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On Zariski Decomposition with and without Support

Roberto Laface

Abstract. We study Zariski decomposition with support in a negative definite cycle,

a variation of Zariski decomposition introduced by Miyaoka [4]: given a negative

definite cycle G, any Q-divisor D decomposes into the sum of a G-nef and a rigid

Q-divisor. We prove that such a decomposition actually exists for an arbitrary Q-

divisor. Moreover, we show that, under the hypothesis that D is pseudo-effective, we

can drop the assumption of G being negative definite, and obtain decompositions of

D with respect to arbitrary cycles. Our methods are inspired by a work of Bauer [1],

in which he gives a simpler proof of Zariski’s original result [5], and by adapting his

proof to other cases, we are able to provide an alternative approach to this circle of

ideas.

1. Introduction

Given a Q-divisor D, a Zariski decomposition of D is a decomposition

D = P +N,

where P and N are Q-divisors (called nef part and negative part respectively) such that:

(i) P is nef;

(ii) N is effective;

(iii) N is either zero or it has negative definite intersection matrix;

(iv) P.C = 0 for every irreducible component C of N .

In 1962, Zariski [5] proved existence and uniqueness of Zariski decomposition of effec-

tive Q-divisors.

Theorem 1.1 (Zariski decomposition of effective Q-divisors, [5]). Let D be an effective

Q-divisor. Then D admits a unique Zariski decomposition D = P + N . Moreover, P is

effective.
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The original context in which this result was born is the Riemann-Roch problem, i.e.,

the problem of computing the dimension of a linear system; in particular, Zariski wanted

to study the asymptotic behavior of the linear system |nD| as n grows. His answer made

strong use of the decomposition that bears his name: he proved that the order of growth

of dim |nD| is determined by the positive part P of D; more precisely, it is the “the

self-intersection number” of P .

In 1979, Fujita [3] extended Zariski’s result to pseudo-effective Q-divisors, although

the nef part P is not necessarily effective anymore. In 2008, Bauer [1] provided a simpler

proof of Zariski’s original result: the key idea is that the nef part P of the Zariski de-

composition is the largest nef Q-subdivisor of D, and thus he makes use of a maximality

argument relative to the nef part of the given Q-divisor, rather than on the sophisticated

procedure Zariski used to build the negative one; more precisely, he proves the existence

and uniqueness of Zariski decomposition by looking at the system of linear inequalities

that the nef part has to satisfy. In the same year, Miyaoka [4] introduced the concept

of Zariski decomposition with support in a negative definite cycle, in a context which

was far from the one where the original problem was born: given a Q-divisor D and a

negative definite cycle G =
∑m

i=1Gi, a Zariski decomposition of D with support in G is a

decomposition

D = PG +NG

where PG and NG are Q-divisors (called G-nef part and negative part respectively) such

that:

(a) PG is G-nef (namely, PG.Gi ≥ 0, ∀ i = 1, 2, . . . ,m);

(b) NG is effective;

(c) NG is supported on a subset of G, i.e., NG =
∑

i νiGi, νi ≥ 0;

(d) PG.C = 0 for every irreducible component C of NG.

The so-obtained decomposition has to be thought as a relative version of Zariski de-

composition: the nefness of P is now replaced by the weaker condition of being G-nef, i.e.,

nef on the components of G. In his paper, Miyaoka states the following

Theorem 1.2 (Zariski decomposition of effective Q-divisors with support in a negative

definite cycle, Proposition 2.1 of [4]). Let G be a negative definite cycle and let D be an

effective Q-divisor on X. Then D admits a unique Zariski decomposition with support in

G. Moreover, PG is effective.

Results. The aim of this paper is give an alternative and simpler approach to questions

related to Zariski decomposition (with and without support) for surfaces, by generalizing
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Bauer’s proof of the existence and uniqueness of Zariski decomposition in the effective

case [1]. This is achieved by simply looking at certain systems of inequalities coming from

the conjectural properties of the nef part of the decomposition. In all cases, a sufficient

condition for the existence of the Zariski decomposition in question turns out to be the

existence of a solution to such a system, while uniqueness follows after taking a solution

which is maximal in a suitable sense.

Miyaoka’s paper refers to [5] for a proof. Instead, we will give an alternative proof

which provides a concrete application of Bauer’s method [1], distancing itself from the

original idea of Zariski. Although the idea is not original, we include the proof because

of its instructive nature: in fact, a closer look reveals the points which are the key to the

generalizations we study hereinafter, as we observe in Remark 2.7.

Afterwards, we study some generalization of Zariski decomposition with support. A

first question we answer concerns the Q-divisors which are characterized by the existence

of such decomposition, and it is motivated by the analogous question for Zariski decom-

position in the sense of Fujita. In fact, Fujita showed that pseudo-effective Q-divisors

admit Zariski decomposition, and conversely Q-divisors admitting Zariski decomposition

are necessarily pseudo-effective. In a similar fashion, we investigate which Q-divisors ad-

mit Zariski decomposition with support in a negative definite cycle: it turns out that every

Q-divisor admits such a decomposition.

Theorem 1.3 (Zariski decomposition with support in negative definite cycle for arbitrary

Q-divisors). Let G =
∑q

i=1Gi be a negative definite cycle and let D be an arbitrary Q-

divisor on X. Then D admits a unique Zariski decomposition with support in G.

Another question we address concerns the cycle G we consider in the Zariski decompo-

sition with support. More precisely, we ask whether we can consider decompositions with

support in arbitrary cycles G, not necessarily negative definite. We consider the case when

D is a pseudo-effective Q-divisor: under this assumption, there is a number of results by

Fujita [3] that enables us to reduce to Theorem 1.3, and use it iteratively to show the

existence and uniqueness of Zariski decomposition with support in arbitrary cycles.

Theorem 1.4 (Zariski decomposition with support in an arbitrary cycle for pseudo-ef-

fective Q-divisors). Let G =
∑m

i=1Gi be an arbitrary cycle and let D be a pseudo-effective

Q-divisor on X. Then D admits a unique Zariski decomposition with support in G.

The proof also shows that Zariski decomposition in the sense of Fujita [3] is obtained

by iterating Zariski decomposition with support, a consideration that might be known to

experts. We also notice that for a given cycle G, it is only the subcycle of curves with

negative self-intersection that contributes to the Zariski decomposition with support in G,

and we once again point out the importance of negative definite cycles in the geometry
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of surfaces. Nevertheless, not every negative curve in the cycle is needed as shown in

examples below.

2. A new proof of Zariski decomposition with support in a negative definite cycle

2.1. Background

LetX be a surface, i.e., a 2-dimensional nonsingular projective variety over an algebraically

closed field k. A divisor D is effective if D =
∑
diDi, di ∈ Z, Di irreducible, and di ≥ 0

∀ i; D is nef (numerically effective) if for every irreducible curve C on X we have D.C ≥ 0;

D is said to be pseudo-effective if D.P ≥ 0 for every nef divisor P on X.

Given a divisor D =
∑n

i=1 diDi, where di ∈ Z and Di is an irreducible curve, the

matrix

µD :=


D1.D1 · · · D1.Dn

...
. . .

...

Dn.D1 · · · Dn.Dn


is called the intersection matrix of D. The intersection matrix of a divisor is independent

of the coefficients of the irreducible components, and therefore the definition above can

be extended in a natural way to Q-divisors and R-divisors.

Every (Q- or R-) divisor D =
∑n

i=1 diDi induces a quadratic form ΦD by means of

its intersection matrix. A finite sum G =
∑m

i=1Gi of irreducible curves Gi ⊂ X is said

to be a negative definite cycle if the intersection matrix µG is negative definite, meaning

that the quadratic form ΦG induced by G is negative definite. The components Gi of a

negative definite cycle must be distinct, i.e., G is reduced: if not, the matrix µG would

have 2 equal columns, hence the quadratic form ΦG would not be negative definite. A

typical example of negative definite cycle is given by the f -exceptional locus of a surjective

morphism of surfaces f : X → Y , i.e., the union of the curves that f contracts to a point

(cf. [4], § 2). For another example, one may consider an effective Q-divisor D ⊂ X and

write its Zariski decomposition D = P +N , N =
∑

i νiNi (with regard to Theorem 1.1);

then Nred :=
∑

iNi is a negative definite cycle.

2.2. An alternative approach to Theorem 1.2

We recall the following componentwise ordering : given

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn,

we put x ≤ y if and only if xi ≤ yi, ∀ i = 1, . . . , n; similarly, x < y if and only if xi < yi,

∀ i = 1, . . . , n. This ordering naturally carries over to divisors
∑
diDi with specified curves

D1, . . . , Dn.
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We now proceed with proving Theorem 1.2: we include the proof because of its in-

structive nature, as a closer look reveals the points which are the key to generalize this

approach to more general setting (see Remark 2.7).

Proof of Theorem 1.2. We start by proving the existence of such a decomposition. Let

D =
∑n

i=1 diDi, with Di integral curve and di ∈ Q>0, ∀ i = 1, . . . , n. Consider now P

such that 0 ≤ P ≤ D, P =
∑n

i=1 xiDi, 0 ≤ xi ≤ di. We now have that

P is G-nef ⇐⇒ P.Gj ≥ 0 ∀ j = 1, . . . ,m

⇐⇒
n∑

i=1

xi(Di.Gj) ≥ 0 ∀ j = 1, . . . ,m.
(2.1)

Claim 2.1. The system of inequalities (2.1) has a maximal solution (with respect to the

ordering ≤) in the cuboid [0, d1]× · · · × [0, dn] ⊂ Rn.

Now let P be an R-divisor defined by a maximal solution to the system of inequalities

above, P =
∑n

i=1 xiDi. Set N := D − P ; then, conditions (a) and (c) are satisfied by

construction (although P and N might have real coefficients).

Claim 2.2. Properties (b) and (d) hold as well.

This ends the proof of the existence of such a decomposition with real coefficients. A

closer look reveals that

Claim 2.3. The decomposition actually takes place at the level of Q-divisors, i.e., P,N as

above are Q-divisors.

Assume now that we are given a decomposition D = P +N .

Claim 2.4. P is a maximal G-nef subdivisor of D.

Now we are left to prove uniqueness. We show that a maximal G-nef Q-subdivisor of

D is in fact unique.

Claim 2.5. If P ′ =
∑n

i=1 x
′
iDi and P ′′ =

∑n
i=1 x

′′
iDi are G-nef Q-subdivisors of D, then

so is P = max(P ′, P ′′) :=
∑n

i=1 xiDi, where xi := max(x′i, x
′′
i ).

It follows that P is the maximal G-nef subdivisor of D; this concludes the proof of the

theorem.

Remark 2.6. We remark that given an effective Q-divisor D on X, its Zariski decomposi-

tion D = P +N in the sense of Theorem 1.1 coincides with the Zariski decomposition of

D with support in Nred.
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2.3. Technical lemmata

We now pay our debts, by proving the claims mentioned in the proof above.

Proof of Claim 2.1. Indeed, the subset K of Rn described by these inequalities is the

intersection of finitely many half-spaces; notice that we always have a solution (the vector

x = 0). Consider the family of hyperplanes

Ht :=

{
(x1, . . . , xn) ∈ Rn :

n∑
i=1

xi = t
n∑

i=1

di

}
;

then, there is a maximal t such that Ht intersects K.

Proof of Claim 2.2. Notice that in case D = P , conditions (b) and (d) hold, and thus we

can assume that N is nonzero.

(b) Write N =
∑

i νiDi. For a fixed i, consider the intersection numbers Di.Gj , j =

1, . . . ,m; if Di.Gj ≥ 0 ∀ j = 1, . . . ,m, then P + εDi is G-nef (for a suitable ε > 0),

and this contradicts the maximality of P . Thus there must exist a j = j(i) such

that Di.Gj < 0, thus Di = Gj and D2
i = G2

j < 0. Since this holds for every i, we

get N =
∑

i νiGi, after possibly rearranging indexes.

(d) By (b), N =
∑

i νiGi. If P.Gi > 0, with Gi ⊆ supp(N), then P + εGi ≤ D and

P + εGi is G-nef, for small enough ε > 0, contradicting the maximality of P . Then

P.Gi = 0, because P is G-nef, and P.N = 0.

Proof of Claim 2.3. Assume we are given a decomposition D = P + N with real coeffi-

cients; then the negative part N =
∑

i νiGi has negative definite matrix because ΦN is

the restriction of ΦG to the subspace V of Rm defined by

V := {x ∈ Rm | xi = 0 ∀ i : νi = 0} .

Now, notice that P =
∑n

i=1 xiDi is such that

1. 0 = P.Dj =
∑n

i=1 xi(Di.Dj), for all j corresponding to Dj ⊂ supp(N), by orthogo-

nality of P and N ;

2. xi = di, for all i such that Di " supp(N).

Hence, possibly after rearranging, this can be written into matricial form as

A B

0 I



x1
...

xn

 =

0

d

 ∈ Qn,
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where A = µN is negative definite, 0 has zero entries, I is the identity matrix, and d

is the vector of the di’s, everything with the appropriate dimension, in accordance with

condition 1 and 2 above. Since the matrix on the left-hand side has integer coefficients and

is invertible, we get that the vector (x1, . . . , xn) actually lies in Qn, proving the existence

part of the theorem.

Proof of Claim 2.4. Indeed, given a G-nef divisor P ′,

P ≤ P ′ ≤ D = P +N,

we have that P ′ = P +
∑

i yiGi (yi ≥ 0). G-nefness of P ′ and orthogonality between P

and N imply that

0 ≤ P ′.Gj =
∑
i

yi(Gi.Gj) ∀ j.

Then, by multiplying by yj , we get
∑

i yiyj(Gi.Gj) ≥ 0 ∀ j, and by summing over all j,

we get

0 ≤
∑
i,j

yiyj(Gi.Gj) =

(∑
i

yiGi

)2

= ΦG(y).

Since ΦG is negative definite, it can only be ΦG(y) = 0, and this happens if and only if

y = 0, yielding P ′ = P and thus the maximality of P .

Proof of Claim 2.5. Showing that P is G-nef is equivalent to showing that it is Gi-nef

for every i = 1, . . . ,m. Notice that we can write P as the sum of a nef and an effective

Q-divisor, for instance

P = P ′ + E, E := P − P ′ =
∑
k

ekDk.

If Gi * supp(E), then P.Gi ≥ 0; otherwise, Gi = Dj for some j. If x′j ≥ x′′j , we get

E.Gi = E.Dj =
n∑

k=1

{
max(x′k, x

′′
k)− x′k

}
(Dk.Dj)

=
∑
k 6=j

{
max(x′k, x

′′
k)− x′k

}
(Dk.Dj) ≥ 0,

and thus

P.Gi = E.Gi︸ ︷︷ ︸
≥0

+P ′.Gi︸ ︷︷ ︸
≥0

≥ 0,

i.e., P is Gi-nef. If x′j < x′′j instead, we just consider the analogous decomposition of P as

P = P ′′ + F, F := P − P ′′ =
∑
k

fkDk,

and the Gi-nefness of P follows as above.

Remark 2.7. Notice that the proofs of Claim 2.3, Claim 2.4 and Claim 2.5 do not rely on

P being effective, a fact we will make use of in what follows.
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3. Improvements to Zariski decomposition with support

3.1. Decomposition of arbitrary Q-divisors

We now would like to generalize Theorem 1.2; we will first try to relax the assumption on

D being effective. The motivation lies in the fact that Zariski decomposition characterizes

pseudo-effectivity. Fujita [3] showed that if D is pseudo-effective, then we do have a Zariski

decomposition; it is straightforward to see that the converse also holds true. Therefore,

we formulate the following

Question 3.1. Which Q-divisors on a surface are characterized by the existence of a

Zariski decomposition with support in G, for some fixed negative definite cycle G?

The answer, which lies in Theorem 1.3, is that every Q-divisor admits such a decompo-

sition, as we will prove shortly. The proof of Theorem 1.2 shows that Theorem 1.3 would

follow from

Lemma 3.2. Let D be a Q-divisor, and let G =
∑q

i=1Gi be a negative definite cycle.

Then there exists a subdivisor P ≤ D, possibly with real coefficients, such that P is G-nef.

Proof. If D is G-nef, we put P := D; otherwise, D is negative on some of the Gi’s. Set

P := D −
q∑

i=1

xiGi,

where x = (x1, . . . , xq) ∈ Rq
≥0. Then P is G-nef if and only if

P.Gj ≥ 0, ∀ j = 1, . . . , q ⇐⇒
q∑

i=1

xi(Gi.Gj) ≤ D.Gj , ∀ j = 1, . . . , q

and the last condition is equivalent to the matrix inequality
G1.G1 · · · G1.Gq

...
. . .

...

Gq.G1 · · · Gq.Gq



x1
...

xq

 ≤

D.G1

...

D.Gq

 .(3.1)

The inequality (3.1) is equivalent to the following homogeneous one

(3.2)


−G1.G1 · · · −G1.Gq D.G1

...
. . .

...
...

−Gq.G1 · · · −Gq.Gq D.Gq

0 · · · 0 1




x1
...

xq

1

 ≥ 0;
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if we denote the matrix in (3.2) by M , (3.2) has a solution if and only if there exists a

solution to the system

(3.3)



t 6= 0,

M ·


x1
...

xq

t

 ≥ 0.

Moreover, all principal minors of M are positive: for, notice that M is built out of −µG,

which is positive definite since µG is negative definite; the claim now clearly follows.

Finally, we get the result by applying

Fact 3.3. [2] Let A be an n× n real matrix. If all the principal minors are positive, then

the system

(3.4)


x ≥ 0

x 6= 0

Ax > 0

has a solution.

Proof of Theorem 1.3. The lemma ensures the existence of a G-nef subdivisor of D (pos-

sibly with real coefficients); now we can choose the solution x to be minimal with respect

to the ordering ≤ defined in Section 2. This leads to a maximal subdivisor P of D, with

respect to the property of being G-nef, and we can now apply the same argument in

Theorem 1.2 to conclude, by virtue of Remark 2.7.

3.2. The case of arbitrary support

So far, we can decompose any Q-divisor with respect to a negative definite cycle G; we

now would like to weaken the hypothesis on G being negative definite. Thus, we formulate

the following

Question 3.4. Does there exist a Zariski decomposition with support in an arbitrary

cycle?

We might have to assumeD satisfies some additional property, as the following example

shows.
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Example 3.5. Let X = P2
k, D = −H and G = H, H being the hyperplane divisor.

Then, −H.H = −1, and thus −H is not H-nef, but also H2 > 0, meaning that H is not

a negative definite cycle. Hence, there is no Zariski decomposition of −H with support in

H.

A nice setup seems to be assuming D to be pseudo-effective. In fact, pseudo-effective

Q-divisors have the property to detect negative definite cycles by means of the intersection

form, as the following result points out.

Lemma 3.6 (Lemma 1.10 of [3]). Let {Ci}i=1,...,q be a family of integral curves such that

the matrix 
C1.C1 · · · C1.Cr

...
. . .

...

Cr.C1 · · · Cr.Cr


is negative definite for some r < q. If D is a pseudo-effective Q-divisor such that D.Ci ≤ 0

for every i = 1, . . . , q and D.Ci < 0 for i = r + 1, . . . , q, then the matrix

C1.C1 · · · C1.Cr C1.Cr+1 · · · C1.Cq

...
. . .

...
...

. . .
...

Cr.C1 · · · Cr.Cr Cr.Cr+1 · · · Cr.Cq

Cr+1.C1 · · · Cr+1.Cr Cr+1.Cr+1 · · · Cr+1.Cq

...
. . .

...
...

. . .
...

Cq.C1 · · · Cq.Cr Cq.Cr+1 · · · Cq.Cq


is also negative definite.

More precisely, suppose G =
∑
Gi is an arbitrary cycle, and let D be a pseudo-effective

Q-divisor. Then, the cycle of curves on which D is negative,

G′ :=
∑

D.Gi<0

Gi,

is a negative definite cycle (apply Lemma 3.6 to the case r = 0); this puts us in the

situation of Theorem 1.3. We will show that, under the assumption that D is pseudo-

effective, we do have Zariski decomposition with support in an arbitrary cycle G. The

main idea is to fix the non-G-nefness of D step by step, by iterating Theorem 1.3. The

key to the iteration process lies within the following

Lemma 3.7 (Lemma 1.8 of [3]). Let {Ci}i=1,...,q be a family of distinct integral curves,

and let E :=
∑q

i=1 aiCi be a Q-divisor. If D is a pseudo-effective Q-divisor such that

(D − E).Ci ≤ 0 ∀ i = 1, . . . , q, then D − E is pseudo-effective.
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Proof of Theorem 1.4. If D is G-nef, then we are done; otherwise, define

G(1) :=
∑

D.Gi<0

Gi;

by Lemma 3.6, G(1) is a negative definite cycle. Hence, we can write the Zariski decom-

position of D with support in G(1):

D = PG(1) +NG(1) .

If PG(1) is G-nef, then we are done; otherwise, we notice that PG(1) is pseudo-effective by

Lemma 3.7. Now, define

G(2) := G(1) +
∑

P
G(1) .Gi<0

Gi;

again by Lemma 3.6, G(2) is a negative definite cycle. Write the Zariski decomposition

with support in G(2)

PG(1) = PG(2) +NG(2) ,

and obtain the decomposition

D = PG(2) + (NG(1) +NG(2)) .

If PG(2) is G-nef, then we are done; otherwise we repeat this process, which must come to

an end since G is a finite sum of integral curves.

The iterative approach to Theorem 1.4 shows that Zariski decomposition in the sense

of Fujita [3] is obtained by iterating Zariski decomposition with support: if D is pseudo-

effective, let G be the cycle of curves which are negative on D (their number is bounded

by the Picard number, thanks to Lemma 3.6). Then, we apply repeatedly Theorem 1.4

until we get the desired decomposition.

Notice that this approach indeed coincides with Fujita’s: given D pseudo-effective, he

builds a Q-divisor N1 such that D.Gi = N1.Gi, for every curve Gi which is negative on

D. But since the cycle
∑
Gi is negative definite, then N1 must coincide with the one we

built analogously, and similarly at any other step of the iteration.

Remark 3.8. In this new setting, we could not make use of Bauer’s method. In fact,

Bauer’s idea was used in an effective setup, in which we did know where to look for curves

which are negative on the divisor we started with: in fact, these bad curves are among the

components of D itself, since D.C ≥ 0 for every irreducible C not in the support of D, and

thus there are only finitely many conditions to impose in order to get nefness; moreover,

the coefficients of P are bounded from below and above. However, in the pseudoeffective

case, these conditions do not hold in general, for:
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1. there may exist some curve which is not in the support of D, but on which D is

negative;

2. there is no elementary reasoning (e.g., by using linear algebra) that allows us to

argue that the number of curves on which D is negative is finite (Fujita dealt with

these nontrivially in [3]);

3. the coefficients of P are not bounded from below anymore.

3.3. More on the support

Now that we have established the existence and uniqueness of Zariski decomposition with

support in an arbitrary cycle, it remains to determine how much of the support G we

really need.

Question 3.9. To what extent is the support G really necessary? In other words, does

there exists a subdivisor G′ of G which is enough to realize the Zariski decomposition with

support?

First of all, notice that the proof of Theorem 1.4 shows that NG has support in the

components of G having negative self-intersection. Secondly, curves with nonnegative

self-intersection play no role in the Zariski decomposition with support. In fact, writing

G =
∑
i

Gi = G+ +G−, G+ :=
∑
G2

i≥0

Gi, G− :=
∑
G2

i<0

Gi,

we see that, for every pseudo-effective D, D.Gi ≥ 0 for all components Gi ⊂ G+. This

means that the curves in G+ play no role at any stage of the iteration, and in particular

they will not appear as components of the negative part of D. It follows that, we can

restrict to consider cycles whose components have negative self-intersection, once again

pointing out the importance of this class of curves in the geometry of surfaces.

Example 3.10 (Example 3.5 reloaded). Going back to the example X = P2, D = −H
and G = H, we see that we were actually asking for the Zariski decomposition of D with

support in G− = 0.

However, in general not all the curves of a cycle will be essential for the existence of

a decomposition. It is straightforward to come up with examples: we just need a surface

whose Picard number is exceeded by the number of negative curves.

Example 3.11. Let

X : x40 + x41 + x42 + x43 = 0
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be the Fermat quartic surface in P3: it is a K3 surface containing 48 lines, each having

self-intersection −2. Since X has Picard number 20, the 48 lines cannot form a negative

definite cycle. Same for the Schur quartic surface in P3

Y : x40 + x0x
3
1 + x42 + x2x

3
3 = 0,

which contains 64 lines of self-intersection −2 and has Picard number 20.
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