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Orthogonality Preservers of JB*-triple-valued Functions

Dongyang Chen, Lei Li* and Qing Meng

Abstract. Let X,Y be locally compact Hausdorff spaces, and V,W be JB*-triples such

that W is prime. Let T : C0(X,V )→ C0(Y,W ) be an orthogonality preserving linear

operator with dense range. We show that T can be written as a weighted composition

operator.

1. Introduction

A complex Banach space V is a JB*-triple if and only if its open unit ball is a symmetric

manifold. This is equivalent to the condition that V admits a continuous triple product

{·, ·, ·} : V 3 → V,

which is symmetric and linear in the outer variables, conjugate linear in the middle vari-

able, and satisfies

(i) {a, b, {c, d, e}} = {{a, b, c} , d, e} − {c, {b, a, d} , e}+ {c, d, {a, b, e}},

(ii) ‖exp it(a a)‖ = 1 for all t ∈ R,

(iii) a a has a nonnegative spectrum,

(iv) ‖a a‖ = ‖a‖2,

for a, b, c, d, e ∈ V . Here, the box operator a b : V → V is defined by

(a b)(·) = {a, b, ·} .

See the monographs of Chu [5] and Upmeier [12] for details.
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A C*-algebra A is a JB*-triple when it is equipped with the triple product

{a, b, c} =
1

2
(ab∗c+ cb∗a) (a, b, c ∈ A).

Other examples of JB*-triples are all Hilbert spaces, the Banach spaces of bounded linear

operators between Hilbert spaces, and some exceptional Jordan algebras.

Let V be a JB*-triple, we call two elements a, b in V orthogonal if a b = 0 (see [8,

p. 194]). Note that a b = 0 if and only if b a = 0 (see [5, Lemma 1.2.32]). Two elements

a, b in a C*-algebra A are orthogonal exactly when ab∗ = b∗a = 0 (see [2, p. 221]).

Following Wolff [13] and Wong [14, 15], Burgos, Fernández-Polo, Gacés, Moreno and

Peralta [2] studied orthogonality preserving linear operators between C*-algebras, JB*-

algebras and JB*-triples. Burgos, Garcés and Peralta [4] studied the automatic continuity

of biorthogonality linear preservers between JB*-triples, while Tsai [11] and Leung, Tsai

and Wong [10] studied the cases of zero product preservers of CCR C*-algebras and

W*-algebras, respectively. Roughly speaking, various zero products and orthogonality

preservers arise from Jordan or algebra (*-)homomorphisms followed by multipliers.

In this paper, we will study those linear maps T from C0(X,V ) into C0(X,W ) pre-

serving (JB*-triple) orthogonality, that is,

f(x) g(x) = 0 for all x ∈ X =⇒ (Tf)(y) (Tg)(y) = 0 for all y ∈ Y .

Here, X, Y are locally compact spaces and V , W are JB*-triples. We show that T can

be written as a weighted composition operator if T has dense range and W is prime

in Theorem 2.1. This supplements results in [9, 11]. We also establish the automatic

continuity of such bijective preservers in Theorem 2.3 when V , W are prime von Neumann

algebras.

2. Results

Recall that a triple ideal of V is a subspace J of V such that {a, b, c} ∈ J whenever one

of a, b and c belongs to J . A JB*-triple V is said to be prime if J = {0} or K = {0}
whenever J , K are norm closed triple ideals of V with J ∩K = {0} (see [1]).

Let X be a locally compact Hausdorff space. Denote by X∞ = X ∪{∞} the one-point

compactification of X. In case X is already compact, ∞ is an isolated point in X∞. For

a JB*-triple V , let

C0(X,V ) = {f ∈ C(X,V ) : f(∞) = 0}

be the Banach space of all continuous vector-valued functions from X into V vanishing at

infinity.

Denote by coz(f) = {x ∈ X : f(x) 6= 0} the cozero set of an f in C0(X,V ). We note

that a subset U of X is the cozero set of a continuous function in C0(X,V ) if and only if
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U is σ-compact and open. For a σ-compact open subset U of X, denote by C0(U, V ) the

subspace of all f in C0(X,V ) with coz(f) ⊂ U .

Theorem 2.1. Suppose that X, Y are locally compact spaces and V , W are JB*-triples

with W being prime. Assume that T is a bounded linear orthogonality preserver from

C0(X,V ) into C0(Y,W ) with dense range. Then there exist a continuous map σ : Y → X

and, for each y in Y , a bounded linear orthogonal preserving map Jy : V →W with dense

range such that

Tf(y) = Jyf(σ(y)), ∀ f ∈ C0(X,V ), y ∈ Y.

Proof. For any y in Y , define

Sy = {x ∈ X∞ : for each σ-compact open neighbourhood U of x,

there exists an f ∈ C0(U, V ) such that Tf(y) 6= 0}.

Claim 1. Sy 6= ∅.
Suppose on the contrary that for each x ∈ X∞, there is a σ-compact open neighbour-

hood U of x such that (Tf)(y) = 0 for all f in C0(U, V ). Since X∞ is compact, there

exist σ-compact open neighbourhoods U0, U1, . . . , Un of x0 = ∞, x1, . . . , xn, respectively,

such that X∞ = U0 ∪U1 ∪ · · · ∪Un. Let 1 = f0 + f1 + · · ·+ fn be a continuous partition of

unity such that coz(fi) ⊂ Ui for each i = 0, 1, 2, . . . , n. Then for each f ∈ C0(X,V ), one

can derive that

Tf(y) = T (f0f + f1f + · · ·+ fnf)(y) = 0,

since coz(fif) ⊂ Ui for i = 0, 1, 2, . . . , n. This conflicts with the assumption that T has

dense range.

Claim 2. Sy is a singleton.

Suppose on the contrary that two distinct points x1, x2 ∈ Sy. Let Z1 and Z2 be disjoint

σ-compact open neighbourhoods of x1 and x2, respectively. We have

(2.1) (Tf1) (Tf2) = 0, ∀ fi ∈ C0(Zi, V ), i = 1, 2.

Let I1 be the closed subtriple of the JB*-triple W spanned by the set{
T (f ′)(y) : f ′ ∈ C0(X,V ) with a compact support contained in Z1

}
.

Let Z0 be a nonempty open set in X with compact closure Z0 ⊂ Z1. Let g be in C0(X)

with a compact support contained in Z1 such that g = 1 on Z0. For each f in C0(X,V ),

we have coz(f(1− g)) ∩ Z0 = ∅. Therefore, T (f(1− g))(y) T (f ′)(y) = 0, and thus,

(Tf)(y) (Tf ′)(y) = T (fg)(y) (Tf ′)(y),

(Tf ′)(y) (Tf)(y) = (Tf ′)(y) T (fg)(y), ∀ f ′ ∈ C0(Z0, V ).
(2.2)
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Let f ′ ∈ C0(X,V ) with compact support Z0 ⊂ Z1 and g ∈ C0(X) as above. For any

h1, h2 in C0(X,V ), it follows from (2.2) that{
T (h1)(y), T (f ′)(y), T (h2)(y)

}
= T (h1)(y) T (f ′)(y)(T (h2)(y))

= T (gh1)(y) T (f ′)(y)(T (h2)(y)) =
{
T (gh1)(y), T (f ′)(y), T (h2)(y)

}
=
{
T (h2)(y), T (f ′)(y), T (gh1)(y)

}
= T (h2)(y) T (f ′)(y)(T (gh1)(y))

= T (gh2)(y) T (f ′)(y)(T (gh1)(y)) =
{
T (gh2)(y), T (f ′)(y), T (gh1)(y)

}
∈ I1.

Let g′ ∈ C0(X) with a compact support contained in Z1 such that g′ = 1 on the compact

support of g. A similar argument gives{
T (f ′)(y), T (h1)(y), T (h2)(y)

}
= T (f ′)(y) T (h1)(y)(T (h2)(y))

= T (f ′)(y) T (gh1)(y)(T (h2)(y)) =
{
T (f ′)(y), T (gh1)(y), T (h2)(y)

}
=
{
T (h2)(y), T (gh1)(y), T (f ′)(y)

}
= T (h2)(y) T (gh1)(y)(T (f ′)(y))

= T (g′h2)(y) T (gh1)(y)(T (f ′)(y)) =
{
T (g′h2)(y), T (gh1)(y), T (f ′)(y)

}
∈ I1.

So I1 is a triple ideal of V .

Similarly, we get another triple ideal of W , which is the closed span of{
T (f ′)(y) : f ′ ∈ C0(X,V ) with a compact support contained in Z2

}
.

By (2.1), we have I1 I2 = 0, and hence I1 ∩ I2 = {0}. By the primeness assumption on

W , we have I1 = {0} or I2 = {0}. But both possibilities conflict with the construction of

Sy.

Claim 3. If Sy = {x}, then we have that

f(x) = 0 =⇒ Tf(y) = 0.

By Urysohn’s Lemma and the boundedness of T , we can assume that f vanishes in a

neighborhood of x. Thus, x /∈ coz(f), which is compact in X∞. For any x′ in coz(f), and

thus x′ /∈ Sy, there is a σ-compact open neighborhood U ′ of x′ such that (Tk)(y) = 0 for

each k ∈ C0(U
′, V ). By a compactness argument similar to the one proving Claim 1, one

can derive that Tf(y) = 0.

It follows from Claim 3 and the assumption on the denseness of the range of T that

Sy 6= {∞} for all y in Y . Denote by σ(y) = x if Sy = {x} (as in [7], x is called the support

point of δy ◦ T ). Consequently, there is a linear map Jy : V →W such that

Tf(y) = Jyf(σ(y)), ∀ y ∈ Y, f ∈ C0(X,V ).

For any y ∈ Y and any a, b in V with a b = 0. Choose a function g̃ ∈ C0(X) such

that g̃(σ(y)) = 1. Then

T (g̃a)(y) = Jy(a)g̃(σ(y)) = Jy(a)
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and

T (g̃b)(y) = Jy(b)g̃(σ(y)) = Jy(b).

Since (g̃a)(x) (g̃b)(x) = 0 for all x in X, one can derive that

T (g̃a)(y) T (g̃b)(y) = 0, ∀ y ∈ Y.

Therefore, Jy(a) Jy(b) = 0, and hence Jy is orthogonality preserving.

The boundedness and dense range properties of each Jy follow easily from those prop-

erties of T . To complete the proof, we show that σ : Y → X is continuous. Suppose on

the contrary that {yλ} is a net converging to y0 in Y such that σ(yλ) → x0 6= σ(y0) in

X∞. Then there exist disjoint neighborhoods U1 and U2 of x0 and σ(y0) in X∞, respec-

tively, and an index λ0 such that σ(yλ) ∈ U1 for all λ ≥ λ0. Let f ∈ C0(X,V ) such that

coz(f) ⊂ U2 and (Tf)(y0) 6= 0. Because σ(yλ) /∈ coz(f) for all λ ≥ λ0, it follows from

Claim 3 that (Tf)(yλ) = 0 for all λ ≥ λ0. This contradicts to the continuity of Tf at

y0.

Without the primeness assumption, we cannot guarantee the conclusion of Theo-

rem 2.1.

Example 2.2. Let X = {−1, 1} and Y = {0} in discrete topology. Let V = C and W =

C ⊕∞ C be the one and two dimensional W*-algebras, respectively. Let T : C(X,V ) →
C(Y,W ) be defined by

Tf(0) = f(−1)⊕ f(1), ∀ f ∈ C(X,V ).

Then both T and T−1 are isometric orthogonality preserving linear maps. However,

S0 = {−1, 1}, in the notations of the proof of Theorem 2.1, and T is not a weighted

composition operator. Note that W is not prime while V is.

Utilizing Theorem 2.1, when V , W are prime C*-algebras, we get the following supple-

ment to those results in [9, 11] dealing with various zero product preserving linear maps.

We note that for a C*-algebra V , by [5, Remark 3.1.17], the primeness of V as a C*-algebra

coincides with the primeness of V as a JB*-triple.

Theorem 2.3. Suppose that X, Y are locally compact spaces and V , W are prime C*-

algebras. Let T : C0(X,V )→ C0(X,W ) be a bijective linear map preserving orthogonality

in two ways, i.e.,

f(x)∗g(x) = f(x)g(x)∗ = 0 on X

⇐⇒ Tf(y)∗Tg(y) = Tf(y)Tg(y)∗ = 0 on Y .

Assume any one of the following conditions holds.
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(1) V is a properly infinite unital C*-algebra.

(2) V , W are von Neumann algebras.

Then T is automatically continuous.

Proof. Recall that in a C*-algebra, two elements a, b are orthogonal exactly when a b = 0.

As in proving Theorem 2.1 (up to Claim 2 without assuming the boundedness of T ), one

can find a map σ : Y → X such that Tf(y) = 0 whenever f vanishes in a neighborhood

of σ(y) for any y in Y . Following the proof of [6, Theorem 2.3], which is also valid when

X, Y are locally compact, one can derive that f(σ(y)) = 0 implies Tf(y) = 0, when both

T and T−1 preserve orthogonality. It is then routine to see that σ is a homeomorphism.

Furthermore, there exists a bijective linear map Jy : V → W preserving orthogonality in

both directions for each y in Y such that

Tf(y) = Jyf(σ(y)), ∀ y ∈ Y, f ∈ C0(X,V ).

It follows from [3, Corollary 16 and Theorem 19] that Jy is continuous (and assumes a

canonical form) under the assumptions in either case.

Let {fn} be a sequence of functions converging to f0 in C0(X,V ). Suppose that Tfn

converges to g0 in C0(Y,W ). Consequently, Tfn(y) converges to g0(y) in W for each y

in Y . That is, Jyfn(σ(y)) → g0(y) for any y in Y . Since fn(σ(y)) → f0(σ(y)) and Jy is

continuous, Jyfn(σ(y)) → Jyf0(σ(y)) = Tf0(y). This ensures that Tf0 = g0. Therefore,

T has a closed graph, and hence T is continuous.
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