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Hyper-Kloosterman Sums of Different Moduli and Their Applications to
Automorphic Forms for SL,,(Z)

Xiumin Ren and Yangbo Ye*

Abstract. Hyper-Kloosterman sums of different moduli appear naturally in Voronoi’s
summation formula for cusp forms for GL,,(Z). In this paper their square moment is
evaluated and their bounds are proved in the case of consecutively dividing moduli.
As an application, smooth sums of Fourier coefficients of a Maass form for SL,,(Z)
against an exponential function e(an) are estimated. These sums are proved to have
rapid decay when « is a fixed rational number or a transcendental number with ap-
proximation exponent 7(a) > m. Non-trivial bounds are proved for these sums when
(o) > (m+1)/2.

1. Introduction

Let n and ¢ be positive integers. For b € Z and a = (a1,az,...,a,) € Z", the n-
dimensional Kloosterman sum K, (a,b;q) is defined as follows (cf. Smith [23] and Katz
13)):
(1.1)

Z Z Z e(alxl+a2x2+"'+an$n+b$1$2---xn>

z1(mod q) z2(mod ¢)  xn(mod q) q

Here the star in > indicates that (x;,q) = 1. When n =1, K1(a, b;q) = K(a,b;q) is the

classical Kloosterman sum introduced by Kloosterman [14] in 1926:

(1.2) K(a,b;q) = qu e <a‘”:b"’3> :

r=1
(x7Q):1

The Hasse-Weil bound for K (a, b; q) (Hasse [11], Weil [24] and Hooley [12]) gives

(1.3) K (a,b;q) < (a,b,9)*¢*?7(q).
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This bound is sharp. Generalizations of the estimate to K,(1,b;q) for n > 2, with
1=(1,1,...,1) and ¢ = p%, a prime power, were considered by many authors. The
classical bound K, (1,1;p) < p®*t1/2 was proved by Mordell [18] and Smith [23], while
Deligne proved the optimal bound K,(1,1;p) < (n + 1)p™2. The following bound was
obtained by Cochrane, Liu and Zheng in [1]: Suppose p{b and p? || (n+1). Then for any
a>1andn > 2,

(1.4) K (1,5;p%)] < 6p(n +1,p — 1)pz mn{re—2hps

where 0, = 1 if p is odd and ¢, = 2 if p = 2. In Ye [25,]26] the bound (1.4) was improved
in certain cases.

In this paper we consider Kloosterman sum K, (a, h; q) with different moduli:

Kalwma)= Y e(M) 3 (M) 3 ()

(1 5) t1(mod q1) t2(mod ¢2) % tn—1(mod gn—1) -1
| ()
Gn ’
tn(mOd Qn)

where a,h € Z, n > 2, ¢; (i = 1,2,...,n) are positive integers and ¢ = (q1,¢2,...,qn)-
Note that Ki(a, h;q) = K(a, h;q) is the classical Kloosterman sum defined in ((1.2). Note
that for n > 2, (h,q,) = 1, an obvious bound for (|1.5)) can be obtained by applying (/1.3

to the inner sum:

(1.6) |Kn(a,h; @)] < ¢(q1) - - d(qn-1)a > (an)-

In this paper we will estimate (1.5)) for consecutively dividing moduli, i.e., g; | gj—1 for

7 =2,3,...,n. To state our result, we introduce some notations. For positive integer a,

let a™* be the largest square-full divisor of a and write a* = a/a™*. Then a* is square-free
k kk

and a = a*a**, (a*,a*) = 1. Here we recall that a positive integer a is square-full means

that p? | a for each p | a.

Theorem 1.1. Letn > 2, (h,q1) = 1. Assume q; | gj—1 for j =2,3,...,n. Then we have

o Aqid(q)ay™ "t if Gr = =g,
(1.7) > 1 Ku(a, hiq)]” = ’
a1 0 otherwise,
where for j > 2,
A M) oy with o) = ti=1,
. = '_1 . p—
’ dlgs, do(d) ™ j > uld L_i(u) if j > 2.
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Note that 6;(d) (7 > 1) is multiplicative with #;(1) = 1 and for any prime number p,

P -1
Pl p—1)

(=569

0;(p) =

Thus for j > 2,

pla;; play,

Obviously 0 < A; < 1 and

u(d) o)

plas; dlg;,

N=277 ] ( )>>>2J if2]q",

2<plq;,

where the implied constant in the above inequalities are absolute. By (|1.7)) we have, for
any integer a,

-1)/2

And1d(q) " if g3* == g,

0 otherwise.

(1.8) | Ky (a,h;q)| <
Apparently, this bound improves (1.6 for n > 2. For further estimate, we will prove the
following.

Theorem 1.2. Let n > 2, (h,q1) =1 and q; | gj—1 for j =2,3,...,n. Write 1 = ¢'¢"

where (¢',q") =1 and q" is the largest divisor of g1 which has the same prime divisors as

qn- Then we have Ky(a,h;q) =0 unless ¢3* = --- = ¢ and in this case there holds
/

(1.9) |[Kn(a, h; @)| < 2p(n, )¢~ ((aqq)> Slar)ay V2,

where

1/2
pnan)=m> T[ 0—1.n)
r| iz
with ny the largest divisor of n which has the same prime factors as qy.
The Kloosterman sum defined in ([1.5)) appears naturally in theory of modular forms via

Voronoi summation formula. Let f be a full-level cusp form for GL,,(Z) with Langlands’

parameters p¢(j), j = 1,2,...,m, and Fourier coefficients A¢(cym—2,...,c1,n). Let ¢ €
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C°(R1), h, q any coprime positive integers and hh = 1 (mod ¢). The Voronoi summation
formula for f was proved by Miller and Schmid [17]:

Z Af(em—2,cm-3,...,c1,n)e (—Zh> ¥(|n|)

n#0

A ndm ooy d
(1.10) DD > > f e X

dm—2 ||

d c1coq c1-¢m—24 nF#0
erday Azt doo| g2
m—2 m—1
] d;
x S(n,h;q,c,d)¥ ( Hmz1>
where ¢ = (¢1,...,¢m—2), d = (d1,...,dpn—2), and

S(n,ﬁ; ged) = Z* . <d1x1n> Z* . (inqul)
q c1c0q Tl
4= T2 (mod m)

(1.11)

* dm—2Tm—2Tm—3 T2
x > € CrCm—3q T erem=aq | -
didp Ay
T Q(mod d11 Cc;;; 22f1> 1 m—3 1 m—2

Here ¥(z) is given by

(1.12) U(z) = 5 L J(s)sz

where @Z(s) is the Mellin transform of v (s) and
F(S) — ﬂ-*ms/ZﬁF lf(]) FN’(S) — ﬂ.fms/Qﬁl—\ if(]) .
=1 2 7 i=1 2

In the above expression {ﬁf ' }1 <iem = { 1 f( )} iom are the Langlands’ parameters for

the dual form f of f. A special case of - for even Maass forms for SL,,(Z) and ¢; =
¢y =+ = ¢pm—2 = 1 was proved by Goldfeld and Li [6-8]. Note that for ¢ = (1,1,...,1),
S(n,ﬁ; g, c,d) can be rewritten as K,,_2(n, h;q) where ¢ = (q1,q2, . .., qm—2) is given by

q

1.1 =
(1.13) e )

Note that ¢; | ¢i—1 fori =2,3,...,m—2. A Voronoi summation formula for Rankin-Selberg
products of SLy,(Z) Maass forms was proved by Czarnecki [2].

For applications of Theorem [I.I] we consider the sum

n

(1.14) ZAf )(an)gb(§>, a € (0,1],
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where X > 2, ¢(z) € C2°(0, 00) a fixed function supported on [1, 2] and Af(cp—2,...,c1,n)
are Fourier coefficients for a Maass cusp form f for SL,,(Z). By Rankin-Selberg theory
(cf. [7]), one has

(1.15) > |Af(nydma, ..., d1)]> < X.
In| [T % <X

Replacing f by f and noting that A¢(n,1,...,1) = Af(l, ...,m), we see that a possible
uniform bound over « for would be X1/2+¢. This is well-understood in the case of
GL2(Z) (Hafner and Ivié¢ [9,[10]). However it is far beyond reach at present in the case of
GL,(Z), m > 3. Actually, in the case of GL3(Z), the best uniform bound so far is X3/4+¢
(Miller [16] and Ren and Ye [20]), this bound is obtained by using the Hasse-Weil bound
for the classical Kloosterman sum. When m > 4, much less is known concerning the
sum . Actually it seems difficult to achieve a uniform bound in these cases. One of
the difficulties comes from lack of proper control of the Kloosterman sum K,,_2(n, h;q).
In this paper, we seek a nontrivial bound for and prove the following.

Theorem 1.3. Let f be a full-level cusp form for GL,,(Z), m > 4. Denote o = a/q + A,
(a,q) =1 and A € R.

(i) Suppose ¢™ < X and |\| < 1/(2¢X'=Y/™), then for any integer r > m/2, we have

n 1/24¢ X —r/m
(1.16) ZAf(l, ..., L,n)e(an)p <§> Lser (¢X) — .
n#0 q
(ii) In other cases we have
n
117 YA, Ln)e(an)d (Y) <o qmD/2te ((|>\| X)),
n#0

Corollary 1.4. Let o = a/q be a fized rational number with (a,q) = 1. Then for ¢™ <

lesj
ZAf(l, RN 1,n)e <an> 10} (ﬁ) <Lg,f,M XM
q X
n>0
for any M > 0.
Proof. This follows from Theorem i) by taking A = 0. O

Recall that an irrational number a has approximation exponent 7(«) if 7(a) is the
smallest number such that for any p > 7(a) the inequality | —a/q| < ¢ * has only
finitely many solutions. By analogous argument as in the proof of Corollary 1.3 in [20],

we can easily obtain the following assertion.
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Corollary 1.5. For any fixed transcendental number o with approximation exponent

T(a) > m, there is a sequence Xy — +oo such that

zn:Af(l, ..., 1,n)e(an)¢ (J?k;) <t M X,;M

for any M > 0.

Proof. There are infinitely many ways to express a = ax/qr + A\ with |A\g| < %qk_T(aHe,

where we can take € > 0 such that 7(a) —& > m +e. Let X}, = ¢;"**. Then

1 < 1
= T —1/m"
2q m € quXk /m

|Ae| <

Using Theorem [1.3(i) we have proved the corollary. O

We pointed out that the strong decay of the sums in Corollaries and is a
manifestation of the analytic properties of the underlying L-function twisted by such
e(an), due to the fact that ¢ is a smooth function.

Corollary 1.6. Let f be a full-level cusp form for GL,,,(Z), m > 4. For any fized irrational

number o with approximation exponent T(«), there exists a sequence Xy, — +oo such that
S A1, 1 n)e(an) (;) <y XU/ r) e
k
n

Proof. There are infinitely many ways to write a = ag/qx + Ax with |Ag| < q,;T(a)JrE. Take
X5 = q;(a). Then |Ag| X < ¢i. Applying (1.17) we get

n (m+1)/2+42¢ (m+1)/(27(a))+e
(1.18) ZAf .., 1,n)e(an)d <Xk> < q, < X,

because 7(a) > 2. O

We remark that is nontrivial if 7(a)) > (m+1)/2. Similar sums were studied by
Ernvall-Hytonen et al. [4,5], Ren and Ye [22] and Czarnecki [2]. For the case of GL3(Z), we
proved in |20] the bound <« X;WQT(Q)HE. One can see that now we have X,ngrl)/(ZT(a))Jre.
It is interesting if one can improve to < ¢™/2+ ((]A| X)™/2 + 1), as we did when

m =3 (cf. [20, (3.18), p. 235]) which implies the uniform bound X3/4+=.

2. Proofs of Theorems and

Lemma 2.1. Let s > 1 and r | s. Let (b,s) =1 and bb=1 (mod s). Write

s

(2.1) T(s,7;b,d) p z,Tr),

(r,s) 1
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where
h
/'L ( _17h)
(2:2) p(g, ) = <gh>
¢ ((th))
Then for d | r*,
r . l’(b r) Z } u uzz)(u) Zf P = S**,

T(s,r;b,d) = 9(s) * dp(b,d)
otherwise.

o

Proof. We first show that if s = s1s9 with (s1,s2) = 1, then for r | s, d | s, r; = (r,s;) and
d; = (d, s;), there holds

(2.3) T(Slsg, r b, d) = T(81, 13 b, dl)T(SQ, T2; b, dz).

In fact, for (s1,s2) =1 we have

p(b(w1sg + w281),8182) —
T b,d) = —— ) )
(182,13 Z Z (7152 F 751, ddy) p(x152 + w281, 7172)

r1=1 zro=1
(z1,81)=1 (z2,82)=1

where

bb=1 (mod s1s3), (w152 + 2251)7152 + 2251 =1 (mod s152).
Note that d; | s; and 7; | s; (i = 1,2) imply
p(b(x152 + 251), 5152) = p(ba152, 1) p(brasi, s2),

p(x182 + was1, mir2) = p(ZT1S2, 1) p(T251, 12),

p(x1sg + x251, d1d2) = p(T152,d1)p(T251, d2),

where (z152)T152 =1 (mod s1) and (z251)Z251 = 1 (mod s3). Therefore

p(bx1sy, 51) p(brasy, s2)
T(s182,7;b,d) p(ZT1s2,71) To2S51,7T2
(5152 mlzzl p(T152,d1) ;1 p(T251, d2) @, dn) ™ )
(m1,81) 1 (z2,s2)=1
p b:c s1) ,0 bac 82 _
Z o(Z, dl z,71) Z o(z, d2 (T, 72)
(z, 51) 1 (z, 52) 1

=T(s1,71;b,d1)T (52,725 b, d2).

We write s = [[,p", kp > 1. Then r | s and d | r imply

pls

r:Hp“P, d:Hp”P, 0<vy, <up <k



1258 Xiumin Ren and Yangbo Ye

Moreover, d | r* implies v, = 0 if up, > 1; v, =0 or 1 if u, = 1; v, = 0 if u, = 0. By (2.3)),

we get

(2.4) T(s,r;b,d) = HO‘ ko),

where for k = kp, u = u, and v = vy,
Z ol pb)
k ’ —
= — p\L,p-).
) ;1 p(@,p?) (@)

We will show that for k =1,

1 e
(25) o) = e
%p(b’pu) - ¢21(p) if u 7é v,
and for k > 1,
0 if u <k,
(2.6) a(p") =

%p(g,p“) if u==k.

(i) Suppose k = 1. Then 0 < v <u <1 and

p—1 =
k) — Z p(ﬁwvf) p(f,pu).

= p(T,p")

If p = 2 then the right above is equal to 1, hence (2.5)) is true. Let p > 2. If u = v then

ky _ A ., p=-2_ 1
a(p") ;p( z,p) ;p zp) = 1= = 50
If w # v, then one has u = 1 and v = 0. Therefore
-1 7 1 I
(2.7) o(p*) = p(bx,p)p(E,p) = p(b,p) — ) > bz, p).
=1 =2

The last sum is equal to
1 _
Zp z,p) — p(b;p) = — — p(b,p).

Putting in (2.7) we obtain ({2.5)).

(ii) Suppose k > 1. Note that p(bz,p*) = 0 unless (bz — 1,p*) = p¥ or p*~1, that is

z=b (modp*) or z=uax,=b1+hp" 1) (modp*) with h=1,2,....,p—1.
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This shows that

Sy = POp") 1 = p(@n, ")
2 W)= p(b,p°)  &(p) = p(Th, ")

It is easy to see that Zp = b(1 — hp*~1) (mod p*). If u < k, then p(Tpy,p*) = p(b, p*),
o(Zn, p*) = p(b, p¥), hence o(p*) = 0. If u = k, then v = 0 and (2.8)) becomes

3
L

- 1

(2.9) o(p") = p(b,p") — ) p(Th, pF).

>
Il
—

Let p? | b—1. If j > k, then (T, — 1, p*) = p*~1, therefore p(b,p*) = 1 and p(zy, p*) =
—@. This gives

ky _ p—1_p o 4
c) =1 oy~ gy P

If j < k—2, then (Z, — 1,p*) = p, and hence p(b,p*) = p(Tn,p*) = 0. Therefore
a(p*) = 0.

If j = k — 1, then one can write b = 1 + top*~! for some ty with p t t5. Now
(Tn,—1,p*) = p""'(to — h,p). Thus p(Tn, p*) = p(t — h, p) and p(b, p*) = — 5. Therefore

PO S N
T T0m) e =0T

>
Il

For p = 2 this gives ¢(2¥) = —2 which verifies (2.6). For p > 2, it gives

2 p—2 D P
o) 2(p) “0(p)  o(p)

By (2.4)-(2.6) we see that T'(s,r;b,d) = 0 unless u, = k, for each p | s, that is,

r** = ™. In this case we have r* | s*, and for d | r
b,d) b
Ty =11 565 H¢ H{mf“ 2 }£L¢
|
1 *k B i ot
i
smea e g T ) L= g

o p(br) p(u)
~ ¢(s) dp(b,d) 206

g

™
d

which completes the proof. O
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Proof of Theorem [1.1] By definition,

S Kawhal= S e (““““f) 3 e(fﬂfrhfz)

2
1<a<qy t1,t} (mod ¢1) a<q1 t2,t5(mod g2) ¢

-/
tn—otn_ t,_at
% Z* e(nan 2n1>

gn—1
tn—1,t,,_4(mod gn—1)

< < - =
O (tn_ltn ~ tnlt;l> . (h(tn - tn)> |
qn dn
tn,th (mod gn)

The sum over a is equal to 0 unless t; = ¢} (mod ¢;) in which case it equals ¢;. Write
1

t) = t;a; (mod ¢;) for i =2,3,...,n, we get

Z | Ky (a, b Q)’2

1<a<q

sy e(tltz(lwﬂ) 3 e<t2’f3(1—a2a3>>

2 3
t1(mod ¢1) t2,a2(mod g2) a t3,a3(mod g¢3) 4

X Z* ¢ <tn—1t"(1 _a”—lan)> ‘ (ht"(l _an)> .

tn,an(mod gn) n n

Changing the order of the first two sums, then for (t2,¢2) = 1 the sum over ¢; is equal to

Z* . <t1t2(1 - a2)Q1/Q2>

t1(mod q1) @

7 ((tz(az - i])lql/%ql)) Ha)s™ <(t2(a2 - f)lq1/q2,(n)>
o (s ) o () — aplan )

(a2 —1,¢2 az —1,q2)
Hence
tot3(1 — @za3)
S Ka@ kol =ad@) 3 plane) S Y <
1<a<q az(mod g2) ta(mod ¢2) t3,a3(mod g3) e

. Z* . <tn1tn(1 - anlan)> . <htn(1—an)> '

tn,an(mod gn) an an
Similarly, the sum over ¢; (2 < j < t,-1) is equal to ¢(q;)p(@ja;+1,q;+1), and finally the

sum over t, is equal to ¢(q,)p(@n, g,). Therefore we get

Z |Kn(avh§(I)|2
1<a<q
(2.10) =qo(q)P(q2) - - - d(gm) Z* plaz, q2) Z* p(@zas, qz) - - -

az(mod g2) az(mod g3)

* *
X Z p(an—Zan—laQn—l) Z p(an—lanv%z)p(ana(bz)-

an—1(mod gn—1) an(mod gn)
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When n = 2, we get
N Ka(ahiq)? = qid(a)d(a) Y. plaz.a2)p(@2. a2)-

1<a<q az(mod g2)
The sum over ay is T'(g2, g2; 1, 1) which, by Lemma is equal to

q2 p(u)
Olaz) Sz ui(u)

Denote by A2 the sum over u, then we get

Z Ko (a, b q)* = Xaq16(q1)ga-

1<a<q1

When n > 3, the sum over a,, in (2.10)) is T'(¢n, gn; @n—1, 1) which, by Lemma is equal

to
dn _ ()
an—1,4n —
Bl 2 S
Thus (2.10) becomes
Z ’Kn(av h; Q)’2
1<a<q:
(2.11) = 06(@)6(a2) - dlan1)an Y plaz,@) D plaras,g)---
) a2 (mod ¢2) az(mod g¢3)
* d
X Z p(an—3an—2a Qn—Q) Z MT(Qn—la dn; An—2, d)
« do(d)
an72(m0d QTL72) dlqn

By Lemma T(qn-1,qn; an—2,d) = 0 unless ¢'* | = ¢;;*, in this case it is equal to

Gn ) P(Enf%%) :u(u)
¢(gn-1)  dp(@n—2,d) ﬁp(ﬁn,g,u)ugb(u)‘
This gives
M(d) an(anf% QTL) /‘L(d) /“L(u)
TN n—1,4n; On— 7d = = =
2 oy i ) = Y 2 S ) 2 il i)
_ an(anf%QH) IU(U) 1
"G o o) 2 d

Write 02(v) =3y, t~1 and back to (2.11]) we obtain

N 1Ko b @) = a16(a)d(a2) - Slan—2)® Y plazsas) > plazas,qs)---

1<a<q1 az(mod g2) az(mod g3)

* d)0s(d
X E p(an—4an—3’ Qn—S) 5 M( ) 2( )T(Qn—27 dn; An—3, d)
< d¢(d)
an—3(mod gn_3) dlgy,
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Continuing this process one yields either » .., [Kn(a, h; Q) =0org*=--=¢*
and
p(d
(2.12) > Kula, i@ = ad(q)e(g2)dy Y = —=T(q2, qn; 1,d),
1<a<q das

where 61(d) = 1 and 0;(d) = Ztld 05 tl for j > 2. Applying Lemma again we have
T(q2,qn;1,d) = 0 unless ¢5* = ¢&* and

g 1 p(w)
T 42, dn; 17 d) = 3
( )= S 1 2= o
u| =g
Back to (2.12]) we finally obtain either Zl§n§q1 | Ky (a, h; q)]2 =0orgs* =q¢3*=---=¢q
and
> Kn(a,hi @) = Mngrd(q)an ",
1<a<q:
where
d)0p,—1(d
NI .

de(d)

d|g;,

Proof of Theorem [1.2] The first assertion follows immediately from Theorem To
prove (1.9) we write t;_1t; = z; (mod ¢;) for i = 2,3,...,n, and then write z; for ¢,
to get

Kofatia) = Y e(™) 3 (Z) > (i)

z1(mod q1) z2(mod ¢2) Zp—1(mod gn—1)

* Iy hzy--- xn—lxn>
X ey—je\ —m@8 | .
Z <Qn> < an

Tn (mOd Qn)

(2.13)

For 2 <i < n, we write 7; = ¢;/qn, then r; is square-free and (74, g,) = 1, since ¢* = ¢}\*.
So we can express x; as fiqn+9g;7; where f;, g; run through reduced residue systems modulo
r; and ¢, respectively. Moreover, we express x1 as f1¢” +¢1¢’, where ¢'¢" = q1, (¢/,¢") =1
and ¢” is the largest factor of ¢; which has the same prime divisors as g,. Note that r,, = 1

and ¢, | ¢”. One has

z1xy-xn = q'g1 [[ori  (mod gn).
i=2
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Therefore

Kawig = o) S (W) S o(f) X e(2)
fi(mod g') g1(mod ) f2(mod r2) g2(mod gn)
% Z* e <fn1> Z* e (9n1)

Tn-1
fnfl(mOd Tnfl) " gnfl(mOd Qn) qn

< 3 e@)e(hqgﬂﬁ(g”)

9n (mOd (In) in

which in turn equals

_ / / * a

o610 (s )i (s Yt ontra) 37 (%) HOhdlara-orosian)
(CL, q ) (CL, q ) 1 q
g(mod ¢")
where
* * * 1+ A+ Tp + YT T
H d) = ,
(VIR D DTS S - )
z1(mod d) z2(mod d)  xp_1(mod d)
For H(h,y;d), we have the following factorization: If d = dyda, (di,d2) = 1, then for

(y,d) =1,
(2.14) H(h,y;d) = H(h,ydy; dy)H(h,yd; d2).

In fact, if we write x; = a;d; + b;da (mod dids) where a;, b; run through reduced residue

systems modulo dz and d;, respectively, then
YT+ Tp—1 =yYay - -- an_ld?_l + yb1 s bn_ldg_l (mod dldg).

Let
YTy Tp_1 = ud; +vde (mod dids).

Then
yay - - an—ld?u + yby - - bn_ldgv =1 (Il’lOd dldg)

from which we find
u=yay - ap—1d} (mod dz), v=yby- b,_1d} (mod dy).
Thus
H(h,y,dids)

RN

a1(mod d2) b1 (mod d1) an—1(mod d2)

* b1 an—1 hyby - - - bp_1dy hyay - - - an_1dy
oy 6<d1>6<d2>e< d ‘ da

bn—1(mod dy)
= H(h,ydy;d2)H (h, ydy;dy).




1264 Xiumin Ren and Yangbo Ye

Let g, = H§:1 p?j be the canonical decomposition of ¢, and write z; = gnp;
(2.14) we get
k
H(h,q'gra- - rn1;qn) = [[ H(hd'gra- - rn12]5057).
j=1
Therefore
s ¢
! J—

(@nia) = oot ()i (s )yt

(2.15)

(h7 qlgTQ *Tpn—1% 7p] )

X
]
®
—
5|8
SN—
—~
=

~% Then by

Write ¢” = Hf lp] Then 5; > oz] since q, | ¢". Let m; = H; lpj " and w; = ¢"p; Bi for

1 =1,2,...,k. Note that my = ¢ and my_1 = wy. Write g = umy,_ 1—i—fup6’c

Then

k
* ag .
S e () L mndors- sz

y(mod ) =
* au

(2.16) = 2 (;ﬁk) H(hy gz - tn-12i )
k

u(mod pik )

k—1
* n, &j
X Z e (mk 1) HH (h, qvpk roTno1253p;0)

v(mod mg_1)

5k1

Write v = umy_s +vp)~;" (mod my_1). Then the above sum over v is equal to

* au
Z ( Br_ 1) H(th,uwk—ITZ *Tn— 1Zk 1apkk11)

Br— -1 Pr—1
d
(2.17) ulmod P~
. wo A2 ,
o
D S R
v(mod my_2) k=27 j=1

In this way one finally obtains

Kn(a,h;q) = o(¢)o™ ¢ ,)> I <(aq, ,)> p(ra) - plrn—1)

(a,q 4
k
* au; .
Il X« <p55 ) Hib e ooz’
]:1uj (mod pﬁj) J

Note that

(mod ¢").
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where K, (a,b;q) is defined in (|1.1)). Applying (1.4]) we get

/ k (n—l)aj lmin 2

|Kn(a,h; q)| < 26(¢)0" <(aqq,)> o(a") I[ (nps—1p, = T2rmboe?
=
p; I

/ k k
< 26(q1)¢ ™" <(a q,)> a2 TT »P” | | T]ws — )
’ j=1 J=1
p;’ |7w7-21 pjn
/
= 2p(n,4n)9~" <(a q,)) $(a)ai V2,
which proves the theorem. O

3. Proof of Theorem

To prove Theorem we need estimates for U(z). To this end we record the following
lemma which can be found in Ren and Ye [21]. The case m = 3 of the lemma can
also be found in Li [15] and Ren and Ye [19]. The Rankin-Selberg case was proved by

Czarnecki [2].

Lemma 3.1. Let f be a full-level cusp form for GL,,(Z). Let m > 3 be an integer. Let
U(y) = o(y/X), where ¢(x) < 1 is a fixzed smooth function of compact support on [a, b
with b > a > 0. Then for x >0, xX > 1 and r > m/2, we have

U(z) =23 o / " (ay) V@12 Ry )
k=0 0

(3.1) y {ik+(m71)/2e (m(xwl/m) (—iyEHmD/2, <_m(xy)1/m> } dy
+0 ((xX)—r/m+1/2+s> ’

where ¢ (k= 0,1,...,r) are constants depending on m and {ug(j)} with co = —1//m,

and the implied constant depends at most on f, ¢, r, a, b and €.

The following lemma gives an upper bound estimate for ¥(x) without the restriction
X > 1 in Lemma [3.1]

Lemma 3.2. Suppose that (y) = ¢(y/X) where ¢ is a fixred smooth function of compact
support on the interval [a,b] where b > a > 0. Letx, X > 0. Then foro > 1/4—1/(2(m*+
1)) and any integer h > 2mo —m/2 4+ 1, we have

(3.2) U(r) <o (M2 X) 2 sup

b .
/ gn (v dy| |
teR |Ja
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where go(v) = ¢(v) and
d(vgn—1(v))

gn(v) = R forh > 1.
Proof. By ([1.12) we have
1 ~ . F(1-—5)
V(zr) = — A

where

Changing s to 2s — 1 we get

(3.3) U(z) = in-m/2-1 / G(s) (r™2.X) 21 3(—25 + 1) ds,

Res=0o

where o > 09 = 1/4 — 1/(2(m? + 1)) and

m s _ E0)
G(s):H F< 2 )

j=1 T (_5+1_HTN)).

By integrating by parts,

~ oo b
P(—2s+1) :/0 P(v)v > dv = (Qi)h / gn(v)e 251087 gy,
where
w(0) = o(0), gu() = WDy
Therefore
b
(3.4) ’5(_23 + 1)‘ < ‘Qi‘h / gh(v>e—2slogu dvl .

By Stirling’s formula, for [t| > to = 2 4+ 0 + maxi<j<m {|1r(j)|}, one has
log G(s) = (ms - %) log s — 2ms + mslog(—s) + O(|s| ™).

Hence
‘G(S)‘ < ’S’2ma—m/2 e—2ma+m|t|(7r—2|args\) < ‘S|2m0—m/2’ ‘t‘ > 1.

Back to (3.3) we get

(3.5)
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Applying (3.4) and choosing h > 2mo —m/2+ 1, the first quantity on the right side above
is bounded by

(3.6) (7" X) 727 sup
teR

b .
/ gh(v)U—Q(a-Ht) dul .

Note that G(s) <4, 1 on the segment Res = o > 0p and |t| < ty. Applying (3.4) again
we see that the second term in the right of (3.5 is also dominated by (3.6[). This finishes
the proof of Lemma ]

Proof of Theorem @ To prove Theorem [L.3] we let )(n) = e(An)d(n/X) and ¢; = - - =
Cm—2 = 1in . Then

ZAf(l, ..., 1,n)e(an)¢ (%)

n#0
a
_ZAf I A ) (n)qp(n)
n#0 q
A n, dm Dy evny dl) . |n|h(d)
—QZZ Z Z f . 2] Kp—o(n,—a;q)¥ )
d ‘q d2|(I1 dm— 2|Q7n 3 n#0 m
1

where h(d) = ]_[21_12 dlm_i, Kp,—2(n,—a; q) is as defined in (|1.5) with ¢ = (q1, g2, - - -, ¢m—2)
and ¢; defined by (1.13)), that is

q; = g
Y odydy - d;”
By Theorem Kp—2(n,—a;q) =0 unless ¢5* = --- = ¢**_,, and in this case
(m—1)/2
_ (m—3)/2 q
3.7 K, _o(n, —a; - = .
Therefore
n
Z As(1,...,1,n)e(an)o (Y)
n#£0
1
(m+1)/2
<< PR
(3.8) q Z Z Z dy(dydy - - dm_g)(m_l)/2
dilgde|lgt  dm—2[gm-3
A dm—2,...,d
o3 sl sl (MDY
= | q"
Write
In| h(d) q" (2[AlgX)™

Note that for |n| > ng(d) one has X > 1. Hence we can use Lemma [3.1| to bound ¥(x).
For 1 < |n| < no(d) one has zX < 1. We will use Lemma to bound ¥(z). Denote
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by S(X) and T'(X) the sums in (3.8) corresponding to 1 < |n| < ng(d) and |n| > ng(d),
respectively. Then

(3.10) 3" Ap(1,... L n)e(an)s (%) = S(X) + T(X).
n#0

Suppose that ¢™ < X. Then ng(d) <1 for all d. Therefore we get
(3.11) S(X) = 0.
To bound T'(X), we apply Lemma and changing variable y = Xt to get
(3.12) U(z) = Uy (x) + O((zX)"7/mFL/2He),

where r > m/2 and

(3.13) Wa(a) = 3 exlwX) VMK (1 () 4T (2)
k=0

with

(3.14) I (z) = (i)kHm=1/2 / 1/ @m)=1/2=k/m g () e(AXt + m(zXt)/™) dt.
0

Let f(t) = AXt £ m(zXt)/™. Then for |n| > ni(d), one has

F(t) = AX £ (2X)V/m/m=1 s (zX)M/™,
By repeated integrating by parts and using the fact that ¢ is supported on [1,2] and
o) (t) < 1, we get

Ii(z) < (2X)~"™  for any integer £ > 0.
Choosing £ = r + 1 one obtains ¥y (z) <, (zX)~"/™+/2 for |n| > ni(d). Therefore
(3.15) T(X) < T1(X) + Ta(X),

where

1
TU(X) = gm+D/2 Z Z .. Z dr(dr d )2

di|q dz2|q1 dm—2|qm-3

% Z |Af(n,dm,2,...,d1)| |\I/1(x)|

1<|n|<n |TL|
< 1(d)

and

X\ T/mte (h(d))l/er/m+g
To(X) = \/q7 (qm> Z Z Z di(dy - -+ dpp_o)m=D/2
(3.16) dilgdalgr  dm—2|gm—3 m—

|Af(n, dm,Q, Ceey d1)|
X Z ‘n‘1/2+r/m+a :

Inl#0



Hyper-Kloosterman Sums of Different Moduli 1269

By (1.15)) and Cauchy’s inequality, for # > 1 and Y > 1,

A dm_2,...,d _
Z Ay (n, 29 1)| < Y! e(h(d))l/Q.
Y<|n|<2Y Id

Thus for r > m/2, the sum over n in (3.16) is < \/h(d) = dgm_l)ﬂdgn_m/2 -+~ dpm—o. This

shows
X —r/m
(3.17) To(X) < (gX)V/*Fe <qm> .
To bound ¥;(X), we distinguish two cases according to (2 |A\|¢X)™ < X or not.
(a) Suppose (2 |\ ¢X)™ < X, then T;(X) disappears since now nj(d) < 1 for all d.

In this case we obtain
(3.18) ZAf(l ..., L,n)e(an)p (E) < (gX)V/*te X —T/m'
?éo ) ) b X qm

(b) Suppose (2|A| ¢X)™ > X. Then ni(d) > 1 when h(d) < (2|\|¢X)™X L. One has
Li(z) < (xX)~Y@™M) by the second derivative test. Hence Uy (z) < (zX)Y/? and

h(d
T1(X) < (QX)1/2 Z Z Z di(dy - .,dm(;)(ml)ﬂ

dilq d2|q1 dm—2|qm—3
% Z |Af(n,dm72,...,d1)|

1<|n|<n1(d) au

By (1.15)), the above sum over n is

< V/(d)ni(d) < (N ¢X)™/2x 12,

Thus we get
TY(X) < ¢ (A g X))

This together with (3.10)), (3.11]), (3.15) and (3.17)) shows that

n
Z Ap(1,...,1,n)e(an)¢ <§> < ¢MPHE(N g X)™2,
n#0

Suppose ¢™ > X, then ng(d) > 1 whenever h(d) < ¢™X~!. By Lemma and
choosing o = 1/4 — 1/(2(m? + 1)) + &, h = 1, we get

U(z) < (xX) 2 sup
teR

2
/ (v (v)e(AX0)) v 27D dy| < (14 [N X)(zX)"20F
1
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This gives

1/(m2+1)—2¢
S(X) < (¢X)M2(1 + ]| X) ( )

q7m

h d)1/2+1/(m2+1)—25

( |Af(n,dm—2,...,d1)|
X Z Z R Z dl(dl - dm_2)(m—l)/2 Z ‘n‘1/2,1/(m2+1)+25 .

dilgdalgn dm—2|gm-3 1<|n|<no(d)

Note that ng(d)h(d) = ¢" X ~!. By (1.15)), the last sum is

h(d)fl/(m2+l)+2€.

) q" 1/2+1/(m?2+1)—2¢
< no(d)1/2+l/(m +1)72€h(d)1/2 — <>

X
Thus
S(X) < gAY M)
di(dy -~ dpy_o)m=D/2
(3'19) d1lq d2|q1 dm—2|qm—3

< q(m+1)/2+s(1 + |>\|X)
To bound T'(X) we follow the argument from (3.10)) to (3.15) to obtain

T(X) < R1(X) + R (X)

where
1
R(X) =qmVRY S e Y (m—1)/2
‘ di(dy - dm—2)
1lg d2|q1 dm—2|@m—3
‘A (n,dm_g,...,dl)‘
X Z g |n| |\I’1($)|
no(d)<[n|<ni(d)
and

X —r/m+te (h(d))l/Q—r/m+e
— 12 (2 .
w0 =@ () LY Y S
dilgdzalgr  dm—2lgm—3

|Af(n, dm_g, ey dl)’
X Z 1/24r/m—e ’

oot |

The sum over n in Ry (X) is

g™ 1/2—r/m+e
< no(d)l/er/ereh(d)l/Z — <X> h(d)r/mfs

which gives

h(d)
m+1)/2 m+1)/2+e
Re(X) < g™y D e ) di(dy - dyy_s) =D/ < g,

dilq dz2|q1 dm—2|qm—3
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To estimate P;(X), we distinguish two cases according to |[A| X < 1/2 or not. Sup-
pose |A] X < 1/2. Then no(d) > ni(d), hence R;(X) disappears and we get T(X) <
qm*tD/2+e This together with (3.19) proves

Z Ar(1,...,1,n)e(an)p (%) < gl 2te,
n#0

Suppose [A| X > 1/2. Then Ii(z) < (2X)~'/3™) by the second derivative test. Thus
Uy (z) < (#X)'? and

h(d
Ri(X) < (qX)l/QZ Z Z di(d, - ,_dm(_2))(m—1)/2

dilq dz2|q1 dm—2|qm—3

Z |Af(n,dm_2,...,d1)]
no(d)<[n|<n1(d) Vin|

The last sum is < (n1(d)h(d))/? = ((2|\| ¢X)™X ~1)Y/2 which gives

X

R1(X) < ¢/2E(A g X)),
Hence
T(X) < q1/2+€(|>\|qX)m/2 _|_q(m+1)/2+z-: < q1/2+s(|)\|qX)m/2‘

This together with (3.19) shows that

S AL 1 n)e(an) (%) < g (A X)) 0
n#0
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