)$ in X_{∞} , respectively, and an index λ_0 such that $\sigma(y_{\lambda}) \in U_1$ for all $\lambda \geq \lambda_0$. Let $f \in C_0(X, V)$ such that $\operatorname{coz}(f) \subset U_2$ and $(Tf)(y_0) \neq 0$. Because $\sigma(y_{\lambda}) \notin \overline{\operatorname{coz}(f)}$ for all $\lambda \geq \lambda_0$, it follows from Claim 3 that $(Tf)(y_{\lambda}) = 0$ for all $\lambda \geq \lambda_0$. This contradicts to the continuity of Tf at y_0 .

Without the primeness assumption, we cannot guarantee the conclusion of Theorem 2.1.

Example 2.2. Let $X = \{-1, 1\}$ and $Y = \{0\}$ in discrete topology. Let $V = \mathbb{C}$ and $W = \mathbb{C} \oplus_{\infty} \mathbb{C}$ be the one and two dimensional W*-algebras, respectively. Let $T: C(X, V) \to C(Y, W)$ be defined by

$$Tf(0) = f(-1) \oplus f(1), \quad \forall f \in C(X, V).$$

Then both T and T^{-1} are isometric orthogonality preserving linear maps. However, $S_0 = \{-1, 1\}$, in the notations of the proof of Theorem 2.1, and T is not a weighted composition operator. Note that W is not prime while V is.

Utilizing Theorem 2.1, when V, W are prime C*-algebras, we get the following supplement to those results in [9,11] dealing with various zero product preserving linear maps. We note that for a C*-algebra V, by [5, Remark 3.1.17], the primeness of V as a C*-algebra coincides with the primeness of V as a JB*-triple.

Theorem 2.3. Suppose that X, Y are locally compact spaces and V, W are prime C*algebras. Let $T: C_0(X, V) \to C_0(X, W)$ be a bijective linear map preserving orthogonality in two ways, i.e.,

$$f(x)^*g(x) = f(x)g(x)^* = 0 \quad on \ X$$
$$\iff \ Tf(y)^*Tg(y) = Tf(y)Tg(y)^* = 0 \quad on \ Y.$$

Assume any one of the following conditions holds.

- (1) V is a properly infinite unital C^* -algebra.
- (2) V, W are von Neumann algebras.

Then T is automatically continuous.

Proof. Recall that in a C*-algebra, two elements a, b are orthogonal exactly when $a \square b = 0$. As in proving Theorem 2.1 (up to Claim 2 without assuming the boundedness of T), one can find a map $\sigma: Y \to X$ such that Tf(y) = 0 whenever f vanishes in a neighborhood of $\sigma(y)$ for any y in Y. Following the proof of [6, Theorem 2.3], which is also valid when X, Y are locally compact, one can derive that $f(\sigma(y)) = 0$ implies Tf(y) = 0, when both T and T^{-1} preserve orthogonality. It is then routine to see that σ is a homeomorphism. Furthermore, there exists a bijective linear map $J_y: V \to W$ preserving orthogonality in both directions for each y in Y such that

$$Tf(y) = J_y f(\sigma(y)), \quad \forall y \in Y, \ f \in C_0(X, V).$$

It follows from [3, Corollary 16 and Theorem 19] that J_y is continuous (and assumes a canonical form) under the assumptions in either case.

Let $\{f_n\}$ be a sequence of functions converging to f_0 in $C_0(X, V)$. Suppose that Tf_n converges to g_0 in $C_0(Y, W)$. Consequently, $Tf_n(y)$ converges to $g_0(y)$ in W for each yin Y. That is, $J_y f_n(\sigma(y)) \to g_0(y)$ for any y in Y. Since $f_n(\sigma(y)) \to f_0(\sigma(y))$ and J_y is continuous, $J_y f_n(\sigma(y)) \to J_y f_0(\sigma(y)) = Tf_0(y)$. This ensures that $Tf_0 = g_0$. Therefore, T has a closed graph, and hence T is continuous.

Acknowledgments

The second author would like to express his appreciation to Professor Cho-Ho Chu for many useful suggestions. We would like to express our thanks to the referee for several helpful comments.

References

- [1] L. J. Bunce, C-H. Chu, L. L. Stachó and B. Zalar, On prime JB*-triples, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 3, 279-290. https://doi.org/10.1093/qmathj/49.3.279
- [2] M. Burgos, F. J. Fernández-Polo, J. J. Garcés, J. M. Moreno and A. M. Peralta, Orthogonality preservers in C*-algebras, JB*-algebras and JB*-triples, J. Math. Anal. Appl. 348 (2008), no. 1, 220–233. https://doi.org/10.1016/j.jmaa.2008.07.020

- [3] M. Burgos, J. J. Garcés and A. M. Peralta, Automatic continuity of biorthogonality preservers between compact C*-algebras and von Neumann algebras, J. Math. Anal. Appl. 376 (2011), no. 1, 221–230. https://doi.org/10.1016/j.jmaa.2010.11.007
- [4] _____, Automatic continuity of biorthogonality preservers between weakly compact JB*-triples and atomic JBW*-triples, Studia Math. 204 (2011), no. 2, 97–121. https://doi.org/10.4064/sm204-2-1
- [5] C.-H. Chu, Jordan Structures in Geometry and Analysis, Cambridge Tracts in Mathematics 190, Cambridge University Press, Cambridge, 2012. https://doi.org/10.1017/cbo9781139060165
- H.-L. Gau, J.-S. Jeang and N.-C. Wong, Biseparating linear maps between continuous vector-valued function spaces, J. Aust. Math. Soc. 74 (2003), no. 1, 101–109. https://doi.org/10.1017/s1446788700003153
- S. Hernandez, E. Beckenstein and L. Narici, Banach-Stone theorems and separating maps, Manuscripta Math. 86 (1995), no. 4, 409-416. https://doi.org/10.1007/bf02568002
- [8] W. Kaup, On real Cartan factors, Manuscripta Math. 92 (1997), no. 2, 191–222. https://doi.org/10.1007/bf02678189
- [9] W.-F. Ke, B.-R. Li and N.-C. Wong, Zero product preserving maps of operator-valued functions, Proc. Amer. Math. Soc. 132 (2004), no. 7, 1979–1985. https://doi.org/10.1090/S0002-9939-03-07321-0
- [10] C.-W. Leung, C.-W. Tsai and N.-C. Wong, *Linear disjointness preservers of W*-algebras*, Math. Z. **270** (2012), no. 3-4, 699–708. https://doi.org/10.1007/s00209-010-0819-x
- [11] C.-W. Tsai, The orthogonality structure determines a C*-algebra with continuous trace, Oper. Matrices 5 (2011), no. 3, 529–540. https://doi.org/10.7153/oam-05-40
- [12] H. Upmeier, Symmetric Banach Manifolds and Jordan C*-algebras, North-Holland Mathematics Studies 104, North-Holland, Amsterdam, 1985.
- [13] M. Wolff, Disjointness preserving operators on C*-algebras, Arch. Math. (Basel) 62 (1994), no. 3, 248–253. https://doi.org/10.1007/bf01261365
- [14] N.-C. Wong, Triple homomorphisms of C*-algebras, Southeast Asian Bull. Math. 29 (2005), no. 2, 401–407.

[15] _____, Zero product preservers of C*-algebras, in Function Spaces, 377-380, Contemp. Math. 435 (2007). https://doi.org/10.1090/conm/435/08393

Dongyang Chen

School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China *E-mail address*: cdy@xmu.edu.cn

Lei Li

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China $E\text{-}mail\ address:\ \texttt{leilee@nankai.edu.cn}$

Qing Meng

Chern Institute of Mathematics, Nankai University, Tianjin 300071, China *E-mail address*: mengqing80@163.com

1400