Shadowable Chain Recurrence Classes for Generic Diffeomorphisms

Keonhee Lee and Manseob Lee*

Abstract. Let $\operatorname{Diff}(M)$ be the space of diffeomorphisms of a closed C^{∞} manifold M ($\operatorname{dim} M \geq 2$) endowed with the C^{1} topology. In this paper we show that for C^{1} generic $f \in \operatorname{Diff}(M)$, any shadowable chain recurrence class C_{f} is hyperbolic if it contains a hyperbolic periodic point.

1. Introduction

Let M be a closed C^{∞} manifold with $\operatorname{dim} M \geq 2$, and let $\operatorname{Diff}(M)$ be the space of diffeomorphisms of M endowed with the C^{1} topology. Denote by d the distance on M induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle $T M$. Let $f \in \operatorname{Diff}(M)$. For $\delta>0$, a sequence of points $\left\{x_{i}\right\}_{i=a}^{b}(-\infty \leq a<b \leq \infty)$ in M is called a δ-pseudo orbit of f if $d\left(f\left(x_{i}\right), x_{i+1}\right)<\delta$ for all $a \leq i \leq b-1$. Let Λ be a closed f invariant set. We say that f has the shadowing property on Λ (or, Λ is shadowable for f) if for every $\epsilon>0$ there is $\delta>0$ such that for any δ-pseudo orbit $\left\{x_{i}\right\}_{i=a}^{b} \subset \Lambda$ of $f(-\infty \leq a<b \leq \infty)$, there is a point $y \in M$ (not necessary in Λ) such that $d\left(f^{i}(y), x_{i}\right)<\epsilon$ for all $a \leq i \leq b-1$.

We say that Λ is hyperbolic if the tangent bundle $T_{\Lambda} M$ has a $D f$-invariant splitting $E^{s} \oplus E^{u}$ and there exist constants $C>0$ and $0<\lambda<1$ such that

$$
\left\|\left.D_{x} f^{n}\right|_{E_{x}^{s}}\right\| \leq C \lambda^{n} \quad \text { and } \quad\left\|\left.D_{x} f^{-n}\right|_{E_{x}^{u}}\right\| \leq C \lambda^{n}
$$

for all $x \in \Lambda$ and $n \geq 0$. If $\Lambda=M$ then f is said to be Anosov.
Robinson [12] and Sakai [13] proved that a diffeomorphism $f \in \operatorname{Diff}(M)$ belongs to the C^{1} interior of the set of diffeomorphisms with the shadowing property if and only if f is structurally stable.

We say that Λ is transitive if there is a point $x \in \Lambda$ such that $\omega(x)=\Lambda . \quad \Lambda$ is locally maximal if there is a neighborhood U of Λ such that $\bigcap_{n \in \mathbb{Z}} f^{n}(U)=\Lambda$. A subset $\mathcal{G} \subset \operatorname{Diff}(M)$ is called residual if it contains a countable intersection of open and dense subsets of $\operatorname{Diff}(M)$. A dynamic property is called C^{1} generic if it holds in a residual subset of $\operatorname{Diff}(M)$.

[^0]Abdenur and Díaz [1] proved that if Λ is a locally maximal transitive set of a C^{1} generic diffeomorphism, then either Λ is hyperbolic, or there are a C^{1} neighborhood $\mathcal{U}(f)$ of f and a neighborhood U of Λ such that for any $g \in \mathcal{U}(f), g$ is does not have the shadowing property on $\Lambda_{g}(U)=\bigcap_{n \in \mathbb{Z}} g^{n}(U)$. Moreover they posed an open problem:
> " C^{1} generically, a diffeomorphism has the shadowing property if and only if it is hyperbolic?"

The above probelm is still open, but Lee and Wen (10 showed that C^{1} generically, if a locally maximal chain transitive set is shadowing then it is hyperbolic. We say that a closed invariant set $\Lambda \subset M$ is robustly transitive if there are a C^{1} neighborhood $\mathcal{U}(f)$ of f and a neighborhood U of Λ such that for any $g \in \mathcal{U}(f), \Lambda_{g}(U)=\bigcap_{n \in \mathbb{Z}} g^{n}(U)$ is transitive for g. Here $\Lambda_{g}(U)$ is called the continuation of Λ for g. Tian and Sun [15] showed that if a diffeomorphism f has the C^{1} stable shadowing property in a robustly transitive set Λ (in the case, the shadowing points are in Λ) then it is a hyperbolic basic set. Moreover, they claimed that if f has the C^{1} generic stable shadowing property in a robustly transitive set Λ then it is a hyperbolic basic set. Here, we say that f has the C^{1} stable shadowing property in Λ if there exist a C^{1} neighborhood $\mathcal{U}(f)$ of f and a neighborhood U of Λ such that for any $g \in \mathcal{U}(f), g$ has the shadowing property in $\Lambda_{g}(U)$. We say that f has the C^{1} generic stable shadowing property in Λ if there exist a C^{1} neighborhood $\mathcal{U}(f)$ of f and a residual set $\mathcal{R} \subset \mathcal{U}(f)$ such that for any $g \in \mathcal{R}, g$ has the shadowing property in $\Lambda_{g}(U)$.

Using the results, we prove that C^{1} generically, any shadowable chain recurrent class is hyperbolic if it contains a hyperbolic periodic point.

2. Homoclinic classses for generic diffeomorphisms

For given $x, y \in M$, we write $x \rightsquigarrow y$ if for any $\delta>0$, there is a δ-pseudo orbit $\left\{x_{i}\right\}_{i=0}^{n}(n \geq$ 1) of f such that $x_{0}=x$ and $x_{n}=y$. The set $\{x \in M: x \rightsquigarrow x\}$ is called the chain recurrent set of f and is denoted by $\mathcal{C R}(f)$. It is easy to see that the set is closed and $f(\mathcal{C R}(f))=\mathcal{C} \mathcal{R}(f)$. The relation $\longleftrightarrow \rightsquigarrow$ induces an equivalence relation on $\mathcal{C} \mathcal{R}(f)$ whose classes are called chain recurrence classes of f and is denoted by \mathcal{C}_{f}. In general, the chain recurrent class is a closed and invariant set. For any $x \in M$, the orbit of x is denoted by $\operatorname{Orb}(x)=\left\{f^{n}(x): n \in \mathbb{Z}\right\}$. It is well known that if p is a hyperbolic periodic point of f with period $\pi(p)$ then the sets

$$
W^{s}(p)=\left\{x \in M: f^{\pi(p) n}(x) \rightarrow p \text { as } n \rightarrow \infty\right\}
$$

and

$$
W^{u}(p)=\left\{x \in M: f^{-\pi(p) n}(x) \rightarrow p \text { as } n \rightarrow \infty\right\}
$$

are C^{1} injectively immersed submanifolds of M. A point $x \in W^{s}(p) \cap W^{u}(p)$ is called a homoclinic point of f associated to p, and it is said to be a transversal homoclinic point of f if the above intersection is transversal at x; i.e., $x \in W^{s}(p) \pitchfork W^{u}(p)$. The closure of the transversal homoclinic points of f associated to p is called the homoclinic class of f associated to p, and it is denoted by $H_{f}(p)$. It is clear that $H_{f}(p)$ is a compact, invariant and transitive set. Note that any chain recurrence class contains a homoclinic class. Bonatti and Crovisier [2] proved that every chain recurrence class containing a hyperbolic periodic point p is the homoclinic class $H_{f}(p)$ in the C^{1} generic sense. For any hyperbolic periodic point p, we say that f has a homoclinic tangency if $W^{s}(p)$ and $W^{u}(p)$ intersect nontransversaly. Denote by $\overline{\mathcal{H} \mathcal{T}}$ the closure of the set of diffeomorphisms exhibiting a homoclinic tangency. We say that a compact invariant set Λ admits a dominated splitting for f if the tangent bundle $T_{\Lambda} M$ has a continuous $D f$ invariant splitting $E \oplus F$ and there exist $C>0,0<\lambda<1$ such that for all $x \in \Lambda$ and $n \geq 0$, we have

$$
\left\|\left.D f^{n}\right|_{E(x)}\right\| \cdot\left\|\left.D f^{-n}\right|_{F\left(f^{n}(x)\right)}\right\| \leq C \lambda^{n} .
$$

If p is a hyperbolic periodic point then there are a C^{1}-neighborhood $\mathcal{U}(f)$ and a neighborhood U of p such that for any $g \in \mathcal{U}(f)$, there is a hyperbolic periodic point $p_{g} \in P(g)$, where $p_{g}=\bigcap_{n \in \mathbb{Z}} g^{n}(U)$ is called the continuation of p. The following was proved by Gourmelon in [8, Theorem 1.1].

Theorem 2.1. For generic $f \in \operatorname{Diff}(M)$, if f has a homoclinic class $H_{f}(p)$ which contains hyperbolic saddles of indices i and $j(i \leq j)$, then either
(a) $H_{f}(p)$ admits a dominated splitting of the form

$$
T_{H_{f}(p)} M=E \oplus E_{1} \oplus \cdots \oplus E_{j-i} \oplus F
$$

with $\operatorname{dim} E=i, \operatorname{dim} F=\operatorname{dim} M-j$ and $\operatorname{dim} E_{i}=1$ for all $i=1,2, \ldots, j-i$. Moreover, all subbundles E_{i} are non-hyperbolic, or
(b) for any C^{1}-neighborhood $\mathcal{U}(f)$ of f there is a $g \in \mathcal{U}(f)$ having a homoclinic tangency associated with a saddle of the homoclinic class $H_{g}\left(p_{g}\right)$, where p_{g} is the continuation of p.

For any two hyperbolic periodic points p and q, we say that f has a heterodimensional cycles if
(i) $\operatorname{dim} W^{s}(p) \neq \operatorname{dim} W^{s}(q)$,
(ii) $W^{s}(p) \cap W^{u}(q) \neq \emptyset$ and $W^{u}(p) \cap W^{s}(q) \neq \emptyset$.

Denote by $\overline{\mathcal{H C}}$ the closure of the set of diffeomorphisms exhibiting a heterodimensional cycle. In [4], Crovisier proved the following.

Theorem 2.2. For generic $f \in \operatorname{Diff}(M) \backslash \overline{\mathcal{H} \mathcal{T} \cup \mathcal{H C}}$, any homoclinic class $H_{f}(p)$ admits a partially hyperbolic spitting: $T_{H_{f}(p)} M=E^{s} \oplus E_{1}^{c} \oplus E_{2}^{c} \oplus E^{u}$, where $\operatorname{dim} E_{i}^{c}=0$ or 1 , for $i=1,2$ and $\operatorname{dim}\left(E^{s} \oplus E_{1}^{c}\right)$ coincides with the stable dimension of p.

Let p and q be hyperbolic periodic points. We say that q is homoclinically related to p (denoted by $p \sim q$) if

$$
W^{s}(p) \pitchfork W^{u}(q) \neq \emptyset \quad \text { and } \quad W^{u}(p) \pitchfork W^{s}(q) \neq \emptyset
$$

Let μ be an invariant measure of f. Then for μ-almost every $x \in M$, there exist real numbers

$$
\xi_{f}^{1}(\mu, x) \leq \cdots \leq \xi_{f}^{n}(\mu, x)
$$

with $n=\operatorname{dim} M$ such that for every non-zero vector $v \in T_{x} M$, one has

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|D f^{n}(x) v\right\|=\xi_{f}^{i}(\mu, x)
$$

for some $i \in\{1,2, \ldots, n\}$. The number $\xi_{f}^{i}(\mu, x)$ is called the i-th Lyapunov exponent of the invariant measure μ at x. Moreover, if μ is taken to be ergodic, $\xi_{f}^{i}(\mu, x)$ is independent of x in a μ-full measure set. An ergodic measure μ is hyperbolic if all of its Lyapunov exponents are non-zero, or else, it is said to be non-hyperbolic.

For a homoclinic class $H_{f}(p)$ if for any $\delta>0$, there is a hyperbolic periodic point q such that (1) q is homoclinically related with p, and (2) q has one Lyapunov exponent in $(-\delta, \delta)$, then we say that $H_{f}(p)$ contains weak periodic orbits related to p. In [5], Corivisier et. al proved the following.

Theorem 2.3. For generic $f \in \operatorname{Diff}(M) \backslash \overline{\mathcal{H} \mathcal{T}}$, any homoclinic class $H_{f}(p)$ satisfy: either
(a) $H_{f}(p)$ is hyperbolic, or
(b) $H_{f}(p)$ contains weak periodic orbits related to p.

Let Λ be a closed f invariant set. We say that Λ is expansive if there is $e>0$ such that for any $x, y \in \Lambda$ if $d\left(f^{i}(x), f^{i}(y)\right)<e$ for all $i \in \mathbb{Z}$ then $x=y$. It is well known that if Λ is hyperbolic then Λ is expansive. Yang and Gan 17 proved that C^{1} generically, every expansive homoclinic class $H_{f}(p)$ is hyperbolic.

For the result, we study that for a C^{1} generic diffeomorphism f, if any chain recurrence class \mathcal{C}_{f} which contains a hyperbolic periodic point $p\left(\mathcal{C}_{f}(p)\right)$ is shadowable then it is hyperbolic. The following is our main result.
Main Theorem. For generic $f \in \operatorname{Diff}(M)$, any shadowable chain recurrence class \mathcal{C}_{f} of f is hyperbolic if it contains a hyperbolic periodic point.

3. Proof of main theorem

Let Λ be a closed f invariant set. For $x \in \Lambda$ and any $\epsilon>0$, let

$$
W_{\epsilon}^{s}(x)=\left\{y \in M: d\left(f^{n}(x), f^{n}(y)\right) \leq \epsilon, \text { for all } n \geq 0\right\}
$$

and

$$
W_{\epsilon}^{u}(x)=\left\{y \in M: d\left(f^{-n}(x), f^{-n}(y)\right) \leq \epsilon, \text { for all } n \geq 0\right\}
$$

be the local stable set and the local unstable set of x, respectively. If Λ is hyperbolic then there is $\eta>0$ such that for any $0<\epsilon \leq \eta$, and $x \in \Lambda$, the set $W_{\epsilon}^{s}(x)$ and $W_{\epsilon}^{u}(x)$ are embedded manifolds.

Lemma 3.1. If f has the shadowing property on $H_{f}(p)$ then for any hyperbolic saddle $q \in H_{f}(p)$ we have $W^{s}(p) \cap W^{u}(q) \neq \emptyset$ and $W^{u}(p) \cap W^{s}(q) \neq \emptyset$.

Proof. Let q be a hyperbolic saddle. Since $H_{f}(p)$ is transitive there is a point $x \in H_{f}(p)$ such that $\omega(x)=H_{f}(p)$. Thus for any $\eta>0$ there are $j_{1}>0$ and $j_{2}>0$ such that $d\left(f^{j_{1}}(x), p\right)<\eta$ and $d\left(f^{j_{2}}(x), q\right)<\eta$. For simplicity, we assume that $f(p)=p, f(q)=$ q. Since p, q are hyperbolic there exist $\epsilon(p)>0$ and $\epsilon(q)>0$ such that $W_{\epsilon(p)}^{\sigma}(p)$ and $W_{\epsilon(q)}^{\sigma}(q)$ are submanifolds of M, as above, where $\sigma=s, u$. Take $\epsilon=\min \{\epsilon(p), \epsilon(q)\}$. Let $0<\delta(\epsilon)=\delta \leq \eta / 4$ be the number obtained by the shadowing property. Without loss of generality, $j_{2}=j_{1}+k$ for some $k>0$. Then we construct a δ-pseudo orbit $\left\{x_{i}\right\}_{i \in \mathbb{Z}}$ as follows:
(i) $x_{-i}=f^{-i}(p)$ for $i \geq 0$,
(ii) $f^{j_{1}+i}(x)=x_{1+i}$ for $i=0,1, \ldots, k-1$, and
(iii) $x_{i}=f^{i}(q)$ for $i \geq k+1$.

By (i), (ii) and (iii), $\left\{x_{i}\right\}_{i \in \mathbb{Z}}$ is the δ-pseudo orbit

$$
\begin{aligned}
\left\{x_{i}\right\}_{i \in \mathbb{Z}} & =\left\{\ldots, p, f^{j_{1}}(x), f^{j_{1}+1}(x), \ldots, f^{j_{1}+k-1}(x), q, \ldots\right\} \\
& =\left\{\ldots, x_{0}=p, x_{1}, x_{2}, \ldots, x_{k-1}, x_{k}, x_{k+1}=q, q, \ldots\right\} .
\end{aligned}
$$

Then it is clear $\left\{x_{i}\right\}_{i \in \mathbb{Z}} \subset H_{f}(p)$. By the shadowing property, there is $y \in M$ such that $d\left(f^{i}(y), x_{i}\right)<\epsilon$ for all $i \in \mathbb{Z}$. Then $y \in W^{u}(p)$ and $f^{k}(y) \in W^{s}(q)$. Since $y \in$ $f^{-k}\left(W^{s}(q)\right) \subset W^{s}(q)$, we have $W^{u}(p) \cap W^{s}(q) \neq \emptyset$. Similarly, we have $W^{s}(p) \cap W^{u}(q) \neq$ \emptyset.

Let $P(f)$ be the set of all periodic points of f. We say that f is Kupka-Smale if every periodic point is hyperbolic, and all their invariant manifolds are transverse. Denote by $\mathcal{K} \mathcal{S}(M)$ the set of Kupka-Smale diffeomorphisms. It is well-known that $\mathcal{K} \mathcal{S}(M)$ is a residual set in $\operatorname{Diff}(M)$.

Proposition 3.2. There is a residual set $\mathcal{G}_{1} \subset \operatorname{Diff}(M)$ such that for any $f \in \mathcal{G}_{1}$, if f has the shadowing property on $H_{f}(p)$ then for any hyperbolic periodic point $q \in H_{f}(p)$,

$$
W^{s}(p) \pitchfork W^{u}(q) \neq \emptyset \quad \text { and } \quad W^{u}(p) \pitchfork W^{s}(q) \neq \emptyset
$$

Proof. Let $\mathcal{G}_{1}=\mathcal{K} \mathcal{S}(M)$ and let $f \in \mathcal{G}_{1}$ have the shadowing property on $H_{f}(p)$. By Lemma 3.1, for any $q \in H_{f}(p) \cap P_{h}(f)$, we have

$$
W^{s}(p) \cap W^{u}(q) \neq \emptyset \quad \text { and } \quad W^{u}(p) \cap W^{s}(q) \neq \emptyset
$$

where $P_{h}(f)$ is the set of all hyperbolic periodic points of f. Since $f \in \mathcal{K} \mathcal{S}(M)$, we know

$$
W^{s}(p) \pitchfork W^{u}(q) \neq \emptyset \quad \text { and } \quad W^{u}(p) \pitchfork W^{s}(q) \neq \emptyset
$$

Lemma 3.3. 9, Lemma 2.2] There is a residual set $\mathcal{G}_{2} \subset \operatorname{Diff}(M)$ such that for any $f \in \mathcal{G}_{2}$, if for any C^{1} neighborhood $\mathcal{U}(f)$ of f there is $g \in \mathcal{U}(f)$ such that g has two distinct hyperbolic periodic points p_{g} and q_{g} with $\operatorname{index}\left(p_{g}\right) \neq \operatorname{index}\left(q_{g}\right)$, then f has two distinct hyperbolic periodic points p and q with $\operatorname{index}(p) \neq \operatorname{index}(q)$, where $\operatorname{index}(p)=\operatorname{dim} W^{s}(p)$.

For $\eta>0$, a C^{1}-curve $\mathcal{J} \subset M$ is called η simply periodic curve (see 17) of f if
(a) \mathcal{J} is diffeomorphic to $[0,1]$, and its end points are hyperbolic periodic points of f;
(b) \mathcal{J} is periodic with period $\pi(\mathcal{J})$, that is, $f^{\pi(\mathcal{J})}(\mathcal{J})=\mathcal{J}$, and $L\left(f^{i}(\mathcal{J})\right)<\eta$ for all $i=0,1, \ldots, \pi(\mathcal{J})-1$, where $L(\mathcal{J})$ denotes the length of \mathcal{J};
(c) \mathcal{J} is normally hyperbolic.

Lemma 3.4. 17, Lemma 2.1] There is a residual set $\mathcal{G}_{3} \subset \operatorname{Diff}(M)$ such that for any $f \in \mathcal{G}_{3}$, and $p \in P(f)$ if for any $\eta>0$ and a C^{1} neighborhood $\mathcal{U}(f)$ of f there is $g \in \mathcal{U}(f)$ such that g has an η simply periodic curve \mathcal{J} which two endpoints are homoclinically related with p_{g}, then f has an η-simply periodic curve \mathcal{I} such that the two endpoints of \mathcal{I} are homoclinically related to p.

For $p, q \in P_{h}(f)$, if $p \sim q$ then it is clear that $\operatorname{dim} W^{s}(p)=\operatorname{dim} W^{s}(q)$, that is, $\operatorname{index}(p)=\operatorname{index}(q)$. For $p \in P(f)$, the set of normalized eigenvalues of $D_{p} f^{\pi(p)}$ is the set $\left\{\lambda^{1 / \pi(p)}: \lambda\right.$ eigenvalues of $\left.D_{p} f^{\pi(p)}\right\}$. The following Franks' lemma 7 will play essential roles in our proofs.

Lemma 3.5. Let $\mathcal{U}(f)$ be any given C^{1} neighborhood of f. Then there exist $\epsilon>0$ and a C^{1} neighborhood $\mathcal{U}_{0}(f) \subset \mathcal{U}(f)$ of f such that for given $g \in \mathcal{U}_{0}(f)$, a finite set $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$, a neighborhood U of $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ and linear maps $L_{i}: T_{x_{i}} M \rightarrow T_{g\left(x_{i}\right)} M$ satisfying $\left\|L_{i}-D_{x_{i}} g\right\| \leq \epsilon$ for all $1 \leq i \leq N$, there exists $\widehat{g} \in \mathcal{U}(f)$ such that $\widehat{g}(x)=g(x)$ if $x \in\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \cup(M \backslash U)$ and $D_{x_{i}} \widehat{g}=L_{i}$ for all $1 \leq i \leq N$.

Lemma 3.6. There is a residual set $\mathcal{G}_{4} \subset \operatorname{Diff}(M)$ such that for any $f \in \mathcal{G}_{4}$, if f has the shadowing property on $H_{f}(p)$, then for any $q \in H_{f}(p) \cap P_{h}(f)$ with $q \sim p$, the moduli of the normalized eigenvalues of q are uniformly bounded away from 1.

Proof. Let $\mathcal{G}_{4}=\mathcal{G}_{1} \cap \mathcal{G}_{2} \cap \mathcal{G}_{3}$. Suppose that $f \in \mathcal{G}_{4}$ has the shadowing property on $H_{f}(p)$. Assume that there is $q \in H_{f}(p) \cap P_{h}(f)$ with $q \sim p$ such that the normalized eigenvalue λ of $D_{q} f^{\pi(q)}$ is close to 1 .

Note that if $D_{q} f^{\pi(q)}$ has the normalized eigenvalue λ which is closed to 1 then by Lemma 3.5, there is $g C^{1}$ close to f such that $D_{q_{g}} g^{\pi(q)}$ has an eigenvalue μ with $\mu=1$. Then clearly we have index $\left(q_{g}\right)<\operatorname{index}(q)$ (for more detail see [14, Proposition 3]).

By Lemma 3.5, there is $g C^{1}$ close to f such that g has an η simply periodic curve $\mathcal{J}_{q_{g}}$ which two endpoints are homoclinically related with p_{g}, and $\operatorname{index}\left(q_{g}\right) \neq \operatorname{index}\left(p_{g}\right)$. By Lemmas 3.3 and 3.4, f has an η simply periodic curve \mathcal{I}_{q} which two endpoints are homoclinically related with p, and $\operatorname{index}(q) \neq \operatorname{index}(p)$. This is a contradiction since $q \sim p$.

The family of periodic sequences of linear isomorphisms of $\mathbb{R}^{\operatorname{dim} M}$ generated by $D f$ along the hyperbolic periodic points $q \in H_{f}(p)$ with $q \sim p$ is uniformly hyperbolic means that there is $\epsilon>0$ such that for any $g\left(C^{1}\right.$ close to $\left.f\right)$, the hyperbolic periodic point $q_{g} \in P(g)$ with $q_{g} \sim p_{g}$ (see [14, p. 475]).

Proposition 3.7. If $f \in \mathcal{G}_{4}$ has the shadowing property on $H_{f}(p)$, then there is $\lambda \in(0,1)$ such that for any $q \in H_{f}(p) \cap P_{h}(f)$ and $x \in \operatorname{Orb}(q)$, we have

$$
\prod_{i=0}^{\pi(q)-1}\left\|\left.D f^{i}\right|_{E^{s}\left(f^{i}(x)\right)}\right\| \leq \lambda^{\pi(q)} \quad \text { and } \prod_{i=0}^{\pi(q)-1}\left\|\left.D f^{-i}\right|_{E^{u}\left(f^{-i}(x)\right)}\right\| \leq \lambda^{\pi(q)}
$$

where $\pi(q)$ is the period of q.
Proof. Let $f \in \mathcal{G}_{4}$ has the shadowing property on $H_{f}(p)$. For any $q \in H_{f}(p) \cap P_{h}(f)$, we have $q \sim p$ by Proposition 3.2 . Since f has the shadowing property on $H_{f}(p)$, the moduli of the normalized eigenvalues of $D_{q} f^{\pi(q)}$ are uniformly bounded away from 1 . Thus by [11, Lemma II.3], we obtain that for any $x \in \operatorname{Orb}(q)$, we have

$$
\prod_{i=0}^{\pi(q)-1}\left\|\left.D f^{i}\right|_{E^{s}\left(f^{i}(x)\right)}\right\| \leq \lambda^{\pi(q)} \quad \text { and } \prod_{i=0}^{\pi(q)-1}\left\|\left.D f^{-i}\right|_{E^{u}\left(f^{-i}(x)\right)}\right\| \leq \lambda^{\pi(q)}
$$

where $\pi(q)$ is the period of q.
For any $p \in P(f)$ and $\delta \in(0,1)$, we say p has a δ weak eigenvalue of f if $D_{p} f^{\pi(p)}$ has an eigenvalue λ such that $(1-\delta)^{\pi(p)}<|\lambda|<(1+\delta)^{\pi(p)}$.

Lemma 3.8. For any $f \in \mathcal{G}_{4}$, if f has the shadowing property on $H_{f}(p)$ then all the Lyapunov exponents of all periodic points homoclinically related to p are uniformly away from 0 .

Proof. Let $f \in \mathcal{G}_{4}$ has the shadowing property on $H_{f}(p)$, and let $q \in H_{f}(p) \cap P_{h}(f)$. Note that if there is a periodic point q of f that is homoclinically related to p and has a Lyapunov exponent arbitrarily close to 0 then there is $g C^{1}$ close to f such that

$$
\chi\left(q_{g}, v^{c}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left\|D_{q_{g}} g^{n}\left(v^{c}\right)\right\|=0
$$

for $v^{c} \in E^{c}$, where E^{c} is associated to an eigenvalue $\lambda(|\lambda|=1)$ of $D_{q_{g}} g^{\pi\left(q_{g}\right)}$. Here, the periodic point q has a Lyapunov exponent arbitrarily close to 0 means that for any $\delta>0$, q has a δ weak eigenvalue. Now, we know that for any periodic point $q \in H_{f}(p), q$ is homoclinically related to p by applying Proposition 3.2. To prove the lemma, we may assume that for any $\delta>0, q$ has a δ weak eigenvalue. Since f has the shadowing property on $H_{f}(p)$ and $q \in H_{f}(p)$, we know $q \sim p$. By Proposition 3.7, q has no δ-weak eigenvalue. This is a contradiction and so completes the proof.

Note that if Lemma 3.8 holds, then $H_{f}(p)$ admits a dominated splitting $T_{H_{f}(p)} M=$ $E \oplus F$ with $\operatorname{dim} E=\operatorname{index}(p)$.

Theorem 3.9. [16] There is a residual set $\mathcal{G}_{5} \subset \operatorname{Diff}(M)$ such that for any $f \in \mathcal{G}_{5}$, a homoclinic class $H_{f}(p)$ either is hyperbolic, or contains periodic orbits with arbitrarily long periods that are homoclinically related to p and has a Lyapunov exponent arbitrarily close to 0 .

Proof of main theorem. Let $\mathcal{G}=\mathcal{G}_{4} \cap \mathcal{G}_{5}$, and assume that $f \in \mathcal{G}$ has the shadowing property on $H_{f}(p)$. By Proposition 3.2 , for any hyperbolic periodic point $q \in H_{f}(p)$, we know $q \sim p$, and by Lemma 3.8, all Lyapunov exponents of q are uniformly away from 0 . Consequently, by Theorem 3.9, $H_{f}(p)$ is hyperbolic.

A sequence $\left\{x_{i}\right\}_{i \in \mathbb{Z}}$ is said to be a limit pseudo orbit of f if $d\left(f\left(x_{i}\right), x_{i+1}\right) \rightarrow 0$ as $i \rightarrow \pm \infty$. We say that f has the limit shadowing property in Λ (or Λ is limit shadowable for f) if for any $\left\{x_{i}\right\}_{i \in \mathbb{Z}} \subset \Lambda$ there is $y \in \Lambda$ such that $d\left(f^{i}(y), x_{i}\right) \rightarrow 0$ as $i \rightarrow \pm \infty$. Let $f: M \rightarrow M$ be a diffeomorphism which has the limit shadowing property. Then by [3, Theorem A], f has the shadowing property. Thus we have the following corollary.

Corollary 3.10. For generic $f \in \operatorname{Diff}(M)$, any limit shadowable chain recurrence class \mathcal{C}_{f} of f is hyperbolic if it contains a hyperbolic periodic point.

For any $\delta>0$, a sequence $\xi=\left\{x_{i}\right\}_{i \in \mathbb{Z}}$ is said to be a δ-ergodic pseudo orbit of f if for

$$
N p_{n}^{+}(\xi, f, \delta)=\left\{i: d\left(f\left(x_{i}\right), x_{i+1}\right) \geq \delta\right\} \cap\{0,1, \ldots, n-1\}
$$

and

$$
N p_{n}^{-}(\xi, f, \delta)=\left\{-i: d\left(f^{-1}\left(x_{-i}\right), x_{-i-1}\right) \geq \delta\right\} \cap\{-n+1, \ldots,-1,0\}
$$

we have

$$
\lim _{n \rightarrow \infty} \frac{\# N p_{n}^{+}(\xi, f, \delta)}{n}=0 \quad \text { and } \quad \lim _{n \rightarrow-\infty} \frac{\# N p_{n}^{-}(\xi, f, \delta)}{n}=0
$$

We say that f has the ergodic shadowing property in Λ (or Λ is ergodic shadwoable for f) if for any $\epsilon>0$, there is a $\delta>0$ such that every δ-ergodic pseudo orbit $\xi=\left\{x_{i}\right\}_{i \in \mathbb{Z}} \subset \Lambda$ of f there is a point $z \in \Lambda$ such that for

$$
N s_{n}^{+}(\xi, f, z, \epsilon)=\left\{i: d\left(f^{i}(z), x_{i}\right) \geq \epsilon\right\} \cap\{0,1, \ldots, n-1\}
$$

and

$$
N s_{n}^{-}(\xi, f, z, \epsilon)=\left\{-i: d\left(f^{-i}(z), x_{-i}\right) \geq \epsilon\right\} \cap\{-n+1, \ldots,-1,0\}
$$

we have

$$
\lim _{n \rightarrow \infty} \frac{\# N s_{n}^{+}(\xi, f, z, \epsilon)}{n}=0 \quad \text { and } \quad \lim _{n \rightarrow-\infty} \frac{\# N s_{n}^{-}(\xi, f, z, \epsilon)}{n}=0 .
$$

Corollary 3.11. For generic $f \in \operatorname{Diff}(M)$, any ergodic shadwoable chain recurrence class \mathcal{C}_{f} of f is hyperbolic if it contains a hyperbolic periodic point.

Acknowledgments

K. L is supported by NRF grant funded by the Korea goverment (MSIP)
(NRF-2015R1A2A2A01002437) and M. L is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT \& Future Planning (No-2014R1A1A1A05002124).

References

[1] F. Abdenur and L. J. Díaz, Pseudo-orbit shadowing in the C^{1} topology, Discrete Contin. Dynam. Syst. 17 (2007), no. 2, 223-245.
http://dx.doi.org/10.3934/dcds.2007.17.223
[2] C. Bonatti and S. Crovisier, Récurrence et généricité, Invent. Math. 158 (2004), 33-104.
[3] B. Carvalho and D. Kwietnaik, On homeomorphisms with the two-sided limit shadowing property, J. Math. Anal. Appl. 420 (2014), no. 1, 801-813.
http://dx.doi.org/10.1016/j.jmaa.2014.06.011
[4] S. Crovisier, Partial hyperbolicity far from homoclinic bifurcations, Advances in Math.
226 (2011), no. 1, 673-729. http://dx.doi.org/10.1016/j.aim.2010.07.013
[5] S. Crovisier, M. Sambarion and D. Yang, Partial hyperbolicity and homoclinic tangencies, J. Eur. Math. Soc. 17 (2015), no. 1, 1-49.
http://dx.doi.org/10.4171/jems/497
[6] A. Fakhari and F. H. Ghane, On shadowing: Ordinary and ergodic, J. Math. Anal. and Appl. 364 (2010), no. 1, 151-155.
http://dx.doi.org/10.1016/j.jmaa.2009.11.004
[7] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), no. 2, 301-308.
http://dx.doi.org/10.1090/s0002-9947-1971-0283812-3
[8] N. Gourmelon, Generation for homoclinic tangencies by C^{1}-perturbations, Discrete Contin. Dynam. Syst. 26 (2010), no. 1, 1-41. http://dx.doi.org/10.3934/dcds.2010.26.1
[9] M. Lee and S. Lee, Generic diffeomorphisms with robustly transitive sets, Commun. Korean Math. Soc. 28 (2013), no. 3, 581-587. http://dx.doi.org/10.4134/ckms.2013.28.3.581
[10] K. Lee and X. Wen, Shadowable chain transitive sets of C^{1}-generic diffeomorphisms, Bull. Korean Math. Soc. 49 (2012), no. 2, 263-270.
http://dx.doi.org/10.4134/bkms.2012.49.2.263
[11] R. Mañé, An ergodic closing lemma, Ann of Math. 116 (1982), no. 3, 503-540.
http://dx.doi.org/10.2307/2007021
[12] C. Robinson, Stability theorem and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 7 (1977), no. 3, 425-437.
http://dx.doi.org/10.1216/rmj-1977-7-3-425
[13] K. Sakai, Pseudo orbit tracing property and strong transversality of diffeomorphisms on closed manifolds, Osaka J. Math. 31 (1994), 373-386.
[14] M. Sambarino and J. Vieitez, On C^{1}-persistently expansive homoclinic classes, Discrete and Continuous Dynam. Sys. 14 (2006), no. 3, 465-481.
http://dx.doi.org/10.3934/dcds.2006.14.465
[15] X. Tian and W. Sun, Diffeomorphisms with various C^{1} stable properties, Acta Math. Scie. 32B (2012), no. 2, 552-558.
http://dx.doi.org/10.1016/s0252-9602(12)60037-x
[16] X. Wang, On the hyperbolicity of C^{1}-generic homoclinic classes, arXiv:1412.4656v1.
[17] D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), no. 4, 729-733. http://dx.doi.org/10.1088/0951-7715/22/4/002

Keonhee Lee
Department of Mathematics, Chungnam National University, Daejeon, 305-764, Korea E-mail address: khlee@cnu.ac.kr

Manseob Lee
Department of Mathematics, Mokwon University, Daejeon, 302-729, Korea
E-mail address: lmsds@mokwon.ac.kr

[^0]: Received January 21, 2015, accepted October 12, 2015.
 Communicated by Cheng-Hsiung Hsu.
 2010 Mathematics Subject Classification. Primary: 37C50; Secondary: 37C20.
 Key words and phrases. Chain recurrence class, Homoclinic class, Shadowing, Hyperbolic, Generic.
 *Corresponding author.

