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Attraction Property of Admissible Integral Manifolds and Applications to

Fisher-Kolmogorov Model
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Abstract. In this paper we investigate the attraction property of an unstable man-

ifold of admissible classes for solutions to the semi-linear evolution equation of the

form u(t) = U(t, s)u(s) +
∫ t

s
U(t, ξ)f(ξ, u(ξ)) dξ. These manifolds are constituted by

trajectories of the solutions belonging to admissible function spaces which contain

wide classes of function spaces like Lp-spaces, the Lorentz spaces Lp,q and many other

function spaces occurring in interpolation theory. We then apply our abstract results

to study Fisher-Kolmogorov model with time-dependent environmental capacity.

1. Introduction and preliminaries

Consider the semi-linear differential equation

(1.1)
dx

dt
= A(t)x+ f(t, x), t ∈ R, x ∈ X

where A(t) is a (possibly unbounded) linear operator on a Banach space X for every fixed

t, and f : R ×X → X is a nonlinear operator. When the linear part has an exponential

dichotomy (or trichotomy), one tries to find conditions on the nonlinear forcing term

f such that Equation (1.1) has an integral manifold (e.g., a stable, unstable or center

manifold).

The problem of the existence of the integral manifolds is a matter of great interest of

many authors since, on the one hand, it brings out the geometric structures of the solu-

tions to semi-linear differential equations, and on the other hand it allows to implement

the reduction principle to deduce the complicated equations to the simpler ones on such

manifolds thanks to the attraction properties of that manifolds. To obtain such existence,

one needs the characterizations of the exponential dichotomies (or trichotomies) of the

linear part in some function spaces. Such characterizations have been used to construct

the forms of operators determining the manifolds. We refer the reader to [2, 3, 7, 19] for
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recent contributions to the theory of exponential dichotomy and trichotomy of evolution

equations. On the other hand, one needs to impose some conditions on the nonlinear

term, and the most popular condition regarding nonlinear term f for the existence of

such manifolds is its uniform Lipchitz continuity with a sufficiently small Lipschitz con-

stant (i.e., ‖f(t, x)− f(t, y)‖ ≤ q ‖x− y‖ for q being small enough). We refer the reader

to [1, 5, 6, 20, 22] and references therein for detailed information on the matter. However,

for equations arising in complicated reaction-diffusion processes (see e.g., [14,15]), the Lip-

schitz coefficients may depend on time and may not be small in classical sense. Therefore,

one tries to extend the conditions on nonlinear parts such that they describe more exactly

such reaction-diffusion processes.

Recently, using Lyapunov-Perron method and the admissibility of function spaces, we

have given a more general condition on f for the existence of integral manifolds (see

[8, 10, 11]), that is the non-uniform Lipschitz continuity (or the ϕ-Lipschitz property) of

f , i.e., ‖f(t, x)− f(t, y)‖ ≤ ϕ(t) ‖x− y‖ for ϕ being a real and positive function which

belongs to admissible function spaces defined in Definition 1.3 below. Furthermore, the

existence of a new type of invariant manifolds has been proved in [9], namely the invariant-

stable manifolds of admissible classes which are constituted by trajectories of solutions

belonging to the Banach space E which can be a space of Lp type (1 ≤ p ≤ ∞) or a

Lorentz space Lp,q or some function space occurring in interpolation theory. Then, the

result in [9] has been extended to the case of an invariant-unstable manifold of admissible

class in [12]. However, the attraction property of such a manifold was left unsolved in that

paper. And some real-world applications were not given.

In the present paper, we will prove the attraction property of such an invariant-unstable

manifold of admissible class obtained in [12]. Our method is based on the Lyapunov-Perron

equations and the choice of induced solutions lying in the manifold and belonging to some

admissible space on which we can implement some procedures of functional analysis. Our

main results are contained in Theorem 2.9. Moreover, we apply the obtained results to

consider Fisher-Kolmogorov model with time-dependent environmental capacity.

We first recall some notions.

Definition 1.1. A family of bounded linear operators U = (U(t, s))t≥s on a Banach space

X is a (strongly continuous, exponentially bounded) evolution family on the whole line R
if

(i) U(t, t) = Id and U(t, r)U(r, s) = U(t, s) for t ≥ r ≥ s,

(ii) the map (t, s) 7→ U(t, s)x is continuous for every x ∈ X,

(iii) there are constants K ≥ 1 and α ∈ R such that ‖U(t, s)‖ ≤ Keα(t−s) for t ≥ s.
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This notion arises naturally from well-posed evolution equations of the form

(1.2)


du(t)

dt
= A(t)u(t), t ≥ s,

u(s) = xs ∈ X,

where A(t) is (in general) an unbounded linear operator on X for every fixed t. Roughly

speaking, when the Cauchy problem (1.2) is well-posed, there exists an evolution family

U = (U(t, s))t≥s solving (1.2), i.e., the solution of (1.2) is given by u(t) := U(t, s)u(s).

For more details on the notion of evolution families, conditions for the existence of such

families and applications to partial differential equations we refer to Pazy [17], Nagel and

Nickel [16].

We recall some notions on function spaces and refer to Massera and Schäffer [13],

Räbiger and Schnaubelt [18] for concrete applications (see also [7, 21]).

Denote by B the Borel algebra and by λ the Lebesgue measure on R. The space

L1,loc(R) of real-valued locally integrable functions on R (modulo λ-nullfunctions) becomes

a Fréchet space for the seminorms pn(f) :=
∫
Jn
|f(t)| dt, where Jn = [n, n + 1] for each

n ∈ Z (see [13, Chapt. 2, § 20]).

We can now define Banach function spaces as follows.

Definition 1.2. A vector space ER of real-valued Borel-measurable functions on R (mod-

ulo λ-nullfunctions) is called a Banach function space (over (R,B, λ)) if

(1) ER is Banach lattice with respect to a norm ‖·‖ER
, i.e., (ER, ‖·‖ER

) is a Banach

space, and if ϕ ∈ ER and ψ is a real-valued Borel-measurable function such that

|ψ(·)| ≤ |ϕ(·)|, λ-a.e., then ψ ∈ ER and ‖ψ‖ER
≤ ‖ϕ‖ER

,

(2) the characteristic functions χA belong to ER for all A ∈ B of finite measure, and

supt∈R
∥∥χ[t,t+1]

∥∥
ER

<∞ and inft∈R
∥∥χ[t,t+1]

∥∥
ER

> 0,

(3) ER ↪→ L1,loc(R), i.e., for each seminorm pn of L1,loc(R) there exists a number βpn > 0

such that pn(f) ≤ βpn ‖f‖ER
for all f ∈ ER.

We remark that condition (3) in the above definition means that for each compact

interval J ⊂ R there exists a number βJ ≥ 0 such that
∫
J |f(t)| dt ≤ βJ ‖f‖ER

for all

f ∈ ER.

Let now ER be a Banach function space and X be a Banach space. We set

E := E(R, X) := {f : R→ X : f is strongly measurable and ‖f(·)‖ ∈ ER}

(modullo λ-nullfunctions) endowed with the norm

‖f‖E := ‖‖f(·)‖‖ER
.
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Then E is a Banach space called the Banach space corresponding to the Banach function

space ER.

Definition 1.3. The Banach function space ER is called admissible if

(i) there is a constant M ≥ 1 such that for every compact interval [a, b] ⊂ R we have

(1.3)

∫ b

a
|ϕ(t)| dt ≤ M(b− a)∥∥χ[a,b]

∥∥
ER

‖ϕ‖ER
for all ϕ ∈ ER,

(ii) for ϕ ∈ ER the function Λ1ϕ defined by Λ1ϕ(t) :=
∫ t+1
t ϕ(τ) dτ belongs to ER,

(iii) ER is T+
τ -invariant and T−τ -invariant, where T+

τ and T−τ are defined by

T+
τ ϕ(t) := ϕ(t− τ) for t ∈ R,

T−τ ϕ(t) := ϕ(t+ τ) for t ∈ R.
(1.4)

Moreover, there are constants N1, N2 such that ‖T+
τ ‖ ≤ N1, ‖T−τ ‖ ≤ N2 for all

τ ∈ R.

Example 1.4. Besides the spaces Lp(R), 1 ≤ p ≤ ∞, and the space

M(R) :=

{
f ∈ L1,loc(R) : sup

t∈R

∫ t+1

t
|f(τ)| dτ <∞

}
endowed with the norm ‖f‖M := supt∈R

∫ t+1
t |f(τ)| dτ , many other function spaces oc-

curring in interpolation theory, e.g., the Lorentz spaces Lp,q, 1 < p < ∞, 1 < q < ∞ are

admissible.

Remark 1.5. It can be easily seen that if ER is an admissible Banach function space then

ER ↪→M(R).

We now collect some properties of admissible Banach function spaces in the following

proposition whose proof can be done in the same way as in [7, Proposition 2.6]).

Proposition 1.6. Let ER be an admissible Banach function space. Then the following

assertions hold.

(a) Let ϕ ∈ L1,loc(R) such that ϕ ≥ 0 and Λ1ϕ ∈ ER, where Λ1 is defined as in Defini-

tion 1.3(ii). For σ > 0 we define functions Λ′σϕ and Λ′′σϕ by

Λ′σϕ(t) =

∫ t

−∞
e−σ(t−s)ϕ(s) ds,

Λ′′σϕ(t) =

∫ ∞
t

e−σ(s−t)ϕ(s) ds.
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Then, Λ′σϕ and Λ′′σϕ belong to ER. In particular, if supt∈R
∫ t+1
t |ϕ(τ)| dτ < ∞

(this will be satisfied if ϕ ∈ ER (see Remark 1.5)) then Λ′σϕ and Λ′′σϕ are bounded.

Moreover,∥∥Λ′σϕ
∥∥
ER
≤ N1

1− e−σ
‖Λ1ϕ‖ER

and
∥∥Λ′′σϕ

∥∥
ER
≤ N2

1− e−σ
‖Λ1ϕ‖ER

.

(b) ER contains exponentially decaying functions ψ(t) = e−α|t| for t ∈ R and any fixed

constant α > 0.

(c) ER does not contain exponentially growing functions f(t) = eb|t| for t ∈ R and a

constant b > 0.

We next define the associate spaces of Banach function spaces as follows.

Definition 1.7. Let ER be an admissible Banach function space and denote by S(ER) the

unit sphere in ER. Recall that L1 =
{
g : R→ R | g is mesurable and

∫∞
−∞ |g(t)| dt <∞

}
.

Then, we consider the set E′R of all measurable real-valued functions ψ on R such that

ϕψ ∈ L1,

∫ ∞
−∞
|ϕ(t)ψ(t)| dt ≤ k for all ϕ ∈ S(ER),

where k depends only on ψ. Then, E′R is a normed space with the norm given by (see [13,

Chapt. 2, 22.M])

‖ψ‖E′R := sup

{∫ ∞
−∞
|ϕ(t)ψ(t)| dt : ϕ ∈ S(ER)

}
for ψ ∈ E′R.

We call E′R the associate space of ER.

Remark 1.8. Let ER be an admissible Banach function space and E′R be its associate space.

Then, from [13, Chapt. 2, 22.M] we also have that the following “Hölder’s inequality” holds:

(1.5)

∫ ∞
−∞
|ϕ(t)ψ(t)| dt ≤ ‖ϕ‖ER

‖ψ‖E′R for all ϕ ∈ ER, ψ ∈ E′R.

In order to show the existence and attractiveness of an E-class-unstable manifold, we

suppose the following hypothesis.

Hypothesis 1.9. We will consider the admissible Banach function space ER such that

its associate space E′R is also an admissible Banach function space. Moreover, for such

an admissible Banach function space ER we suppose that E′R contains an exponentially

ER-invariant function, that is the function ϕ ≥ 0 having the property that, for any fixed

ν > 0 the function hν defined by

hν(t) :=
∥∥∥e−ν|t−·|ϕ(·)

∥∥∥
E′R

for t ∈ R

belongs to ER.
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We also give here some examples of admissible Banach function spaces and their as-

sociate spaces which satisfy the above Hypothesis with an exponentially ER-invariant

function ϕ(t) = ce−α|t| for t ∈ R and any fixed constants c, α > 0.

Example 1.10. The associate space of Lp is L′p = Lq for 1
p + 1

q = 1, 1 ≤ p ≤ ∞, here as

usual we take the conventions that q =∞ if p = 1, and q = 1 if p =∞.

Besides the functions of the form ϕ(t) = ce−α|t|, one can see that the functions of the

form ϕ = cχ[a,b] for any fixed constant c > 0 and any finite interval [a, b] ⊂ R are also

exponentially Lp-invariant functions.

2. Unstable manifolds of E-class and their attraction property

In this section we consider the existence and attraction property of an unstable manifold

of E-class for evolution equations defined on the whole line R under the conditions that

the evolution family (U(t, s))t≥s has an exponential dichotomy on the whole line and

the nonlinear term f(t, x) is ϕ-Lipschitz. To this purpose, we first recall the concept of

exponential dichotomy and some other notions defined on the whole line.

Definition 2.1. An evolution family (U(t, s))t≥s on the Banach space X is said to have

an exponential dichotomy on R if there exist bounded linear projections P (t), t ∈ R, on

X and positive constants N , ν such that

(a) U(t, s)P (s) = P (t)U(t, s), t ≥ s,

(b) the restriction U(t, s)| : KerP (s) → KerP (t), t ≥ s, is an isomorphism (and we

denote its inverse by (U(t, s)|)
−1 = U(s, t)| for t ≥ s),

(c) ‖U(t, s)x‖ ≤ Ne−ν(t−s) ‖x‖ for x ∈ P (s)X, t ≥ s,

(d)
∥∥U(s, t)|x

∥∥ ≤ Ne−ν(t−s) ‖x‖ for x ∈ KerP (t), t ≥ s.

For an evolution family (U(t, s))t≥s having an exponential dichotomy on the whole

line, we can define the Green’s function on R as follows:

(2.1) G(t, τ) =

P (t)U(t, τ) for t ≥ τ ,

−U(t, τ)|(I − P (τ)) for t < τ.

Thus, we have

‖G(t, τ)‖ ≤ N(1 +H)e−ν|t−τ | for all t 6= τ

where H := supt∈R ‖P (t)‖ <∞.

We also need the following notion of ϕ-Lipschitz functions.
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Definition 2.2. Let ER be an admissible Banach function space and ϕ be a positive

function belonging to ER. A function f : R×X → X is said to be ϕ-Lipschitz if f satisfies

(i) f(t, 0) = 0 for a.e. t ∈ R,

(ii) ‖f(t, x1)− f(t, x2)‖ ≤ ϕ(t) ‖x1 − x2‖ for a.e. t ∈ R and all x1, x2 ∈ X.

Note that if f : R × X → X (with f(t, 0) = 0) satisfies (ii) for x1, x2 belonging to a

ball Bρ := {x ∈ X : ‖x‖ ≤ ρ} for some fixed ρ > 0, then f is called locally ϕ-Lipschitz.

In this section, we consider the mild solutions of Eq. (1.1), that is the solutions to the

following integral equation

(2.2) u(t) = U(t, s)u(s) +

∫ t

s
U(t, ξ)f(ξ, u(ξ)) dξ for t ≥ s.

We now give the definition of an unstable manifold of E-class.

Definition 2.3. A set U ⊂ R×X is said to be an invariant unstable manifold of E-class

(or E-class-unstable manifold) for the solutions to Eq. (2.2) if for every t ∈ R the phase

spaces X splits into a direct sum X = X0(t)⊕X1(t) such that

inf
t∈R

Sn(X0(t), X1(t)) := inf
t∈R

inf
i=0,1

{‖x0 + x1‖ : xi ∈ Xi(t), ‖xi‖ = 1} > 0

and there exists a family of Lipschitz continuous mappings

gt : X1(t)→ X0(t), t ∈ R,

with the Lipschitz constants being independent of t such that

(i) U = {(t, x+ gt(x)) ∈ R× (X1(t)⊕X0(t)) | t ∈ R, x ∈ X1(t)}, and we denote by

U t = {x+ gt(x) : (t, x+ gt(x)) ∈ U} called the surface of the manifold U at time t.

(ii) U t is homemorphic to X1(t) for all t ∈ R.

(iii) To each x0 ∈ U t0 there corresponds one and only one solution u(·) to Eq. (2.2)

on (−∞, t0] satisfying conditions that u(t0) = x0 and the function χ(−∞,t0]u (i.e.,

(χ(−∞,t0]u)(t) = χ(−∞,t0](t)u(t) for all t ∈ R) belongs to E .

(iv) U is invariant under Eq. (2.2) in the sense that, if u(·) ∈ E is a solution of Eq. (2.2)

satisfying condition u(t0) = x0 ∈ U t0 for some t0 ∈ R then u(t) ∈ U t for all t ∈ R.

The existence of an invariant unstable manifold of E-class for the solutions of Eq. (2.2)

has been essentially proved in [12, Theorem 6.11]. We give the proof here for sake of the

completeness. To do this, we need the following lemma (whose proof can be found in [12])

giving the structure of solutions to Eq. (2.2) which belong to E .
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Lemma 2.4. [12, Lemm. 6.8] Let the evolution family (U(t, s))t≥s have an exponential

dichotomy with the corresponding constants N , ν and projections (P (t))t∈R. Let ER and

E′R be respectively an admissible Banach function space and its associate space. Suppose

that ϕ ∈ E′R be an exponentially ER-invariant function defined as in Hypothesis 1.9. Let

f : R×X → X be ϕ-Lipschitz. Let u(·) be a solution to Eq. (2.2) such that for a fixed t0

the function χ(−∞,t0]u belongs to E. Then, for t ≤ t0 we have that u(·) can be rewritten in

the form

(2.3) u(t) = U(t, t0)|v1 +

∫ t0

−∞
G(t, τ)f(τ, u(τ)) dτ

where v1 ∈ X1(t0) = (I − P (t0))X and G(t, τ) is the Green’s function defined by For-

mula (2.1).

Remark 2.5. By computing directly, we can see that the converse of Lemma 2.4 is also

true. It means that all solutions of Eq. (2.3) also satisfy Eq. (2.2) for all t ≤ t0.

We also need the following theorem for the construction of an unstable manifold of

E-class.

Theorem 2.6. [12, Lemm. 6.10] Let the evolution family (U(t, s))t≥s have an exponential

dichotomy with the corresponding projections (P (t))t∈R and the dichotomy constants N ,

ν > 0. Let ER and E′R be respectively an admissible Banach function space and its associate

space. Suppose that ϕ ∈ E′R be an exponentially ER-invariant function defined as in

Hypothesis 1.9. Define the function hν by hν(t) :=
∥∥e−ν|t−·|ϕ(·)

∥∥
E′R

for t ∈ R. Then, if

the function f is ϕ-Lipschitz for ϕ satisfying N(1 +H) ‖hν‖ER
< 1 then there corresponds

to each v1 ∈ X1(t0) one and only one solution u(·) of Eq. (2.2) on (−∞, t0] satisfying

(I − P (t0))u(t0) = v1 and χ(−∞,t0]u ∈ E. Moreover, for any two solutions u1(·) and u2(·)
corresponding to v1, v2 ∈ X1(t0) we have estimate

(2.4) ‖u1(t)− u2(t)‖ ≤ Cµe−µ(t0−t) ‖v1 − v2‖ for t ≤ t0,

where µ and Cµ are positive constants independent of t0, u1 and u2.

We then state the theorem on the existence of an unstable manifold of E-class.

Theorem 2.7. Let the evolution family (U(t, s))t≥s have an exponential dichotomy with

the corresponding projections (P (t))t∈R and the dichotomy constants N , ν > 0. Let ER and

E′R be respectively an admissible Banach function space and its associate space. Suppose

that ϕ ∈ E′R be an exponentially ER-invariant function defined as in Hypothesis 1.9. Define

the functions eν and hν by eν(t) := e−ν|t| and hν(t) :=
∥∥e−ν|t−·|ϕ(·)

∥∥
E′R

for t ∈ R. Then,

if the function f is ϕ-Lipschitz for ϕ satisfying

N2N1(1 +H) ‖eν‖ER
‖ϕ‖E′R +N(1 +H) ‖hν‖ER

< 1,
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then there exists an invariant unstable manifold U of E-class for the solutions of Eq. (2.2).

Moreover, every two solutions u1(·), u2(·) on the manifold U attract each other backwardly

and exponentially in the sense that they satisfy the following estimate

(2.5) ‖u1(t)− u2(t)‖ ≤ Cµe−µ(t0−t) ‖(I − P (t0))(u1(t0)− u2(t0))‖ for t ≤ t0

where µ, Cµ are positive constants independent of t0 and u1, u2.

Proof. The proof of this theorem has been essentially done in [12, Theorem 6.11]. We give

it here for sake of the completeness.

Since the evolution family (U(t, s))t≥s has an exponential dichotomy, for each t ∈ R
we have that the phase space X splits into the direct sum X = X0(t) ⊕ X1(t), where

X0(t) = P (t)X and X1(t) = KerP (t). Moreover, since supt∈R ‖P (t)‖ <∞ we obtain that

inf
t∈R

Sn(X0(t), X1(t)) := inf
t∈R

inf
i=0,1

{‖x0 + x1‖ : xi ∈ Xi(t), ‖xi‖ = 1} > 0.

We now construct the family of Lipschitz mappings (gt)t∈R satisfying the conditions of

Definition 2.3. For each t0 ∈ R, we define gt0 : X1(t0)→ X0(t0) as follows:

gt0(y) =

∫ t0

−∞
G(t0, τ)f(τ, x(τ)) dτ,

where x(·) is the unique solution on (−∞, t0] of Eq. (2.2) such that χ(−∞,t0]x ∈ E and

(Id−P (t0))x(t0) = y. The existence of the solution x(·) is asserted in Theorem 2.6. By

definition of Green’s function (see (2.1)), we obtain that gt0(y) ∈ X0(t0). Next, we prove

gt0 is Lipschitz mapping. In fact, we have

‖gt0(y1)− gt0(y2)‖ ≤
∫ t0

−∞
‖G(t0, τ)‖ ‖f(τ, x1(τ))− f(τ, x2(τ))‖ dτ

≤ N(1 +H)

∫ t0

−∞
e−ν|t−τ |ϕ(τ) ‖x1(τ)− x2(τ)‖ dτ

≤ N(1 +H)

∫ t0

−∞
ϕ(τ) ‖x1(τ)− x2(τ)‖ dτ

by (1.5)

≤ N(1 +H) ‖ϕ‖E′R ‖x1 − x2‖ER
.

(2.6)

On the other hand, we also have

‖x1(t)− x2(t)‖ =

∥∥∥∥U(t, t0)|(y1 − y2) +

∫ t0

−∞
G(t, τ)(f(τ, x1(τ))− f(τ, x2(τ))) dτ

∥∥∥∥
≤ Ne−ν(t0−t) ‖y1 − y2‖+N(1 +H)

∫ t0

−∞
e−ν|t−τ |ϕ(τ) ‖x1(τ)− x2(τ)‖ dτ

for t ≤ t0. This yields that

‖x1(t)− x2(t)‖ ≤ N(T+
t0
eν)(t) ‖y1 − y2‖+N(1 +H)hν(t) ‖x1 − x2‖ER

.
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Hence,

‖x1 − x2‖ER
≤ NN1 ‖eν‖ER

‖y1 − y2‖+N(1 +H) ‖hν‖ER
‖x1 − x2‖ER

.

Therefore,

‖x1 − x2‖ER
≤

NN1 ‖eν‖ER

1−N(1 +H) ‖hν‖ER

‖y1 − y2‖ .

Substituting this inequality into (2.6) we obtain that

‖gt0(y1)− gt0(y2)‖ ≤
N2N1(1 +H) ‖eν‖ER

‖ϕ‖E′R
1−N(1 +H) ‖hν‖ER

‖y1 − y2‖ .

Thus, gt0 is Lipschitz mapping with the Lipschitz constant
N2N1(1+H)‖eν‖ER

‖ϕ‖E′R
1−N(1+H)‖hν‖ER

indepen-

dent of t0.

Put U = {(t, y + gt(y)) ∈ R× (X0(t)⊕X1(t)) | t ∈ R, y ∈ X1(t)}. Since the Lipschitz

constant
N2N1(1+H)‖eν‖ER

‖ϕ‖E′R
1−N(1+H)‖hν‖ER

< 1 (or equivalently N2N1(1 +H) ‖eν‖ER
‖ϕ‖E′R +N(1 +

H) ‖hν‖ER
< 1), we obtain that U t is homeomorphic to X1(t). The condition (iii) in

Definition 2.3 now follows from Theorem 2.6. Next, we show that U is invariant. Let x(·)
be a solution in E of Eq. (2.2) such that x(t0) = x0 ∈ U t0 . We will prove that x(s) ∈ U s

for all s ∈ R.

Firstly, for s ≤ t0, by Lemma 2.4 we have that

x(s) = U(s, t0)|v1 +

∫ t0

−∞
G(s, τ)f(τ, x(τ)) dτ.

Put ws = U(s, t0)|v1 +
∫ t0
s G(s, τ)f(τ, x(τ)) dτ . We obtain that ws ∈ KerP (s) and

x(s) = ws +

∫ s

−∞
G(s, τ)f(τ, x(τ)) dτ.

On the other hand, for t ≤ s we have that

U(t, s)|ws +

∫ s

−∞
G(t, τ)f(τ, x(τ)) dτ

= U(t, s)|U(s, t0)|v1 + U(t, s)|

∫ t0

s
G(s, τ)f(τ, x(τ)) dτ +

∫ s

−∞
G(t, τ)f(τ, x(τ)) dτ

= U(t, t0)|v1 +

∫ t0

s
G(t, τ)f(τ, x(τ)) dτ +

∫ s

−∞
G(t, τ)f(τ, x(τ)) dτ

= U(t, t0)|v1 +

∫ t0

−∞
G(t, τ)f(τ, x(τ)) dτ = x(t).

Thus, x(s) = ws + gs(ws). This leads to x(s) ∈ U s for all s ≤ t0.
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Secondly, for s > t0, we assume that v(·) is solution of Eq. (2.2) on [t0, s] such that

v(t0) = x(t0). We put

w(t) =

x(t) if t ≤ t0,

v(t) if t ∈ [t0, s].

For t ∈ [t0, s] we have

w(t) = v(t) = U(t, t0)v(t0) +

∫ t

t0

U(t, τ)f(τ, v(τ)) dτ

= U(t, t0)

(
v1 +

∫ t0

−∞
G(t0, τ)f(τ, x(τ)) dτ

)
+

∫ t

t0

U(t, τ)f(τ, v(τ)) dτ

= U(t, t0)v1 +

∫ t0

−∞
U(t, τ)P (τ)f(τ, x(τ)) dτ +

∫ t

t0

U(t, τ)P (τ)f(τ, v(τ)) dτ

+

∫ t

t0

U(t, τ)(I − P (τ))f(τ, v(τ)) dτ

= U(t, t0)v1 +

∫ t

t0

U(t, τ)(I − P (τ))f(τ, w(τ)) dτ +

∫ t

−∞
G(t, τ)f(τ, w(τ)) dτ.

Putting ν2 = U(s, t0)v1 +

∫ s

t0

U(s, τ)(I − P (τ))f(τ, w(τ)) dτ ∈ KerP (s) we obtain

U(t, s)|ν2 = U(t, t0)v1 +

∫ t

t0

U(t, τ)(I − P (τ))f(τ, w(τ)) dτ

+

∫ s

t
U(t, τ)|(I − P (τ))f(τ, w(τ)) dτ.

Thus,

w(t) = U(t, s)|ν2 −
∫ s

t
U(t, τ)|(I − P (τ))f(τ, w(τ)) dτ +

∫ t

−∞
G(t, τ)f(τ, w(τ)) dτ

= U(t, s)|ν2 +

∫ s

−∞
G(t, τ)f(τ, w(τ)) dτ.

For t ≤ t0 we arrive at

w(t) = x(t) = U(t, t0)|v1 +

∫ t0

−∞
G(t, τ)f(τ, x(τ)) dτ

= U(t, t0)|v1 +

∫ t

−∞
U(t, τ)P (τ)f(τ, x(τ)) dτ −

∫ t0

t
U(t, τ)|(I − P (τ))f(τ, x(τ)) dτ

= U(t, t0)|v1 −
∫ t0

t
U(t, τ)|(I − P (τ))f(τ, w(τ)) dτ +

∫ t

−∞
G(t, τ)f(τ, w(τ)) dτ

= U(t, s)|ν2 −
∫ s

t
U(t, τ)|(I − P (τ))f(τ, w(τ)) dτ +

∫ t

−∞
G(t, τ)f(τ, w(τ)) dτ

= U(t, s)|ν2 +

∫ s

−∞
G(t, τ)f(τ, w(τ)) dτ.
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Therefore, for all t ≤ s there exists ν2 ∈ KerP (s) such that

w(t) = U(t, s)|ν2 +

∫ s

−∞
G(t, τ)f(τ, w(τ)) dτ.

This yields w(s) ∈ U s and thus x(s) = w(s) ∈ U s for all s > t0.

Remark 2.8. If the nonlinear term satisfies the local ϕ-Lipschitz condition in a ball

Bρ := {x ∈ X : ‖x‖ ≤ ρ}, then in a similar way as above, we obtain the existence of a local

unstable manifold of E-class for solutions staying in that ball as t→ −∞ (see [12, Theo-

rem 6.5]).

We now come to our main result of this section, that is the attraction property of an

invariant unstable manifold of E-class for the solutions to (2.2). Concretely, we will show

that the E-class-unstable manifold U = {(t,U t)}t∈R exponentially attracts all solutions

to Eq. (2.2) in the sense that any solution u(·) to Eq. (2.2) is exponentially attracted to

some induced trajectory u∗(·) lying in the E-class-unstable manifold. Precisely, we will

prove the following theorem.

Theorem 2.9. Assume that conditions of Theorem 2.7 is satisfied. For each fixed α > 0

with α < ν we define the functions eν−α(t) = e−(ν−α)|t|, hν−α(t) =
∥∥e−(ν−α)|t−·|ϕ(·)

∥∥
ER

for t ∈ R. Assume that l < 1 where

l := N(1 +H) max

{
N1q ‖eν−α‖ER

+ ‖hν−α‖ER
, q +

(N1 +N2) ‖Λ1ϕ‖∞
1− e−(ν−α)

}

for q :=
N2N1(1+H)‖eν‖ER

‖ϕ‖E′R
1−N(1+H)‖hν‖ER

. Then, the E-class-unstable manifold U = {U t}t∈R ex-

ponentially attracts all solutions of Eq. (2.2) in the sense that for any solution u(·) to

Eq. (2.2) with the initial value u(ξ) there exist a solution u∗(·) lying in U (i.e., u∗(t) ∈ U t

for all t ∈ R) such that

‖u(t)− u∗(t)‖ ≤ Ce−α(t−ξ) ‖gξ((I − P (ξ))u(ξ))− P (ξ)u(ξ)‖ for a.e. t ≥ ξ.

Proof. For fixed ξ ∈ R we introduce the space

Eξ,α =
{
w ∈ E such that w(t) = 0 for t < ξ and eα(t−ξ) ‖w(t)‖ ∈ ER ∩ L∞(R)

}
which is a Banach space endowed with the norm |w|α = max{

∥∥eα(t−ξ) ‖w(t)‖
∥∥
ER
, ‖eα(t−ξ)

w‖∞} with
∥∥eα(t−ξ)w

∥∥
∞ = ess supt≥ξ e

α(t−ξ) ‖w(t)‖. We will find u∗(·) in the form u∗(t) =

u(t) + w(t) such that w ∈ Eξ,α.

We see that u∗(·) is a solution of Eq. (2.2) if and only if w(·) is a solution of the

equation

w(t) = U(t, ξ)w(ξ) +

∫ t

ξ
U(t, τ) [f(τ, u(τ) + w(τ))− f(τ, u(τ))] dτ.
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To simplify the representation we put F (t, w(t)) = f(t, u(t) + w(t)) − f(t, u(t)). Then,

F : R×X → X is also ϕ-Lipschitz and F (t, 0) = 0. The equation for w(t) can be rewritten

as

(2.7) w(t) = U(t, ξ)w(ξ) +

∫ t

ξ
U(t, τ)F (τ, w(τ)) dτ.

By [9, Lemma 4.3] and [9, Remark 4.4], we observe that the solution w(t) of Eq. (2.7),

which is defined on [ξ,∞) (here w(t) = 0 for t < ξ), belongs to E if and only if it satisfies

(2.8) w(t) = U(t, ξ)ν0 +

∫ ∞
ξ
G(t, τ)F (τ, w(τ)) dτ

for some ν0 ∈ ImP (ξ) and t ≥ ξ. We will choose ν0 ∈ ImP (ξ) such that u∗(ξ) =

u(ξ) + w(ξ) ∈ U ξ. This means

P (ξ)(u(ξ) + w(ξ)) = gξ((I − P (ξ))(u(ξ) + w(ξ))).

Hence,

(2.9) ν0 = P (ξ)w(ξ) = −P (ξ)u(ξ) + gξ((I − P (ξ))(u(ξ) + w(ξ))).

Substituting (2.9) into (2.8) we obtain that

w(t) = U(t, ξ) [−P (ξ)u(ξ) + gξ((I − P (ξ))(u(ξ) + w(ξ)))]

+

∫ ∞
ξ
G(t, τ)F (τ, w(τ)) dτ

(2.10)

for t ≥ ξ. Thus, u∗(t) is solution of Eq. (2.2) and satisfies u∗(ξ) ∈ U ξ if w(t) is solution

of Eq. (2.10).

Next, in order to prove the existence of u∗(t) satisfying assertions of the theorem, we

will find solution w(t) of the Eq. (2.10) in the Banach space Eξ,α. To this purpose, for

w ∈ Eξ,α we define the mapping T as follows

(Tw)(t) =


U(t, ξ) [−P (ξ)u(ξ) + gξ((I − P (ξ))(u(ξ) + w(ξ)))]

+

∫ ∞
ξ
G(t, τ)F (τ, w(τ)) dτ for t ≥ ξ,

0 for t < ξ.

Firstly, we show that Tw ∈ Eξ,α. Indeed, for t ≥ ξ

eα(t−ξ) ‖(Tw)(t)‖ ≤ N ‖ν0‖+N(1 +H)eα(t−ξ)
∫ ∞
ξ

e−ν|t−τ |ϕ(τ) ‖w(τ)‖ dτ

≤ N ‖ν0‖+N(1 +H)

∫ ∞
ξ

e−(ν−α)|t−τ |ϕ(τ)eα(τ−ξ) ‖w(τ)‖ dτ

≤ N ‖ν0‖+
N(1 +H)(N1 +N2) ‖Λ1ϕ‖∞

1− e−(ν−α)
‖w‖∞ .
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Therefore, eα(t−ξ) ‖(Tw)(t)‖ ∈ L∞(R). On the other hand, we also have

eα(t−ξ) ‖(Tw)(t)‖ ≤ Ne−(ν−α)(t−ξ) ‖ν0‖

+N(1 +H)

∫ ∞
ξ

e−(ν−α)|t−τ |ϕ(τ)eα(τ−ξ) ‖w(τ)‖ dτ

≤ Ne−(ν−α)(t−ξ) ‖ν0‖+N(1 +H)hν−α(t)
∥∥∥eα(τ−ξ) ‖w(τ)‖

∥∥∥
ER
.

Thus, eα(t−ξ) ‖(Tw)(t)‖ ∈ ER since the functions e−(ν−α)(t−ξ), hν−α(t) ∈ ER and property

of Banach lattice of ER. Hence, eα(t−ξ) ‖(Tw)(t)‖ ∈ ER∩L∞(R). This leads to Tw ∈ Eξ,α.

By Lipschitz continuity of gξ we have

‖ν0‖ ≤ ‖gξ((I − P (ξ))u(ξ))− P (ξ)u(ξ)‖

+ ‖gξ((I − P (ξ))(u(ξ) + w(ξ)))− gξ((I − P (ξ))u(ξ))‖

≤ ‖gξ((I − P (ξ))u(ξ))− P (ξ)u(ξ)‖+ q ‖(I − P (ξ))w(ξ)‖

≤ ‖gξ((I − P (ξ))u(ξ))− P (ξ)u(ξ)‖+ q(1 +H)|w|α.

Therefore,

(2.11) |Tw|α ≤ max
{
N,NN1 ‖eν−α‖ER

}
‖gξ((I − P (ξ))u(ξ))− P (ξ)u(ξ)‖+ l|w|α

for l := max{NN1q(1 +H) ‖eν−α‖ER
+N(1 +H) ‖hν−α‖ER

, Nq(1 +H)

+
N(1+H)(N1+N2)‖Λ1ϕ‖∞

1−e−(ν−α) }.
Next, we prove that T is a contraction. Indeed, let w, v belong to Eξ,α. Then

eα(t−ξ) ‖(Tw)(t)− (Tv)(t)‖

≤ Ne−(ν−α)(t−ξ) ‖ν0 − µ0‖+N(1 +H)eα(t−ξ)
∫ ∞
ξ

e−ν|t−τ | ‖F (τ, w(τ))− F (τ, v(τ))‖ dτ

≤ Ne−(ν−α)(t−ξ) ‖ν0 − µ0‖+N(1 +H)

∫ ∞
ξ

e−(ν−α)|t−τ |ϕ(τ)eα(τ−ξ) ‖w(τ)− v(τ)‖ dτ.

On the other hand,

‖ν0 − µ0‖ = ‖gξ((I − P (ξ))(u(ξ) + w(ξ)))− gξ((I − P (ξ))(u(ξ) + v(ξ)))‖

≤ q ‖(I − P (ξ))(w(ξ)− v(ξ))‖

≤ q(1 +H) ‖w(ξ)− v(ξ)‖

≤ q(1 +H)|w − v|α.

Thus,∥∥∥eα(t−ξ)(Tw − Tv)
∥∥∥
∞
≤ Nq(1 +H)|w − v|α +

N(1 +H)(N1 +N2) ‖Λ1ϕ‖∞
1− e−(ν−α)

|w − v|α,
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and ∥∥∥eα(t−ξ) ‖(Tw)(t)− (Tv)(t)‖
∥∥∥
ER
≤ NN1q(1 +H) ‖eν−α‖ER

|w − v|α

+N(1 +H) ‖hν−α‖ER
|w − v|α.

Therefore,

|Tw − Tv|α ≤ l|w − v|α.

Since l < 1, we obtain that T is a contraction on Banach space Eξ,α. Then, the equations

Tw = w has a unique solution w ∈ Eξ,α. From (2.11) it follows that

|w|α ≤
max

{
N,NN1 ‖eν−α‖ER

}
1− l

‖gξ((I − P (ξ))u(ξ))− P (ξ)u(ξ)‖ .

We have completed proof of the existence of the solution u∗ = u+w for Eq. (2.2) satisfies

u∗(t) ∈ U t for t ≥ ξ and

‖u∗(t)− u(t)‖ = ‖w(t)‖ ≤ e−α(t−ξ)|w|α

≤
max

{
N,NN1 ‖eν−α‖ER

}
1− l

e−α(t−ξ) ‖gξ((I − P (ξ))u(ξ))− P (ξ)u(ξ)‖

for a.e. t ≥ ξ.

3. Fisher-Kolmogorov model with time-dependent environmental capacity

In this section, we will apply the above-obtained results to Fisher-Kolmogorov model with

the time-dependent environmental capacity. This model is used to describe the spread of

an advantageous gene in a population (see [14, 15]). Precisely, we consider the following

problem

(3.1)


∂

∂t
u(t, x) =

∂2

∂x2
u(t, x) + ru(t, x)− r

K(t)
u2(t, x) for t ≥ s, x ∈ [0, π],

u′x(t, 0) = u′x(t, π) = 0, t ∈ R,

u(s, x) = φ(x), 0 ≤ x ≤ π.

Here, u(t, x) represents the population density at location x and time t; the constant r > 0

is the linear reproduction rate, and K(t) > 0 is the carrying capacity of the population at

time t. We suppose that r 6= n2 for all n ∈ N.

We then choose the Banach space X = C[0, π] and consider the operator A : X → X

defined by

Au =
∂2

∂x2
u+ ru,

D(A) =
{
u ∈ C2[0, π] : u′(0) = u′(π) = 0

}
.
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Therefore, this problem can be rewritten as an abstract Cauchy problem
d

dt
u(t, ·) = Au(t, ·) + F (t, u(t, ·)) for t ≥ s,

u(s, ·) = φ(·) ∈ X

where F : R×X → X is defined by

F (t, φ)(x) = − r

K(t)
φ2(x), x ∈ [0, π].

It can be seen (see [4, Chap. II, p. 68]) that A generates an analytic semigroup (etA)t≥0.

Since the spectrum of A is of the form σ(A) =
{
r,−12 + r,−22 + r, . . . ,−n2 + r, . . .

}
and

r 6= n2 for all n ∈ N, we have σ(A) ∩ iR = ∅. Therefore, in this case, the spectral

mapping theorem for analytic semigroups yields that (etA)t≥0 is hyperbolic. Hence, the

evolution family (U(t, s))t≥s corresponding to A (i.e., U(t, s) = e(t−s)A) has an exponential

dichotomy.

Let now u0 be a bounded (on the whole R) solution of Eq. (3.1). The existence of

u0 is guaranteed by [12, Corollary 6.6]. We shall show the existence of a local unstable

manifold of E-class around solution u0(t, ·). To do this, we transform to the case of the

trivial solution by setting v(t, ·) = u(t, ·)−u0(t, ·). We then arrive at the following abstract

Cauchy problem

(3.2)


d

dt
v(t, ·) = Ã(t)v(t, ·) + F (t, v(t, ·)) for t ≥ s,

v(s, ·) = φ(·)− u0(s, ·) ∈ X,

where

Ã(t)f = Af − 2ru0(t, ·)
K(t)

f = Af + C(t)f and D(Ã(t)) = D(A).

We shall prove the existence of a local E-class-unstable manifold around the trivial solution

0 of Equation (3.2). This manifold is exactly the local E-class unstable manifold around

solution u0(t, ·) of Equation (3.1).

We note that if K(t) = K is a constant independent of t, and u0 = K is an equilibrium

point of Eq. (3.1), then Ã(t) = A−2rI is independent of t. This operator has the spectrum

lying on the left side of the imaginary axis on the complex plane, and it generates an

analytic semigroup. Therefore, the evolution family (U(t, s))t≥s corresponding to A− 2rI

is exponentially stable. Therefore, the trivial solution of (3.2) is stable by Lyapunov

linearized stability principle. Hence, in this case the solution u0 = K of Eq. (3.1) is

stable.

Surprisingly, when K(t) is time-dependent, we can find the conditions imposed on K(t)

such that there exits a local unstable manifold of E-class around the solution u0(t, ·) leading

to the instability of that solution. To do this, Remark 2.8 (see also [12, Corollary 6.6])
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is actually sufficient for our purpose since the nonlinear function F is locally ϕ-Lipschitz

on any ball Bρ := {v ∈ X : ‖v‖ ≤ ρ} with ϕ(t) = 2ρr
K(t) for any fixed ρ > 0. However,

we would like to perform here the cut-off technique to obtain a “modified” equation of

(3.2) (see Eq. (3.3) below) so that we can apply Theorems (2.7) and (2.9) to the modified

equation, and when restricted to the ball Bρ, the two equations are identical. Concretely,

we fix any ρ > 0 and define the cut-off mapping on X as follows.

G(t, φ)(x) =


− r

K(t)
φ2(x) if φ ∈ Bρ,

− r

K(t)

φ2(x)

‖φ‖2
if φ 6∈ Bρ.

Obviously, G(t, 0) = 0. We now check that G is ϕ-Lipschitz with ϕ(t) = 4ρr
K(t) for all t ∈ R.

Indeed, let v, w ∈ X. Then,

• if v, w ∈ Bρ, we have ‖G(t, v)−G(t, w)‖ ≤ ϕ(t) ‖v − w‖.

• if v, w 6∈ Bρ, assuming without loss of generality that ‖v‖ ≤ ‖w‖, then

|G(t, v)(x)−G(t, w)(x)| = r

K(t)

∣∣∣∣∣‖v‖2 (w2 − v2) + v2(‖v‖2 − ‖w‖2)

‖v‖2 ‖w‖2

∣∣∣∣∣
≤ r

K(t)

(
2 ‖w − v‖+

(‖v‖+ ‖w‖) ‖w − v‖
‖w‖2

)
≤ ϕ(t) ‖v − w‖ .

• if v ∈ Bρ, w 6∈ Bρ, we have

|G(t, v)(x)−G(t, w)(x)| = r

K(t)

∣∣∣∣∣v2 − w2 + v2(‖w‖2 − 1)

‖w‖2

∣∣∣∣∣
≤ r

K(t)

(
2 ‖v − w‖+

(‖w‖+ 1)(‖w‖ − ‖v‖)
‖w‖2

)
≤ ϕ(t) ‖v − w‖ .

Thus, G is ϕ-Lipschitz with ϕ(t) = 4ρr
K(t) .

Next, we consider the following abstract Cauchy problem

(3.3)


d

dt
v(t, ·) = Ã(t)v(t, ·) +G(t, v(t, ·)) for t ≥ s,

v(s, ·) = φ̃(·) ∈ X.

This equation can be considered as a “modified” equation of Eq. (3.2). Clearly, the

solutions of (3.3), which are staying on Bρ as t→ −∞, are also the solutions of (3.2) and
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vice versa. That is to say, the intersections of Bρ with the surfaces (U t)t∈R of invariant-

unstable manifold of E-class for (3.3) form the surfaces of a local unstable manifold of

E-class for (3.2) near the trivial solution.

As seen above, A generates an evolution family having exponential dichotomy with

the corresponding dichotomy constants N ′, ν1 > 0 and dichotomy projection operator P .

Then, using [7, Corollary 5.3] we obtain that if K(t) is continuous and satisfy

(3.4) sup
t∈R

2r ‖u0(t, ·)‖
K(t)

<
ν1

2N ′ ‖P‖ (1 +N ′ +N ′ ‖P‖)
,

then Ã(t) generates an evolution family having exponential dichotomy with the corre-

sponding dichotomy constants, say, N, ν > 0 and dichotomy projections P (t).

We now choose K(t) := beβ|t| for t ∈ R with constants β > ν, and b > 0. Putting

ϕ(t) = 4ρr
K(t) for t ∈ R we can see that ϕ ∈ Lp(R) for 1 ≤ p < +∞ and

‖ϕ‖Lp = 4bρr

(∫ ∞
−∞

e−pβ|t| dt

) 1
p

= 4bρr

(
2

βp

) 1
p

.

Then, the function

hν(t) =

(∫ ∞
−∞

e−pν|t−τ |ϕp(τ) dτ

) 1
p

for t ∈ R

is an even function since the function ϕ(·) is even. For t ≥ 0 we compute

hν(t) =

(∫ ∞
−∞

e−pν|t−τ |ϕp(τ) dτ

) 1
p

=

(∫ ∞
−∞

e−pν|t−τ |(4bρre−β|t|)p dτ

) 1
p

= 4bρr

(∫ 0

−∞
e−pν|t−τ |e−βp|t| dτ +

∫ t

0
e−pν|t−τ |e−βp|t| dτ

+

∫ +∞

t
e−pν|t−τ |e−βp|t| dτ

) 1
p

= 4bρr

(
e−pνt + e−pβt

p(β + ν)
+
e−pνt − e−pβt

p(β − ν)

) 1
p

.

Hence, using the fact that the function hν is even we have

hν(t) = 4bρr

(
e−pν|t| + e−pβ|t|

p(β + ν)
+
e−pν|t| − e−pβ|t|

p(β − ν)

) 1
p

for t ∈ R.

Therefore, hν ∈ Lq(R) for 1
q + 1

p = 1 and

‖hν‖Lq =

(∫ ∞
−∞

(hν(t))q dt

) 1
q

≤
(

2

∫ ∞
0

(hν(t))q dt

) 1
q

≤ 4rρb

(
2β

p(β + ν)(β − ν)

) 1
p
(

4

νq

) 1
q

.

(3.5)
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By Theorems 2.7 and 2.9 we see that if

N(1 +H)4bρr

(
4

νq

) 1
q

[
NN1

(
2

βp

) 1
p

+

(
2β

p(β + ν)(β − ν)

) 1
p

]
< 1

then there is an invariant unstable manifold U = {(t,U t)}t∈R of Lp-class for mild solutions

of Eq. (3.3) and this manifold attracts all mild solutions to Eq. (3.3).

As argued above, the intersection {(t,U t ∩Bρ)}t∈R is the local unstable manifold of

Lp-class for mild solutions of Eq. (3.1) around solution u0(t, ·) leading to the instability of

this solution.
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