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Classification of Minimal Lorentzian Surfaces in S4
2(1) with Constant

Gaussian and Normal Curvatures

Uğur Dursun and Nurettin Cenk Turgay*

Abstract. In this paper we consider Lorentzian surfaces in the 4-dimensional pseudo-

Riemannian sphere S42(1) with index 2 and curvature one. We obtain the complete

classification of minimal Lorentzian surfaces S42(1) whose Gaussian and normal curva-

tures are constants. We conclude that such surfaces have the Gaussian curvature 1/3

and the absolute value of normal curvature 2/3. We also give some explicit examples.

1. Introduction

Surfaces with zero mean curvature play an important role on several branches of physics,

mathematics as well as differential geometry. Classifications of minimal surfaces with

constant Gaussian curvature in Riemannian spaces of constant curvature have been studied

in a number of papers, [1,13,14,16]. Also, a similar classification was considered for surfaces

in pseudo-Riemannian spaces of constant curvature in [4, 7, 9, 10,17].

One of the first important results in this direction was obtained by Pinl in [16], where

he proved that there is no minimal surface with non-zero constant Gaussian curvature in a

Euclidean space En of arbitrary dimension. Later, in [9] it was proved that this statement

is still true if the ambient space is a Minkowski space En1 of arbitrary dimension.

On the other hand, if the ambient space is a (pseudo)-Riemannian space form with

constant sectional curvatures K0 6= 0, then different results may occur in terms of existence

of minimal surfaces with constant Gaussian curvature K 6= K0. The Veronese surface and

the Clifford torus in S4(1) and the pseudo-Riemannian Clifford torus in the de Sitter

space S4
1(c), c > 0 are some of the most basic examples of minimal surfaces with constant

Gaussian curvature. In [10], it was proved that a minimal surface with constant Gaussian

curvature in S4
1(c) is congruent to an open part of either a Clifford torus or a pseudo-

Riemannian Clifford torus.

Further, in [17], Sakaki gave necessary and sufficient conditions for the existence of

space-like maximal surfaces in 4-dimensional pseudo-Riemannian space forms S4
2(1) and
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H4
2(−1) with index 2 and he also obtained a characterization for maximal surfaces with

constant Gaussian curvature in these space forms. In [7], Cheng gave a classification

of complete maximal surfaces with constant scalar curvature in 4-dimensional pseudo-

hyperbolic space H4
2(c) with index 2 and of constant curvature c < 0.

In a recent paper, Chen obtained several classifications of minimal Lorentzian surfaces

in arbitrary indefinite space forms, [5]. In particular, he obtained all minimal Lorentzian

surfaces of constant curvature one in the pseudo Riemannian sphere Snt (1) of arbitrary

dimension and index. In [5], he also proved that a minimal surface in a pseudo-Euclidean

space Ent is congruent to a translation surface of two null curves. On the other hand, in [2]

and [6], Chen and Yang gave the complete classification of flat quasi-minimal surfaces in

the pseudo-Euclidean space E4
2.

Before we proceed, we want to point out to the minimal immersion from S2(1
3) into

S4(1) given by(
vw√

3
,
uw√

3
,
uv√

3
,
u2 − v2

√
3

,
u2 + v2 − 2w2

6

)
, u2 + v2 + w2 = 3,

called the Veronese surface which has the following interesting property. It is well-known

that a minimal parallel surface lying fully in S4(1) is an open part of this surface, [8, 13].

The analogous of this result in the 4-dimensional pseudo-hyperbolic space H4
2(−1) was

obtained by Chen in [4]. He gave a minimal immersion of the hyperbolic plane H2(−1
3) of

curvature −1/3 into H4
2(−1) and he proved that, up to rigid motion of H4

2(−1), this surface

is the only parallel minimal surface lying fully in H4
2(−1). Note that there is an immersion

with zero mean curvature vector field from the de Sitter 2-space S2
1(1

3) of curvature 1/3

into the pseudo-sphere S4
2(1) with index 2 which is called the Lorentzian Veronese surface

(see Example 3.8).

In this work, we study minimal Lorentzian surfaces in the 4-dimensional pseudo-sphere

S4
2(1). We obtain a characterization for minimal Lorentzian surfaces in S4

2(1) with constant

Gaussian curvature and constant normal curvature. We conclude that for such surfaces

the Gaussian curvature is 1/3 and the absolute value of the normal curvature is 2/3. Also

we obtain a characterization for minimal Lorentzian surfaces in S4
2(1) that is congruent to

the Lorentzian Veronese surface. Finally we give some explicit examples.

2. Preliminaries

Let M be a non-degenerated k-dimensional pseudo-Riemannian submanifold of an n-

dimensional pseudo-Riemannian manifold N . We denote the Levi-Civita connections of

N and M by ∇̃ and ∇, respectively. The Gauss and Weingarten formulas are given,
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respectively, by

∇̃XY = ∇XY + h(X,Y ),(2.1)

∇̃Xξ = −Aξ(X) +DXξ,(2.2)

for any tangent vector field X, Y and any normal vector field ξ on M , where h and D

are the second fundamental form and the normal connection of M in N , respectively, and

Aξ stands for the shape operator along the normal direction ξ. It is well-known that the

shape operator A and the second fundamental form h of M are related by

(2.3) 〈AξX,Y 〉 = 〈h(X,Y ), ξ〉 .

The mean curvature vector field of M in N is defined by

(2.4) H =
1

k
trh.

A submanifold M in N is called minimal if H vanishes identically. In particular, if M is

a surface in N , i.e., k = 2, the Gaussian curvature K of M is defined by

(2.5) K =
R(X,Y, Y,X)

〈X,X〉 〈Y, Y 〉 − 〈X,Y 〉2
,

where X, Y span the tangent bundle of M . A surface M is said to be flat if K ≡ 0 on M .

Let Ent denote the pseudo-Euclidean n-space with the canonical pseudo-Euclidean met-

ric tensor of index t given by

g = −
t∑
i=1

dx2
i +

n∑
j=t+1

dx2
j ,

where (x1, x2, . . . , xn) is a rectangular coordinate system of Ent .

A non-zero vector v in Ent is called space-like, time-like or null (light-like) if 〈v, v〉 > 0,

〈v, v〉 < 0 or 〈v, v〉 = 0, respectively.

We put

Sn−1
t (r2) =

{
v ∈ Ent : 〈v, v〉 = r−2

}
,

Hn−1
t (−r2) =

{
v ∈ Ent−1 : 〈v, v〉 = −r−2

}
,

where 〈·, ·〉 is the indefinite inner product on Ent , [15]. Here Sn−1
t (r2) and Hn−1

t (−r2) are

complete pseudo-Riemannian manifolds of index t and of constant curvature r2 and −r2,

respectively.

Furthermore, the light cone LC of Ent is defined by

LC = {v ∈ Ent : 〈v, v〉 = 0} .
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In the rest of the paper, we put N = Ent . Then, Gauss, Codazzi and Ricci equations

become

R(X,Y, Z,W ) = 〈h(Y,Z), h(X,W )〉 − 〈h(X,Z), h(Y,W )〉 ,(2.6a)

(∇̂Xh)(Y,Z) = (∇̂Y h)(X,Z),(2.6b) 〈
RD(X,Y )ξ, η

〉
= 〈[Aξ, Aη]X,Y 〉 ,(2.6c)

respectively, where R, RD are the curvature tensors associated with the connections ∇
and D, respectively, and

(∇̂Xh)(Y,Z) = DXh(Y, Z)− h(∇XY,Z)− h(Y,∇XZ).

3. Minimal Lorentzian surfaces with constant Gaussian and normal curvatures

In this section we obtain complete classification of minimal Lorentzian surfaces in the

pseudo-sphere S4
2(1) with constant Gaussian and normal curvatures.

First, we would like to state the following lemma obtained in [3] (see also [12, Propo-

sition 2.1] and [11]).

Lemma 3.1. [3] Locally there exists a coordinate system (u, v) on a Lorentzian surface

M such that the metric tensor is given by

g = −m2(du⊗ dv + dv ⊗ du),

for some positive smooth function m = m(u, v). Moreover, the Levi-Civita connection of

M is given by

(3.1) ∇∂u∂u =
2mu

m
∂u, ∇∂u∂v = 0, ∇∂v∂v =

2mv

m
∂v

and the Gaussian curvature of M becomes

(3.2) K =
2(mmst −msmt)

m4
.

Let M be a Lorentzian surface in the pseudo-Riemannian space form S4
2(1). We con-

sider a local pseudo-orthonormal frame field {f1, f2; f3, f4} of M such that 〈f1, f2〉 =

〈f3, f4〉 = −1 and 〈fA, fB〉 = 0 for other cases. Then, by using (2.4) one can see that the

mean curvature vector Ĥ in S4
2(1) becomes

(3.3) Ĥ = −ĥ(f1, f2),

where ĥ denotes the second fundamental form of M in S4
2(1). On the other hand, the

normal curvature KD̂ of M in S4
2(1) is defined by

(3.4) KD̂ = −RD̂(f1, f2; f3, f4),
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where D̂ denotes the normal curvature of M in S4
2(1). In the rest of the paper, by the

abuse of notation, we put KD = KD̂. Let x denote the position vector of M in E5
2. We

will denote connection forms of M associated with the frame field under consideration by

ωBA , A,B = 1, 2, 3, 4 which are defined by

∇̃XfA =
4∑

B=1

ωBA (X)fB − 〈X, fA〉x

for a vector field X tangent to M . By considering (2.3), one can check that connection

forms satisfy

ω3
1 = −ω2

4, ω3
2 = −ω1

4, ω4
1 = −ω2

3, ω4
2 = −ω1

3

ω1
1 = −ω2

2, ω3
3 = −ω4

4, ω2
1 = ω1

2 = ω4
3 = ω3

4 = 0.

Remark 3.2. By considering the local orthonormal frame field {e1, e2; e3, e4} given by

e1 = (f1 − f2)/
√

2, e2 = (f1 + f2)/
√

2, e3 = (f3 + f4)/
√

2 and e4 = (f3 − f4)/
√

2, one can

see that (3.4) becomes

KD = RD̂(e1, e2; e3, e4).(3.5)

3.1. Connection forms of minimal Lorentzian surfaces

In this subsection, we would like to focus on minimal Lorentzian surfaces and consider

their connection forms.

Let M be a Lorentzian surface in S4
2(1) ⊂ E5

2 with the Gaussian curvature K, the

normal curvature KD and let the position vector x in E5
2. Then, by using Lemma 3.1,

we see that tangent vector fields f1 = m−1∂u and f2 = m−1∂v form a local pseudo-

orthonormal frame field for the tangent bundle of M . Because of (3.1), we have

(3.6) ∇fif1 = φif1, ∇fif2 = −φif2,

where we put

(3.7) φ1 = ω1
1(f1) =

mu

m2
, φ2 = ω1

1(f2) = −mv

m2
.

On the other hand, since M is a Lorentzian surface, its normal bundle in S4
2(1) is

spanned by two null vector fields f3, f4 such that 〈f3, f4〉 = −1. Also, we put f5 = x.

Now, we assume that M is minimal in S4
2(1). Then, (3.3) implies Ĥ = −ĥ(f1, f2) = 0,

where Ĥ denotes the mean curvature vector of M in S4
2(1). On the other hand, since

∇̃fix = fi we have Df5 = 0 and A5 = −I, where Aµ denotes the shape operator along the

normal vector field fµ, µ = 3, 4, 5. Thus, we have

(3.8) Dfif3 = ψif3, ∇fif4 = −ψif4,
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where we put ψi = ω3
3(fi), i = 1, 2. Furthermore, by using (2.3), we obtain 〈h(fi, fi), f5〉 =

0 and 〈h(f1, f2), f5〉 = 1. Hence, we have

h(f1, f1) = −h4
11f3 − h3

11f4,(3.9a)

h(f1, f2) = f5,(3.9b)

h(f2, f2) = −h4
22f3 − h3

22f4,(3.9c)

where hµij = 〈h(fi, fj), fµ〉, i, j = 1, 2, µ = 3, 4. Moreover, (2.3) implies

A3(f1) = −h3
11f2, A3(f2) = −h3

22f1,(3.10a)

A4(f1) = −h4
11f2, A4(f2) = −h4

22f1.(3.10b)

On the other hand, by combining (2.5) and (3.9) with the Gauss equation (2.6a), we see

that the Gaussian curvature of M takes the form

(3.11) K = h3
22h

4
11 + h3

11h
4
22 + 1

and the normal curvature of M becomes

(3.12) KD = h3
22h

4
11 − h3

11h
4
22

because of the Ricci equation (2.6c), (3.4) and (3.10). We would like to state the following

lemma that we will use later.

Lemma 3.3. Let M be a minimal Lorentzian surface in S4
2(1) ⊂ E5

2. Assume that there

exists a null tangent vector field X such that h(X,X) is null. Then, K is constant if and

only if KD is constant.

Proof. By replacing indices if necessary, we may assume that X is proportional to f1 which

implies either h4
11 = 0 or h3

11 = 0. These two cases imply either K = h3
11h

4
22 + 1, KD =

−h3
11h

4
22 or K = h3

22h
4
11 + 1, KD = h3

22h
4
11, respectively. Hence, the proof follows.

By a direct computation using the Codazzi equation (2.6b) and the Ricci equation

(2.6c), one can obtain the following integrability conditions

f2(h4
11) = (−ψ2 + 2φ2)h4

11,(3.13a)

f2(h3
11) = (ψ2 + 2φ2)h3

11,(3.13b)

f1(h4
22) = (−ψ1 − 2φ1)h4

22,(3.13c)

f1(h3
22) = (ψ1 − 2φ1)h3

22,(3.13d)

KD = h3
22h

4
11 − h3

11h
4
22 = f1(ψ2)− f2(ψ1) + φ1ψ2 + φ1ψ1.(3.13e)

We will use the following lemma which directly follows from (3.13).
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Lemma 3.4. Let M be a flat minimal Lorentzian surface in S4
2(1) ⊂ E5

2. If the normal

curvature KD is constant, then it must be zero.

Proof. Since K = 0, by re-defining u, v necessarily, we may assume m = 1 which implies

f1 = ∂u, f2 = ∂v and φ1 = φ2 = 0. Thus, (3.13e) becomes

(3.14) KD = (ψ2)u − (ψ1)v.

Now, we assume KD is a non-zero constant. Note that if h4
11h

3
22 = h3

11h
4
22 = 0, then

(3.12) implies KD = 0 which is not possible. Therefore, without loss of generality, we

may assume h4
11h

3
22 6= 0. In this case, since KD is constant, (3.11) and (3.12) imply that

h4
11h

3
22 = const 6= 0. Therefore, from (3.13a) and (3.13d) we get

ψ2 = −
(
ln
∣∣h4

11

∣∣)
v

and ψ1 =
(
ln
∣∣h3

22

∣∣)
u

= −
(
ln
∣∣h4

11

∣∣)
u
,

respectively. Hence, these two equations imply (ψ1)v = (ψ2)u. Thus, (3.14) gives KD = 0

which yields a contradiction.

3.2. The main result

In this subsection, we first determine a necessary condition for a minimal Lorentzian

surface in S4
2(1) ⊂ E5

2 having constant Gaussian and normal curvatures.

Proposition 3.5. Let M be a minimal Lorentzian surface in S4
2(1) ⊂ E5

2. If K and

KD 6= 0 are constants, then M has the parametrization

(3.15) x(s, t) =
s2

2
α(t) + sβ(t) + γ(t)

for some smooth E5
2-valued maps α, β and γ such that the induced metric takes the form

(3.16) g = −(ds⊗ dt+ dt⊗ ds) + 2m̃ dt⊗ dt,

for a smooth function m̃.

Proof. If K and KD 6= 0 are constant, then (3.11) and (3.12) imply h4
11h

3
22 = λ and

h3
11h

4
22 = ν for some constants λ and ν. Note that if λ = 0 and ν = 0, then (3.12) implies

KD = 0 which is a contradiction. Therefore, without loss of generality, we may assume

λ 6= 0. In this case, (3.13a) and (3.13d) imply

f2(h3
22) = (ψ2 − 2φ2)h3

22,

f1(h4
11) = (−ψ1 + 2φ1)h4

11,(3.17)

respectively. We will study the cases ν = 0 and ν 6= 0 separately.
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Case 1. ν 6= 0. Then, (3.13b) and (3.13c) imply

f2(h4
22) = (−ψ2 − 2φ2)h4

22,(3.18)

f1(h3
11) = (ψ1 + 2φ1)h3

11,(3.19)

respectively. By combining (3.17) with (3.19) and (3.13a) with (3.13b), we obtain

φ1 =
1

4
f1(ln

∣∣h3
11h

4
11

∣∣) and φ2 =
1

4
f2(ln

∣∣h3
11h

4
11

∣∣),
respectively. By combining these equations with (3.7), we get

−∂v(lnm) = ∂v(ln
∣∣h4

11h
3
11

∣∣) and ∂u(lnm) = ∂u(ln
∣∣h4

11h
3
11

∣∣).
These two equations imply (lnm)uv = 0. Therefore, (3.2) yields K = 0, i.e., M is flat.

Hence, Lemma 3.4 implies KD = 0 which is a contradiction.

Case 2. ν = 0. By re-arranging f1 and f2 if necessary, we may assume h3
11 = 0. In

this case, (3.9a), (3.10a) and (3.12) imply

h(f1, f1) = −h4
11f3,(3.20a)

A3(f1) = 0, A3(f2) = h3
22f1,(3.20b)

KD = h4
11h

3
22.(3.20c)

Therefore, by combining Weingarten formula (2.2) with (3.20b), we obtain ∇̃f1f3 = ψ1f3

or, equivalently,

(3.21)
∂

∂u
f3 = mψ1f3.

By using (3.17), (3.20a) and (3.21), we get

∂

∂u
h(f1, f1) = 2

mu

m
h(f1, f1)

which implies

(3.22) h(f1, f1) = h4
11f3 = m2α(v)

for an E5
2-valued map α. Note that if α′(v) = 0, then f3 is parallel. However, since

the codimension of M in S4
2(1) is 2, the existence of a parallel normal vector field yields

KD = 0 which is a contradiction. Therefore, we have α′ 6= 0.

Now we define a local coordinate system (s, t) on M by

s = s(u, v) =

∫ u

u0

m2(ξ, v) dξ, t = v.
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Then we have

(3.23) ∂u = m2∂s and ∂v = m̃∂s + ∂t

which give

〈∂s, ∂s〉 = 0, 〈∂s, ∂t〉 = −1, 〈∂t, ∂t〉 = 2m̃,

where m̃ = ∂
∂v

(∫ u
u0
m2(ξ, v) dξ

)
. Therefore, we obtain (3.16).

By a further computation using (3.16), we obtain ∇∂s∂s = 0. By combining this

equation with (3.22) and (3.23) we get

∇̃∂s∂s = xss = α(t).

By integrating this equation, we obtain (3.15) for some E5
2-valued maps β and γ. Hence,

we complete the proof.

Next, we obtain the complete classification of minimal Lorentzian surfaces in S4
2(1)

with constant Gaussian curvature and non-zero constant normal curvature.

Theorem 3.6. Let M be a Lorentzian surface lying fully in S4
2(1) ⊂ E5

2. Then, M is

minimal in S4
2(1) with the constant Gaussian curvature K and non-zero constant normal

curvature KD if and only if it is the surface given by

(3.24) x(s, t) =

(
1

2
s2 +

27

40

〈
α′′′(t), α′′′(t)

〉)
α(t) +

3

2
sα′(t) +

3

2
α′′(t),

where α is a null curve in the light cone LC of E5
2 satisfying

(3.25)
〈
α′′(t), α′′(t)

〉
=

4

9
.

Proof. Assume that M is a minimal Lorentzian surface in S4
2(1) ⊂ E5

2 with the constant

Gaussian curvature K and non-zero constant normal curvature KD. Then, Proposition 3.5

implies that M has the parametrization given in (3.15) for some smooth E5
2-valued maps

α, β, γ such that the induced metric takes the form (3.16).

Then, by a simple computation using (3.16), we see that the Levi-Civita connection

of M satisfies

∇∂s∂s = 0,(3.26a)

∇∂s∂t = ∇∂t∂s = −m̃s∂s,(3.26b)

∇∂t∂t = m̃s∂t + (2m̃m̃s − m̃t)∂s.(3.26c)

Further, by using (2.5), (3.16) and (3.26), we obtain the Gaussian curvature of M as

(3.27) K = m̃ss.
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Since K is constant, (3.27) implies

(3.28) m̃(s, t) =
K

2
s2 + c1(t)s+ c2(t)

for some smooth functions c1(t) and c2(t) defined on some open interval in R.

Note that because of (3.16), we have 〈xs, xs〉 = 0 and 〈xt, xt〉 = 2m̃. Therefore, by a

simple computation considering 〈x, x〉 = 1 and using (3.28), (3.15), we obtain

〈α, α〉 =
〈
α′, α′

〉
= 0,(3.29a)

〈γ, γ〉 = 1,
〈
γ′, γ′

〉
= 2c2.(3.29b)

Therefore, (3.29a) yields that α is a null curve in the light cone LC of E5
2. Also, (3.29a)

implies 〈
α, α′

〉
=
〈
α, α′′

〉
=
〈
α′, α′′

〉
=
〈
α, α′′′

〉
= 0,(3.29c) 〈

α′′, α′′
〉

= −
〈
α′, α′′′

〉
=
〈
α, α(4)

〉
.(3.29d)

On the other hand, the tangent vector fields f̃1 = 1
mf1 = ∂s and f̃2 = mf1 = m̃∂s + ∂t

form a pseudo orthonormal base field for the tangent bundle of M . Because of (3.26a),

we have ∇
f̃1
f̃1 = 0 which implies ∇

f̃1
f̃2 = 0. Therefore, considering (3.15), the second

fundamental form h of M in E5
2 satisfies

∇̃
f̃1
f̃2 = h(f̃1, f̃2) = h(f1, f2)

= m̃sxs + m̃xss + xts

= 3K
s2

2
α+ s(2c1(t)α+Kβ + α′) + (c2(t)α+ c1(t)β + β′).

(3.30)

Since M is minimal, we have (3.9b). By combining (3.9b) and (3.15) with (3.30), we

obtain

3Ks2

2
α+ s(2c1(t)α+Kβ + α′) + c2(t)α+ c1(t)β + β′ =

s2

2
α+ sβ + γ

which gives

α = 3Kα,(3.31a)

β = 2c1α+Kβ + α′,(3.31b)

γ = c2α+ c1β + β′.(3.31c)

Since α is non-zero, (3.31a) implies K = 1/3. Therefore, (3.31b) becomes

(3.32) β = 3c1α+
3

2
α′.
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By combining (3.32) and (3.31c), we get

(3.33) γ = (c2 + 3c2
1 + 3c′1)α+

9

2
c1α
′ +

3

2
α′′

which implies

(3.34) γ′ = (c′2 + 6c1c
′
1 + 3c′′1)α+

(
15

2
c′1 + c2 + 3c2

1

)
α′ +

9

2
c1α
′′ +

3

2
α′′′.

By considering (3.29), from (3.33), we obtain

1 = 〈γ, γ〉 =
9

4

〈
α′′, α′′

〉
which gives (3.25).

On the other hand, by a direct computation using (3.29) and (3.34), we obtain

2c2 = −10c′1 −
4

3
c2 + 5c2

1 +
9

4

〈
α′′′, α′′′

〉
which gives

(3.35) c2 = −3c′1 +
3

2
c2

1 +
27

40

〈
α′′′, α′′′

〉
.

By using (3.35) in (3.33), we get

(3.36) γ =

(
9

2
c2

1 +
27

40

〈
α′′′, α′′′

〉)
α+

9

2
c1α
′ +

3

2
α′′.

By combining (3.15), (3.32) and (3.36) we get

(3.37) x(s, t) =

(
1

2
(s+ 3c1)2 +

27

40

〈
α′′′, α′′′

〉)
α+

3

2
(s+ 3c1)α′ +

3

2
α′′.

From the parametrization that we obtain for M in (3.37), we see that, without loss of

generality, we may choose c1 = 0 by re-defining s properly. Hence, we have (3.24) which

proves the necessary condition.

Conversely, assume that M is given by (3.24) for a curve α described in the theorem.

Then, we have (3.29a) and (3.29c). By a simple computation, we see that the induced

metric g of M satisfies (3.16) for the smooth function

m̃ =
1

6
s2 +

27

40

〈
α′′′(t), α′′′(t)

〉
,

which yields that M has constant Gaussian curvature because of (3.27). Furthermore, by

considering (3.29a) and (3.29c), from (3.24) we get 〈x, x〉 = 1, i.e., M lies in S4
2(1) ⊂ E5

2.

On the other hand, f̃1 = ∂s and f̃2 = m̃∂s+∂t satisfies ∇
f̃1
f̃1 = ∇

f̃1
f̃2 = 0 as described

while proving the necessary condition. Therefore, we have

h(f̃1, f̃2) = ∇̃
f̃1
f̃2 = m̃sxs + m̃xss + xts.
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By a simple computation, we see that the right-hand side of the above equation is x.

Hence, M is minimal in S4
2(1).

Finally, we have ∇̃
f̃1
f̃1 = h(f̃1, f̃1) = xss = α(t). Therefore, for the null tangent vector

field X = f̃1 we have h(X,X) is null. Since K is constant and M is minimal in S4
2(1),

Lemma 3.3 implies that KD is constant which completes the proof.

3.3. Conclusions

In this subsection, we investigate some special cases and give some explicit examples.

Let M be the minimal surface given by (3.24) for a null curve α lying in the light cone

LC of E5
2 satisfying (3.25). We consider the pseudo-orthonormal frame field

{
f̃1, f̃2; f3, f4

}
,

where f̃1 and f̃2 are tangent vector fields described in the proof of Theorem 3.6 and

f3 = α(t),

f4 =
1

2400

(
−100s4 − 162(5s2η + 10sη′ + 81η2) + 6075ξ

)
α(t)

+
1

160
(−40s3 − 270sη − 567η′)α′(t)− 3

20
(5s2 + 27η)α′′(t)

− 3s

4
α′′′(t)− 9

4
α(4)(t)

for the functions η = 〈α′′′(t), α′′′(t)〉 and ξ =
〈
α(4)(t), α(4)(t)

〉
. By a direct computation,

we obtain the Levi-Civita connection of M as

(3.38) ∇
f̃1
f̃1 = ∇

f̃1
f̃2 = 0, ∇

f̃2
f̃1 = −s

3
f̃1, ∇

f̃2
f̃2 =

s

3
f̃2

and the second fundamental form of M as

(3.39)

h(f̃1, f̃1) = f3, h(f̃1, f̃2) = x, h(f̃2, f̃2) =

(
27

40
η′′(t)− 5103

1600
η2(t) +

27

16
ξ(t)

)
f3 −

2

3
f4.

In addition, the normal connection of M satisfies

(3.40) D
f̃1
f3 = D

f̃1
f4 = 0, D

f̃2
f3 = −2s

3
f3, D

f̃2
f4 =

2s

3
f4.

Therefore, we have

Corollary 3.7. Let M be an oriented minimal Lorentzian surface in S4
2(1) ⊂ E5

2 with the

Gaussian curvature K and normal curvature KD. If K and KD 6= 0 are constant, then

K = 1/3 and
∣∣KD

∣∣ = 2/3.

On the other hand, by combining (3.38)–(3.40), we obtain connection forms of M

associated with the frame field
{
f̃1, f̃2, f3, f4

}
as

ω3
3 = 2ω1

1 = −2s

3
, ω4

1 = 0, ω3
1 = −ω1,

ω3
2 =

(
27

40
η′′(t)− 5103

1600
η2(t) +

27

16
ξ(t)

)
ω2, ω4

2 = −2

3
ω2,

(3.41)
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where ω1 and ω2 are dual forms defined by ωi(fj) = δij .

Example 3.8. [10] Let (x, y, z) be the natural coordinate system of E3
1 and (u1, u2, u3, u4,

u5) that of E5
2. The mapping x : S2

1(1
3)→ S4

2 of the de Sitter space S2
1(1

3) of curvature 1/3

into the pseudo-sphere S4
2 defined by

u1 =
1

6
(x2 + y2 + 2z2), u2 =

1

2
√

3
(x2 − y2), u3 =

1√
3
xy, u4 =

1√
3
xz, u5 =

1√
3
yz

is an isometric immersion of S2
1(1

3) which is called the Lorentzian Veronese surface. A

parametrization of the Lorentzian Veronese surface M1 is given as

x(u, v) =

(
3

2
cosh2

(
u√
3

)
− 1,

√
3

2
cosh2

(
u√
3

)
cos

(
2v√

3

)
,

√
3

2
cosh2

(
u√
3

)
sin

(
2v√

3

)
,

√
3

2
sinh

(
2u√

3

)
cos

(
v√
3

)
,

√
3

2
sinh

(
2u√

3

)
sin

(
v√
3

))
.

(3.42)

It can be proved that this surface is minimal in S4
2(1). Moreover, it has constant normal

curvature KD = −2/3 and constant Gaussian curvature K = 1/3.

Proposition 3.9. Let M be the surface given by (3.24) for a null curve α(t) in the light

cone LC of E5
2 satisfying (3.25). If α satisfies

(3.43)
27

40
η′′(t)− 5103

1600
η2(t) +

27

16
ξ(t) = 0,

where η = 〈α′′′(t), α′′′(t)〉 and ξ =
〈
α(4)(t), α(4)(t)

〉
, then M is congruent to the Lorentzian

Veronese surface given by (3.42).

Proof. Let M1 be Lorentzian Veronese surface given by (3.42) and M a surface described

in Theorem 3.6 for a curve α. With the notation described in Section 3.1, we consider the

orthonormal frame field {e1, e2; e3, e4} given by

e1 =
∂

∂u
, e2 = sech

(
u√
3

)
∂

∂v
, e3 =

√
3ĥ(e1, e1), e4 =

√
3ĥ(e1, e2)

satisfying 〈e1, e1〉 = 〈e4, e4〉 = −1 and 〈e2, e2〉 = 〈e3, e3〉 = 1. We put

f̌1 = ζ(e1 − e2), f̌2 =
1

2ζ
(e1 + e2), f̌3 =

2
√

3ζ2

3
(e3 − e4), f̌4 = −

√
3

4ζ2
(e3 + e4),

where ζ is a non-vanishing function satisfying

e1(ζ)− e2(ζ) = −
√

3ζ

3
tanh

(
u√
3

)
.
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Then the null vector fields f̌1, f̌2, f̌3, f̌4 form a pseudo-orthonormal frame field for M .

Furthermore, by a direct computation, we see that connection forms corresponding to this

frame field satisfy

(3.44) ω̌3
3 = 2ω̌1

1 = −2š

3
, ω̌4

1 = 0, ω̌3
1 = −ω̌1, ω̌3

2 = 0, ω̌4
2 = −2

3
ω̌2

for the coordinate function š given by

š =

√
3

2ζ
tanh

(
u√
3

)
− 3

2ζ2
(e1(ζ) + e2(ζ)).

By comparing (3.41) and (3.44), we see that if α satisfies (3.43), then the connection

forms of M1 corresponding to the frame field
{
f̌1, f̌2, f̌3, f̌4

}
coincides with that of M

corresponding to frame field
{
f̃1, f̃2, f3, f4

}
. Hence, we obtain that M is congruent to M1

if (3.43) is satisfied.

In the next example, by considering Proposition 3.9, we obtain a parametrization of a

Lorentzian surface which is congruent to the Lorentzian Veronese surface.

Example 3.10. We consider the null curve

α(t) =
1

3
√

3

(
2 cos t, 2 sin t, cos 2t, sin 2t,

√
3
)

in the light cone LC of E5
2. Then, for this α (3.24) gives an explicit example of minimal

surface in S4
2(1) with constant Gaussian and normal curvatures. Since α satisfies (3.43),

the Lorentzian surface given by

x(s, t) =
1

6
√

3

(
2s(s cos t− 3 sin t), 2s(s sin t+ 3 cos t), (s2 − 9) cos 2t,

− 6s sin 2t, (s2 − 9) sin 2t+ 6s cos 2t,
√

3(s2 + 3)
)(3.45)

is congruent to the Lorentzian Veronese surface.

Remark 3.11. By considering the definition of the coordinate function s in the proof of

Proposition 3.5, we would like to conclude that the new paramatrization of the Lorentzian

Veronese surface presented in (3.45) possesses the following interesting property: The

parameter curve x(s0, t) is a null geodesic of the Lorentzian Veronese surface for any

constant s0.

In the following example, we obtain a minimal surface which is not congruent to

Lorentzian Veronese surface.
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Example 3.12. In this example, we consider the curve

α0(t) =
1

3
√

3

(
cos 2t cot t, 2 cos2 t, cos t cot t cos

(√
3 ln(tan t+ sec t)

)
,

cos t cot t sin
(√

3 ln(tan t+ sec t)
)
, cos t

)
for 0 < t < π/2 and the surface M given by (3.24) for α = α0. By a direct computation,

we obtain

h(f̃1, f̃1) = f3, h(f̃1, f̃2) = x,

h(f̃2, f̃2) =

(
21

800
(−180 cos 2t+ 45 cos 4t− 121) csc4 t sec4 t

)
f3 −

2

3
f4,

where f̃1, f̃2 are the tangent vector fields described above and f3 = α0(t). Thus, M is a

minimal surface in S4
2(1) with constant Gaussian and normal curvatures.
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