Shadowable Chain Recurrence Classes for Generic Diffeomorphisms

Keonhee Lee and Manseob Lee*

Abstract. Let $\operatorname{Diff}(M)$ be the space of diffeomorphisms of a closed C^{∞} manifold M (dim $M \geq 2$) endowed with the C^1 topology. In this paper we show that for C^1 generic $f \in \operatorname{Diff}(M)$, any shadowable chain recurrence class C_f is hyperbolic if it contains a hyperbolic periodic point.

1. Introduction

Let M be a closed C^{∞} manifold with dim $M \geq 2$, and let Diff(M) be the space of diffeomorphisms of M endowed with the C^1 topology. Denote by d the distance on M induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle TM. Let $f \in \text{Diff}(M)$. For $\delta > 0$, a sequence of points $\{x_i\}_{i=a}^b (-\infty \leq a < b \leq \infty)$ in M is called a δ -pseudo orbit of f if $d(f(x_i), x_{i+1}) < \delta$ for all $a \leq i \leq b-1$. Let Λ be a closed f invariant set. We say that f has the shadowing property on Λ (or, Λ is shadowable for f) if for every $\epsilon > 0$ there is $\delta > 0$ such that for any δ -pseudo orbit $\{x_i\}_{i=a}^b \subset \Lambda$ of $f(-\infty \leq a < b \leq \infty)$, there is a point $y \in M$ (not necessary in Λ) such that $d(f^i(y), x_i) < \epsilon$ for all $a \leq i \leq b-1$.

We say that Λ is *hyperbolic* if the tangent bundle $T_{\Lambda}M$ has a Df-invariant splitting $E^s \oplus E^u$ and there exist constants C > 0 and $0 < \lambda < 1$ such that

 $\left\| D_x f^n |_{E_x^s} \right\| \le C \lambda^n \text{ and } \left\| D_x f^{-n} |_{E_x^u} \right\| \le C \lambda^n$

for all $x \in \Lambda$ and $n \ge 0$. If $\Lambda = M$ then f is said to be Anosov.

Robinson [12] and Sakai [13] proved that a diffeomorphism $f \in \text{Diff}(M)$ belongs to the C^1 interior of the set of diffeomorphisms with the shadowing property if and only if f is structurally stable.

We say that Λ is *transitive* if there is a point $x \in \Lambda$ such that $\omega(x) = \Lambda$. Λ is *locally maximal* if there is a neighborhood U of Λ such that $\bigcap_{n \in \mathbb{Z}} f^n(U) = \Lambda$. A subset $\mathcal{G} \subset \text{Diff}(M)$ is called *residual* if it contains a countable intersection of open and dense subsets of Diff(M). A dynamic property is called C^1 generic if it holds in a residual subset of Diff(M).

Received January 21, 2015, accepted October 12, 2015.

Communicated by Cheng-Hsiung Hsu.

²⁰¹⁰ Mathematics Subject Classification. Primary: 37C50; Secondary: 37C20.

Key words and phrases. Chain recurrence class, Homoclinic class, Shadowing, Hyperbolic, Generic.

^{*}Corresponding author.

Abdenur and Díaz [1] proved that if Λ is a locally maximal transitive set of a C^1 generic diffeomorphism, then either Λ is hyperbolic, or there are a C^1 neighborhood $\mathcal{U}(f)$ of fand a neighborhood U of Λ such that for any $g \in \mathcal{U}(f)$, g is does not have the shadowing property on $\Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$. Moreover they posed an open problem:

" C^1 generically, a diffeomorphism has the shadowing property if and only if it is hyperbolic?"

The above probem is still open, but Lee and Wen [10] showed that C^1 generically, if a locally maximal chain transitive set is shadowing then it is hyperbolic. We say that a closed invariant set $\Lambda \subset M$ is robustly transitive if there are a C^1 neighborhood $\mathcal{U}(f)$ of fand a neighborhood U of Λ such that for any $g \in \mathcal{U}(f)$, $\Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$ is transitive for g. Here $\Lambda_g(U)$ is called the *continuation* of Λ for g. Tian and Sun [15] showed that if a diffeomorphism f has the C^1 stable shadowing property in a robustly transitive set Λ (in the case, the shadowing points are in Λ) then it is a hyperbolic basic set. Moreover, they claimed that if f has the C^1 generic stable shadowing property in a robustly transitive set Λ then it is a hyperbolic basic set. Here, we say that f has the C^1 stable shadowing property in Λ if there exist a C^1 neighborhood $\mathcal{U}(f)$ of f and a neighborhood U of Λ such that for any $g \in \mathcal{U}(f)$, g has the shadowing property in $\Lambda_g(U)$. We say that f has the C^1 generic stable shadowing property in Λ if there exist a C^1 neighborhood $\mathcal{U}(f)$ of f and a residual set $\mathcal{R} \subset \mathcal{U}(f)$ such that for any $g \in \mathcal{R}$, g has the shadowing property in $\Lambda_g(U)$.

Using the results, we prove that C^1 generically, any shadowable chain recurrent class is hyperbolic if it contains a hyperbolic periodic point.

2. Homoclinic classses for generic diffeomorphisms

For given $x, y \in M$, we write $x \rightsquigarrow y$ if for any $\delta > 0$, there is a δ -pseudo orbit $\{x_i\}_{i=0}^n$ $(n \geq 1)$ of f such that $x_0 = x$ and $x_n = y$. The set $\{x \in M : x \rightsquigarrow x\}$ is called the *chain* recurrent set of f and is denoted by $C\mathcal{R}(f)$. It is easy to see that the set is closed and $f(C\mathcal{R}(f)) = C\mathcal{R}(f)$. The relation \iff induces an equivalence relation on $C\mathcal{R}(f)$ whose classes are called *chain recurrence classes* of f and is denoted by \mathcal{C}_f . In general, the chain recurrent class is a closed and invariant set. For any $x \in M$, the orbit of x is denoted by $Orb(x) = \{f^n(x) : n \in \mathbb{Z}\}$. It is well known that if p is a hyperbolic periodic point of f with period $\pi(p)$ then the sets

$$W^{s}(p) = \left\{ x \in M : f^{\pi(p)n}(x) \to p \text{ as } n \to \infty \right\}$$

and

$$W^{u}(p) = \left\{ x \in M : f^{-\pi(p)n}(x) \to p \text{ as } n \to \infty \right\}$$

are C^1 injectively immersed submanifolds of M. A point $x \in W^s(p) \cap W^u(p)$ is called a homoclinic point of f associated to p, and it is said to be a transversal homoclinic point of f if the above intersection is transversal at x; i.e., $x \in W^s(p) \pitchfork W^u(p)$. The closure of the transversal homoclinic points of f associated to p is called the homoclinic class of fassociated to p, and it is denoted by $H_f(p)$. It is clear that $H_f(p)$ is a compact, invariant and transitive set. Note that any chain recurrence class contains a homoclinic class. Bonatti and Crovisier [2] proved that every chain recurrence class containing a hyperbolic periodic point p is the homoclinic class $H_f(p)$ in the C^1 generic sense. For any hyperbolic periodic point p, we say that f has a homoclinic tangency if $W^s(p)$ and $W^u(p)$ intersect nontransversaly. Denote by $\overline{\mathcal{HT}}$ the closure of the set of diffeomorphisms exhibiting a homoclinic tangency. We say that a compact invariant set Λ admits a dominated splitting for f if the tangent bundle $T_{\Lambda}M$ has a continuous Df invariant splitting $E \oplus F$ and there exist $C > 0, 0 < \lambda < 1$ such that for all $x \in \Lambda$ and $n \ge 0$, we have

$$\left\|Df^{n}|_{E(x)}\right\| \cdot \left\|Df^{-n}|_{F(f^{n}(x))}\right\| \le C\lambda^{n}.$$

If p is a hyperbolic periodic point then there are a C^1 -neighborhood $\mathcal{U}(f)$ and a neighborhood U of p such that for any $g \in \mathcal{U}(f)$, there is a hyperbolic periodic point $p_g \in P(g)$, where $p_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$ is called *the continuation* of p. The following was proved by Gourmelon in [8, Theorem 1.1].

Theorem 2.1. For generic $f \in \text{Diff}(M)$, if f has a homoclinic class $H_f(p)$ which contains hyperbolic saddles of indices i and j ($i \leq j$), then either

(a) $H_f(p)$ admits a dominated splitting of the form

$$T_{H_f(p)}M = E \oplus E_1 \oplus \cdots \oplus E_{j-i} \oplus F$$

with dim E = i, dim $F = \dim M - j$ and dim $E_i = 1$ for all i = 1, 2, ..., j - i. Moreover, all subbundles E_i are non-hyperbolic, or

(b) for any C^1 -neighborhood $\mathcal{U}(f)$ of f there is a $g \in \mathcal{U}(f)$ having a homoclinic tangency associated with a saddle of the homoclinic class $H_g(p_g)$, where p_g is the continuation of p.

For any two hyperbolic periodic points p and q, we say that f has a *heterodimensional* cycles if

- (i) $\dim W^s(p) \neq \dim W^s(q)$,
- (ii) $W^s(p) \cap W^u(q) \neq \emptyset$ and $W^u(p) \cap W^s(q) \neq \emptyset$.

Denote by $\overline{\mathcal{HC}}$ the closure of the set of diffeomorphisms exhibiting a heterodimensional cycle. In [4], Crovisier proved the following.

Theorem 2.2. For generic $f \in \text{Diff}(M) \setminus \overline{\mathcal{HT} \cup \mathcal{HC}}$, any homoclinic class $H_f(p)$ admits a partially hyperbolic spitting: $T_{H_f(p)}M = E^s \oplus E_1^c \oplus E_2^c \oplus E^u$, where dim $E_i^c = 0$ or 1, for i = 1, 2 and dim $(E^s \oplus E_1^c)$ coincides with the stable dimension of p.

Let p and q be hyperbolic periodic points. We say that q is homoclinically related to p (denoted by $p \sim q$) if

$$W^{s}(p) \pitchfork W^{u}(q) \neq \emptyset$$
 and $W^{u}(p) \pitchfork W^{s}(q) \neq \emptyset$.

Let μ be an invariant measure of f. Then for μ -almost every $x \in M$, there exist real numbers

$$\xi_f^1(\mu, x) \le \dots \le \xi_f^n(\mu, x)$$

with $n = \dim M$ such that for every non-zero vector $v \in T_x M$, one has

$$\lim_{n \to \infty} \frac{1}{n} \log \|Df^n(x)v\| = \xi_f^i(\mu, x)$$

for some $i \in \{1, 2, ..., n\}$. The number $\xi_f^i(\mu, x)$ is called the *i*-th Lyapunov exponent of the invariant measure μ at x. Moreover, if μ is taken to be ergodic, $\xi_f^i(\mu, x)$ is independent of x in a μ -full measure set. An ergodic measure μ is hyperbolic if all of its Lyapunov exponents are non-zero, or else, it is said to be non-hyperbolic.

For a homoclinic class $H_f(p)$ if for any $\delta > 0$, there is a hyperbolic periodic point q such that (1) q is homoclinically related with p, and (2) q has one Lyapunov exponent in $(-\delta, \delta)$, then we say that $H_f(p)$ contains weak periodic orbits related to p. In [5], Corivisier *et. al* proved the following.

Theorem 2.3. For generic $f \in \text{Diff}(M) \setminus \overline{\mathcal{HT}}$, any homoclinic class $H_f(p)$ satisfy: either

- (a) $H_f(p)$ is hyperbolic, or
- (b) $H_f(p)$ contains weak periodic orbits related to p.

Let Λ be a closed f invariant set. We say that Λ is *expansive* if there is e > 0 such that for any $x, y \in \Lambda$ if $d(f^i(x), f^i(y)) < e$ for all $i \in \mathbb{Z}$ then x = y. It is well known that if Λ is hyperbolic then Λ is expansive. Yang and Gan [17] proved that C^1 generically, every expansive homoclinic class $H_f(p)$ is hyperbolic.

For the result, we study that for a C^1 generic diffeomorphism f, if any chain recurrence class C_f which contains a hyperbolic periodic point p ($C_f(p)$) is shadowable then it is hyperbolic. The following is our main result.

Main Theorem. For generic $f \in \text{Diff}(M)$, any shadowable chain recurrence class C_f of f is hyperbolic if it contains a hyperbolic periodic point.

3. Proof of main theorem

Let Λ be a closed f invariant set. For $x \in \Lambda$ and any $\epsilon > 0$, let

$$W^s_{\epsilon}(x) = \{ y \in M : d(f^n(x), f^n(y)) \le \epsilon, \text{ for all } n \ge 0 \}$$

and

$$W^u_{\epsilon}(x) = \left\{ y \in M : d(f^{-n}(x), f^{-n}(y)) \le \epsilon, \text{ for all } n \ge 0 \right\}$$

be the *local stable set* and the *local unstable set* of x, respectively. If Λ is hyperbolic then there is $\eta > 0$ such that for any $0 < \epsilon \leq \eta$, and $x \in \Lambda$, the set $W^s_{\epsilon}(x)$ and $W^u_{\epsilon}(x)$ are embedded manifolds.

Lemma 3.1. If f has the shadowing property on $H_f(p)$ then for any hyperbolic saddle $q \in H_f(p)$ we have $W^s(p) \cap W^u(q) \neq \emptyset$ and $W^u(p) \cap W^s(q) \neq \emptyset$.

Proof. Let q be a hyperbolic saddle. Since $H_f(p)$ is transitive there is a point $x \in H_f(p)$ such that $\omega(x) = H_f(p)$. Thus for any $\eta > 0$ there are $j_1 > 0$ and $j_2 > 0$ such that $d(f^{j_1}(x), p) < \eta$ and $d(f^{j_2}(x), q) < \eta$. For simplicity, we assume that f(p) = p, f(q) = q. Since p, q are hyperbolic there exist $\epsilon(p) > 0$ and $\epsilon(q) > 0$ such that $W^{\sigma}_{\epsilon(p)}(p)$ and $W^{\sigma}_{\epsilon(q)}(q)$ are submanifolds of M, as above, where $\sigma = s, u$. Take $\epsilon = \min \{\epsilon(p), \epsilon(q)\}$. Let $0 < \delta(\epsilon) = \delta \le \eta/4$ be the number obtained by the shadowing property. Without loss of generality, $j_2 = j_1 + k$ for some k > 0. Then we construct a δ -pseudo orbit $\{x_i\}_{i \in \mathbb{Z}}$ as follows:

(i)
$$x_{-i} = f^{-i}(p)$$
 for $i \ge 0$,

- (ii) $f^{j_1+i}(x) = x_{1+i}$ for $i = 0, 1, \dots, k-1$, and
- (iii) $x_i = f^i(q)$ for $i \ge k+1$.

By (i), (ii) and (iii), $\{x_i\}_{i\in\mathbb{Z}}$ is the δ -pseudo orbit

$$\{x_i\}_{i\in\mathbb{Z}} = \left\{\dots, p, f^{j_1}(x), f^{j_1+1}(x), \dots, f^{j_1+k-1}(x), q, \dots\right\}$$
$$= \left\{\dots, x_0 = p, x_1, x_2, \dots, x_{k-1}, x_k, x_{k+1} = q, q, \dots\right\}$$

Then it is clear $\{x_i\}_{i\in\mathbb{Z}} \subset H_f(p)$. By the shadowing property, there is $y \in M$ such that $d(f^i(y), x_i) < \epsilon$ for all $i \in \mathbb{Z}$. Then $y \in W^u(p)$ and $f^k(y) \in W^s(q)$. Since $y \in f^{-k}(W^s(q)) \subset W^s(q)$, we have $W^u(p) \cap W^s(q) \neq \emptyset$. Similarly, we have $W^s(p) \cap W^u(q) \neq \emptyset$.

Let P(f) be the set of all periodic points of f. We say that f is Kupka-Smale if every periodic point is hyperbolic, and all their invariant manifolds are transverse. Denote by $\mathcal{KS}(M)$ the set of Kupka-Smale diffeomorphisms. It is well-known that $\mathcal{KS}(M)$ is a residual set in Diff(M). **Proposition 3.2.** There is a residual set $\mathcal{G}_1 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_1$, if f has the shadowing property on $H_f(p)$ then for any hyperbolic periodic point $q \in H_f(p)$,

$$W^{s}(p) \pitchfork W^{u}(q) \neq \emptyset \quad and \quad W^{u}(p) \pitchfork W^{s}(q) \neq \emptyset$$

Proof. Let $\mathcal{G}_1 = \mathcal{KS}(M)$ and let $f \in \mathcal{G}_1$ have the shadowing property on $H_f(p)$. By Lemma 3.1, for any $q \in H_f(p) \cap P_h(f)$, we have

$$W^{s}(p) \cap W^{u}(q) \neq \emptyset$$
 and $W^{u}(p) \cap W^{s}(q) \neq \emptyset$,

where $P_h(f)$ is the set of all hyperbolic periodic points of f. Since $f \in \mathcal{KS}(M)$, we know

$$W^{s}(p) \pitchfork W^{u}(q) \neq \emptyset$$
 and $W^{u}(p) \pitchfork W^{s}(q) \neq \emptyset$.

Lemma 3.3. [9, Lemma 2.2] There is a residual set $\mathcal{G}_2 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_2$, if for any C^1 neighborhood $\mathcal{U}(f)$ of f there is $g \in \mathcal{U}(f)$ such that g has two distinct hyperbolic periodic points p_g and q_g with $\text{index}(p_g) \neq \text{index}(q_g)$, then f has two distinct hyperbolic periodic points p and q with $\text{index}(p) \neq \text{index}(q)$, where $\text{index}(p) = \dim W^s(p)$.

For $\eta > 0$, a C^1 -curve $\mathcal{J} \subset M$ is called η simply periodic curve (see [17]) of f if

- (a) \mathcal{J} is diffeomorphic to [0, 1], and its end points are hyperbolic periodic points of f;
- (b) \mathcal{J} is periodic with period $\pi(\mathcal{J})$, that is, $f^{\pi(\mathcal{J})}(\mathcal{J}) = \mathcal{J}$, and $L(f^i(\mathcal{J})) < \eta$ for all $i = 0, 1, \ldots, \pi(\mathcal{J}) 1$, where $L(\mathcal{J})$ denotes the length of \mathcal{J} ;
- (c) \mathcal{J} is normally hyperbolic.

Lemma 3.4. [17, Lemma 2.1] There is a residual set $\mathcal{G}_3 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_3$, and $p \in P(f)$ if for any $\eta > 0$ and a C^1 neighborhood $\mathcal{U}(f)$ of f there is $g \in \mathcal{U}(f)$ such that g has an η simply periodic curve \mathcal{J} which two endpoints are homoclinically related with p_g , then f has an η -simply periodic curve \mathcal{I} such that the two endpoints of \mathcal{I} are homoclinically related to p.

For $p, q \in P_h(f)$, if $p \sim q$ then it is clear that $\dim W^s(p) = \dim W^s(q)$, that is, index $(p) = \operatorname{index}(q)$. For $p \in P(f)$, the set of normalized eigenvalues of $D_p f^{\pi(p)}$ is the set $\{\lambda^{1/\pi(p)} : \lambda \text{ eigenvalues of } D_p f^{\pi(p)}\}$. The following Franks' lemma [7] will play essential roles in our proofs.

Lemma 3.5. Let $\mathcal{U}(f)$ be any given C^1 neighborhood of f. Then there exist $\epsilon > 0$ and a C^1 neighborhood $\mathcal{U}_0(f) \subset \mathcal{U}(f)$ of f such that for given $g \in \mathcal{U}_0(f)$, a finite set $\{x_1, x_2, \ldots, x_N\}$, a neighborhood U of $\{x_1, x_2, \ldots, x_N\}$ and linear maps $L_i: T_{x_i}M \to T_{g(x_i)}M$ satisfying $\|L_i - D_{x_i}g\| \leq \epsilon$ for all $1 \leq i \leq N$, there exists $\widehat{g} \in \mathcal{U}(f)$ such that $\widehat{g}(x) = g(x)$ if $x \in \{x_1, x_2, \ldots, x_N\} \cup (M \setminus U)$ and $D_{x_i}\widehat{g} = L_i$ for all $1 \leq i \leq N$. **Lemma 3.6.** There is a residual set $\mathcal{G}_4 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_4$, if f has the shadowing property on $H_f(p)$, then for any $q \in H_f(p) \cap P_h(f)$ with $q \sim p$, the moduli of the normalized eigenvalues of q are uniformly bounded away from 1.

Proof. Let $\mathcal{G}_4 = \mathcal{G}_1 \cap \mathcal{G}_2 \cap \mathcal{G}_3$. Suppose that $f \in \mathcal{G}_4$ has the shadowing property on $H_f(p)$. Assume that there is $q \in H_f(p) \cap P_h(f)$ with $q \sim p$ such that the normalized eigenvalue λ of $D_q f^{\pi(q)}$ is close to 1.

Note that if $D_q f^{\pi(q)}$ has the normalized eigenvalue λ which is closed to 1 then by Lemma 3.5, there is $g \ C^1$ close to f such that $D_{q_g} g^{\pi(q)}$ has an eigenvalue μ with $\mu = 1$. Then clearly we have index $(q_q) < \operatorname{index}(q)$ (for more detail see [14, Proposition 3]).

By Lemma 3.5, there is $g \ C^1$ close to f such that g has an η simply periodic curve \mathcal{J}_{q_g} which two endpoints are homoclinically related with p_g , and $\operatorname{index}(q_g) \neq \operatorname{index}(p_g)$. By Lemmas 3.3 and 3.4, f has an η simply periodic curve \mathcal{I}_q which two endpoints are homoclinically related with p, and $\operatorname{index}(q) \neq \operatorname{index}(p)$. This is a contradiction since $q \sim p$.

The family of periodic sequences of linear isomorphisms of $\mathbb{R}^{\dim M}$ generated by Dfalong the hyperbolic periodic points $q \in H_f(p)$ with $q \sim p$ is uniformly hyperbolic means that there is $\epsilon > 0$ such that for any g (C^1 close to f), the hyperbolic periodic point $q_g \in P(g)$ with $q_g \sim p_g$ (see [14, p. 475]).

Proposition 3.7. If $f \in \mathcal{G}_4$ has the shadowing property on $H_f(p)$, then there is $\lambda \in (0, 1)$ such that for any $q \in H_f(p) \cap P_h(f)$ and $x \in \operatorname{Orb}(q)$, we have

$$\prod_{i=0}^{\pi(q)-1} \left\| Df^i \right\|_{E^s(f^i(x))} \le \lambda^{\pi(q)} \quad and \quad \prod_{i=0}^{\pi(q)-1} \left\| Df^{-i} \right\|_{E^u(f^{-i}(x))} \le \lambda^{\pi(q)},$$

where $\pi(q)$ is the period of q.

Proof. Let $f \in \mathcal{G}_4$ has the shadowing property on $H_f(p)$. For any $q \in H_f(p) \cap P_h(f)$, we have $q \sim p$ by Proposition 3.2. Since f has the shadowing property on $H_f(p)$, the moduli of the normalized eigenvalues of $D_q f^{\pi(q)}$ are uniformly bounded away from 1. Thus by [11, Lemma II.3], we obtain that for any $x \in \operatorname{Orb}(q)$, we have

$$\prod_{i=0}^{\pi(q)-1} \|Df^i|_{E^s(f^i(x))}\| \le \lambda^{\pi(q)} \quad \text{and} \quad \prod_{i=0}^{\pi(q)-1} \|Df^{-i}|_{E^u(f^{-i}(x))}\| \le \lambda^{\pi(q)},$$

where $\pi(q)$ is the period of q.

For any $p \in P(f)$ and $\delta \in (0, 1)$, we say p has a δ weak eigenvalue of f if $D_p f^{\pi(p)}$ has an eigenvalue λ such that $(1 - \delta)^{\pi(p)} < |\lambda| < (1 + \delta)^{\pi(p)}$.

Lemma 3.8. For any $f \in \mathcal{G}_4$, if f has the shadowing property on $H_f(p)$ then all the Lyapunov exponents of all periodic points homoclinically related to p are uniformly away from 0.

Proof. Let $f \in \mathcal{G}_4$ has the shadowing property on $H_f(p)$, and let $q \in H_f(p) \cap P_h(f)$. Note that if there is a periodic point q of f that is homoclinically related to p and has a Lyapunov exponent arbitrarily close to 0 then there is $g C^1$ close to f such that

$$\chi(q_g, v^c) = \lim_{n \to \infty} \frac{1}{n} \log \left\| D_{q_g} g^n(v^c) \right\| = 0,$$

for $v^c \in E^c$, where E^c is associated to an eigenvalue $\lambda(|\lambda| = 1)$ of $D_{q_g}g^{\pi(q_g)}$. Here, the periodic point q has a Lyapunov exponent arbitrarily close to 0 means that for any $\delta > 0$, q has a δ weak eigenvalue. Now, we know that for any periodic point $q \in H_f(p)$, q is homoclinically related to p by applying Proposition 3.2. To prove the lemma, we may assume that for any $\delta > 0$, q has a δ weak eigenvalue. Since f has the shadowing property on $H_f(p)$ and $q \in H_f(p)$, we know $q \sim p$. By Proposition 3.7, q has no δ -weak eigenvalue. This is a contradiction and so completes the proof.

Note that if Lemma 3.8 holds, then $H_f(p)$ admits a dominated splitting $T_{H_f(p)}M = E \oplus F$ with dim E = index(p).

Theorem 3.9. [16] There is a residual set $\mathcal{G}_5 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_5$, a homoclinic class $H_f(p)$ either is hyperbolic, or contains periodic orbits with arbitrarily long periods that are homoclinically related to p and has a Lyapunov exponent arbitrarily close to 0.

Proof of main theorem. Let $\mathcal{G} = \mathcal{G}_4 \cap \mathcal{G}_5$, and assume that $f \in \mathcal{G}$ has the shadowing property on $H_f(p)$. By Proposition 3.2, for any hyperbolic periodic point $q \in H_f(p)$, we know $q \sim p$, and by Lemma 3.8, all Lyapunov exponents of q are uniformly away from 0. Consequently, by Theorem 3.9, $H_f(p)$ is hyperbolic.

A sequence $\{x_i\}_{i\in\mathbb{Z}}$ is said to be a *limit pseudo orbit* of f if $d(f(x_i), x_{i+1}) \to 0$ as $i \to \pm \infty$. We say that f has the *limit shadowing property* in Λ (or Λ is limit shadowable for f) if for any $\{x_i\}_{i\in\mathbb{Z}} \subset \Lambda$ there is $y \in \Lambda$ such that $d(f^i(y), x_i) \to 0$ as $i \to \pm \infty$. Let $f: M \to M$ be a diffeomorphism which has the limit shadowing property. Then by [3, Theorem A], f has the shadowing property. Thus we have the following corollary.

Corollary 3.10. For generic $f \in \text{Diff}(M)$, any limit shadowable chain recurrence class C_f of f is hyperbolic if it contains a hyperbolic periodic point.

For any $\delta > 0$, a sequence $\xi = \{x_i\}_{i \in \mathbb{Z}}$ is said to be a δ -ergodic pseudo orbit of f if for

$$Np_n^+(\xi, f, \delta) = \{i : d(f(x_i), x_{i+1}) \ge \delta\} \cap \{0, 1, \dots, n-1\}$$

and

$$Np_n^{-}(\xi, f, \delta) = \left\{ -i : d(f^{-1}(x_{-i}), x_{-i-1}) \ge \delta \right\} \cap \left\{ -n + 1, \dots, -1, 0 \right\},\$$

we have

$$\lim_{n \to \infty} \frac{\# N p_n^+(\xi, f, \delta)}{n} = 0 \quad \text{and} \quad \lim_{n \to -\infty} \frac{\# N p_n^-(\xi, f, \delta)}{n} = 0$$

We say that f has the *ergodic shadowing property* in Λ (or Λ is ergodic shadwoable for f) if for any $\epsilon > 0$, there is a $\delta > 0$ such that every δ -ergodic pseudo orbit $\xi = \{x_i\}_{i \in \mathbb{Z}} \subset \Lambda$ of f there is a point $z \in \Lambda$ such that for

$$Ns_n^+(\xi, f, z, \epsilon) = \left\{ i : d(f^i(z), x_i) \ge \epsilon \right\} \cap \{0, 1, \dots, n-1\}$$

and

$$Ns_n^{-}(\xi, f, z, \epsilon) = \left\{ -i : d(f^{-i}(z), x_{-i}) \ge \epsilon \right\} \cap \{-n+1, \dots, -1, 0\},\$$

we have

$$\lim_{n \to \infty} \frac{\#Ns_n^+(\xi, f, z, \epsilon)}{n} = 0 \quad \text{and} \quad \lim_{n \to -\infty} \frac{\#Ns_n^-(\xi, f, z, \epsilon)}{n} = 0$$

Corollary 3.11. For generic $f \in \text{Diff}(M)$, any ergodic shadwoable chain recurrence class C_f of f is hyperbolic if it contains a hyperbolic periodic point.

Acknowledgments

K. L is supported by NRF grant funded by the Korea government (MSIP) (NRF-2015R1A2A2A01002437) and M. L is supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No-2014R1A1A1A05002124).

References

- F. Abdenur and L. J. Díaz, Pseudo-orbit shadowing in the C¹ topology, Discrete Contin. Dynam. Syst. 17 (2007), no. 2, 223-245. http://dx.doi.org/10.3934/dcds.2007.17.223
- [2] C. Bonatti and S. Crovisier, *Récurrence et généricité*, Invent. Math. 158 (2004), 33–104.
- B. Carvalho and D. Kwietnaik, On homeomorphisms with the two-sided limit shadowing property, J. Math. Anal. Appl. 420 (2014), no. 1, 801-813. http://dx.doi.org/10.1016/j.jmaa.2014.06.011
- [4] S. Crovisier, Partial hyperbolicity far from homoclinic bifurcations, Advances in Math.
 226 (2011), no. 1, 673-729. http://dx.doi.org/10.1016/j.aim.2010.07.013

- S. Crovisier, M. Sambarion and D. Yang, Partial hyperbolicity and homoclinic tangencies, J. Eur. Math. Soc. 17 (2015), no. 1, 1–49. http://dx.doi.org/10.4171/jems/497
- [6] A. Fakhari and F. H. Ghane, On shadowing: Ordinary and ergodic, J. Math. Anal. and Appl. 364 (2010), no. 1, 151–155. http://dx.doi.org/10.1016/j.jmaa.2009.11.004
- [7] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), no. 2, 301–308. http://dx.doi.org/10.1090/s0002-9947-1971-0283812-3
- [8] N. Gourmelon, Generation for homoclinic tangencies by C¹-perturbations, Discrete Contin. Dynam. Syst. 26 (2010), no. 1, 1-41. http://dx.doi.org/10.3934/dcds.2010.26.1
- M. Lee and S. Lee, Generic diffeomorphisms with robustly transitive sets, Commun. Korean Math. Soc. 28 (2013), no. 3, 581-587. http://dx.doi.org/10.4134/ckms.2013.28.3.581
- [10] K. Lee and X. Wen, Shadowable chain transitive sets of C¹-generic diffeomorphisms, Bull. Korean Math. Soc. 49 (2012), no. 2, 263-270. http://dx.doi.org/10.4134/bkms.2012.49.2.263
- [11] R. Mañé, An ergodic closing lemma, Ann of Math. 116 (1982), no. 3, 503-540. http://dx.doi.org/10.2307/2007021
- [12] C. Robinson, Stability theorem and hyperbolicity in dynamical systems, Rocky Mountain J. Math. 7 (1977), no. 3, 425-437. http://dx.doi.org/10.1216/rmj-1977-7-3-425
- [13] K. Sakai, Pseudo orbit tracing property and strong transversality of diffeomorphisms on closed manifolds, Osaka J. Math. **31** (1994), 373–386.
- M. Sambarino and J. Vieitez, On C¹-persistently expansive homoclinic classes, Discrete and Continuous Dynam. Sys. 14 (2006), no. 3, 465-481. http://dx.doi.org/10.3934/dcds.2006.14.465
- [15] X. Tian and W. Sun, Diffeomorphisms with various C¹ stable properties, Acta Math. Scie. **32B** (2012), no. 2, 552–558. http://dx.doi.org/10.1016/s0252-9602(12)60037-x
- [16] X. Wang, On the hyperbolicity of C^1 -generic homoclinic classes, arXiv:1412.4656v1.

[17] D. Yang and S. Gan, *Expansive homoclinic classes*, Nonlinearity 22 (2009), no. 4, 729–733. http://dx.doi.org/10.1088/0951-7715/22/4/002

Keonhee Lee

Department of Mathematics, Chungnam National University, Daejeon, 305–764, Korea *E-mail address*: khlee@cnu.ac.kr

Manseob Lee

Department of Mathematics, Mokwon University, Daejeon, 302–729, Korea *E-mail address*: lmsds@mokwon.ac.kr