The Minimal Cycles over Brieskorn Complete Intersection Surface Singularities

Fanning Meng, Wenjun Yuan* and Zhigang Wang

Abstract

In this paper, we study a complete intersection surface singularity of Brieskorn type and provide a condition for the coincidence of the fundamental cycle and the minimal cycle on the minimal resolution space.

1. Introduction

Let (X, o) be a germ of a normal complex surface singularity and let $\pi:(\widetilde{X}, E) \rightarrow(X, o)$ be a resolution, where $E=\pi^{-1}(o)$ denotes the exceptional divisor. Let $E=\bigcup_{i=1}^{r} E_{i}$ be the irreducible decomposition of E. A formal sum $D=\sum_{i=1}^{r} d_{i} E_{i}\left(d_{i} \in \mathbb{Z}\right)$ is called a cycle on E. For any effective cycle D on E (i.e., $d_{i} \geq 0$ for any i), the arithmetic genus $p_{a}(D)$ of D is defined by $p_{a}(D)=1-\chi(D)$, where $\chi(D)=\operatorname{dim}_{\mathbb{C}} H^{0}\left(\widetilde{X}, \mathcal{O}_{D}\right)-\operatorname{dim}_{\mathbb{C}} H^{1}\left(\widetilde{X}, \mathcal{O}_{D}\right)$ and $\mathcal{O}_{D}=\mathcal{O}_{\tilde{X}} / \mathcal{O}_{\tilde{X}}(-D)$. From Riemann-Roch theorem, we have

$$
\begin{equation*}
\chi(D)=-\frac{1}{2}\left(D^{2}+K_{\widetilde{X}} D\right) \tag{1.1}
\end{equation*}
$$

where $K_{\tilde{X}}$ is the canonical divisor on \widetilde{X}. If B, C are cycles, we have

$$
\begin{equation*}
p_{a}(B+C)=p_{a}(B)+p_{a}(C)-1+B C . \tag{1.2}
\end{equation*}
$$

The fundamental cycle Z_{E} is by definition the smallest one among the cycles $F>0$ such that $F E_{i} \leq 0$ for every irreducible component E_{i} of E. The arithmetic genus of Z_{E} is called the fundamental genus of (X, o) and denoted by $p_{f}(X, o)$. The minimal cycle A on E is the smallest one among the cycles $D>0$ such that $p_{a}(D)=p_{a}\left(Z_{E}\right), D \leq Z_{E}$. Clearly, we always have $A \leq Z_{E}$. It sometimes happens that $A=Z_{E}$. This equality holds on the minimal resolution for minimal Kulikov singularities (cf. [7]), hypersurface singularities of Brieskorn type with certain conditions (cf. [8]). However, even for a particular class of

Received June 19, 2015, accepted November 4, 2015.
Communicated by Yoichi Miyaoka.
2010 Mathematics Subject Classification. Primary: 14J17; Secondary: 32S25.
Key words and phrases. Normal surface singularities, Cyclic quotient singularities, Brieskorn complete intersections, Fundamental cycle, Minimal cycle.
*Corresponding author.
singularities, a more systematic study will be required in order to classify when such a coincidence of important cycles occurs.

In this paper, we consider a germ $(W, o) \subset\left(\mathbb{C}^{m}, o\right)$ of an isolated Brieskorn complete intersection singularity defined by

$$
W=\left\{\left(x_{i}\right) \in \mathbb{C}^{m} \mid q_{j 1} x_{1}^{a_{1}}+\cdots+q_{j m} x_{m}^{a_{m}}=0, j=3, \ldots, m\right\}
$$

where $a_{i} \geq 2$ are integers. By Serre's criterion for normality, (W, o) is a normal surface singularity. Neumann [6] showed that the universal abelian cover of a weighted homogeneous normal surface singularity with rational homology sphere link is a complete intersection singularity of Brieskorn type. The aim of this paper is to give a condition for the coincidence of the fundamental cycle and the minimal cycle over these singularities.

This paper is organized as follows. In Section 2 , we mention fundamental facts on cycles over a cyclic quotient singularity, and the minimal cycles over normal surface singularities. In Section 3, we consider the minimal cycles over Brieskorn complete intersection surface singularities and give a condition for the coincidence of the fundamental cycle and the minimal cycle on the minimal resolution space.

2. Preliminaries

Let us first introduce some notations which will be used throughout this paper. For $1 \leq i \leq m$, we define positive integers $d_{i m}, n_{i m}$ and $e_{i m}$ as follows:

$$
\begin{aligned}
d_{i m} & :=\operatorname{lcm}\left(a_{1}, \ldots, \widehat{a}_{i}, \ldots, a_{m}\right), \\
n_{i m} & :=\frac{a_{i}}{\operatorname{gcd}\left(a_{i}, d_{i m}\right)}, \\
e_{i m} & :=\frac{d_{i m}}{\operatorname{gcd}\left(a_{i}, d_{i m}\right)} .
\end{aligned}
$$

(The symbol ${ }^{\wedge}$ in the definition of $d_{i m}$ indicates an omitted term.) In addition, we define integers $\mu_{i m}$ by the following conditions:

$$
e_{i m} \mu_{i m}+1 \equiv 0 \quad\left(\bmod n_{i m}\right), \quad 0 \leq \mu_{i m}<n_{i m}
$$

For $1 \leq i \leq m$, we define integers \widehat{g} and \widehat{g}_{i} as follows:

$$
\widehat{g}:=\frac{a_{1} \cdots a_{m}}{\operatorname{lcm}\left(a_{1}, \ldots, a_{m}\right)}, \quad \widehat{g}_{i}:=\frac{a_{1} \cdots \widehat{a}_{i} \cdots a_{m}}{\operatorname{lcm}\left(a_{1}, \ldots, \widehat{a}_{i}, \ldots, a_{m}\right)} .
$$

2.1. Cyclic quotient singularities

For any $x \in \mathbb{R}$, we put $\lfloor x\rfloor=\max \{n \in \mathbb{Z} \mid n \leq x\}$, and $\lceil x\rceil=\min \{n \in \mathbb{Z} \mid n \geq x\}$. For integers $c_{i} \geq 2, i=1,2, \ldots, r$, we put

$$
\left[\left[c_{1}, \ldots, c_{r}\right]\right]:=c_{1}-\frac{1}{c_{2}-\frac{1}{\ddots-\frac{1}{c_{r}}}}
$$

Let n and μ be positive integers that are relatively prime and $\mu<n$. Let ϵ_{n} denote the primitive n-th root of unity $\exp (2 \pi \sqrt{-1} / n)$. Then the singularity of the quotient

$$
\mathbb{C}^{2} /\left\langle\left(\begin{array}{cc}
\epsilon_{n} & 0 \\
0 & \epsilon_{n}^{\mu}
\end{array}\right)\right\rangle
$$

is called the cyclic quotient singularity of type $C_{n, \mu}$. A non-singular point is regarded as of type $C_{1,0}$. It is known (cf. [1]) that if $E=\bigcup_{i=1}^{r} E_{i}$ is the exceptional divisor of the minimal resolution of $C_{n, \mu}$, then $E_{i} \simeq \mathbb{P}^{1}$ and the weighted dual graph of E is chain-shaped as in Figure 2.1, where $n / \mu=\left[\left[c_{1}, \ldots, c_{r}\right]\right]$.

Figure 2.1: The weighted dual graph of $\bigcup_{i=1}^{r} E_{i}$

Lemma 2.1. [2, Lemma 1.2] Let $e_{i}=\left[\left[c_{i}, \ldots, c_{r}\right]\right]$. Take a positive integer λ_{0} and define the sequence $\left\{\lambda_{i}\right\}_{i=0}^{r}$ by the recurrence formula $\lambda_{i}=\left\lceil\lambda_{i-1} / e_{i}\right\rceil$ for $1 \leq i \leq r$. Take relatively prime positive integers n_{i} and μ_{i} satisfying $n_{i} / \mu_{i}=e_{i}$ for $1 \leq i \leq r$. Put $\lambda_{r+1}:=\lambda_{r} c_{r}-\lambda_{r-1}$.
(1) If $\lambda_{i-1}=\lambda_{i} c_{i}-\lambda_{i+1}$ holds for $1 \leq i \leq r$, then $\lambda_{1}=\left(\mu_{1} \lambda_{0}+\lambda_{r+1}\right) / n_{1}$.
(2) If $\lambda_{0} \equiv 0\left(\bmod n_{1}\right)$, then $\lambda_{i}=\mu_{i} \lambda_{i-1} / n_{i}$ for $1 \leq i \leq r$. If $\mu_{1} \lambda_{0}+1 \equiv 0\left(\bmod n_{1}\right)$, then $\lambda_{i}=\left(\mu_{i} \lambda_{i-1}+1\right) / n_{i}$ for $1 \leq i \leq r$.
(3) If either $\lambda_{0} \equiv 0\left(\bmod n_{1}\right)$ or $\mu_{1} \lambda_{0}+1 \equiv 0\left(\bmod n_{1}\right)$, then $\lambda_{i-1}=\lambda_{i} c_{i}-\lambda_{i+1}$ holds for $1 \leq i \leq r$. Furthermore, $\lambda_{r+1}=0$ when $\lambda_{0} \equiv 0\left(\bmod n_{1}\right)$, and $\lambda_{r+1}=1$ when $\mu_{1} \lambda_{0}+1 \equiv 0\left(\bmod n_{1}\right)$.
(4) If $\lambda_{0} \equiv 0\left(\bmod n_{1}\right)$, then $\lambda_{r}=\lambda_{0} / n_{1}$. If $\mu_{1} \lambda_{0}+1 \equiv 0\left(\bmod n_{1}\right)$, then $\lambda_{r}=\left\lceil\lambda_{0} / n_{1}\right\rceil$.

Example 2.2. Let $e_{1}=[[2,2,2]]=\frac{4}{3}$ and take $\lambda_{0}=4$. Then $\lambda_{1}=3, \lambda_{2}=2, \lambda_{3}=1$, $\lambda_{4}=0$ and $e_{2}=\frac{3}{2}, e_{3}=2$, and $n_{1}=4, \mu_{1}=3, n_{2}=3, \mu_{2}=2, n_{3}=2, \mu_{3}=1$. Following Lemma 2.1, we have $\lambda_{1}=\left(\mu_{1} \lambda_{0}+\lambda_{r+1}\right) / n_{1}=(3 \times 4+0) / 4=3, \lambda_{2}=\mu_{2} \lambda_{1} / n_{2}=$ $(2 \times 3) / 3=2, \lambda_{3}=\mu_{3} \lambda_{2} / n_{3}=\lambda_{0} / n_{1}=1, \lambda_{4}=0$.

2.2. Minimal cycles over normal surface singularities

Let (X, o) be a germ of a normal complex surface singularity. Let $\pi:(\widetilde{X}, E) \rightarrow(X, o)$ be a resolution of (X, o), where $\pi^{-1}(o)=E=\bigcup_{i=1}^{r} E_{i}$ is the irreducible decomposition of E. Let D be a cycle with $0 \leq D<Z_{E}$, where Z_{E} is the fundamental cycle on E. Then we can construct a sequence of positive cycles

$$
Z_{0}=D, Z_{1}=Z_{0}+E_{i_{1}}, \ldots, Z_{j}=Z_{j-1}+E_{i_{j}}, \ldots, Z_{l}=Z_{l-1}+E_{i_{l}}=Z_{E}
$$

such that $Z_{j-1} E_{i_{j}}>0$ for $j=\epsilon+1, \ldots, l$, where $E_{i_{1}}$ is arbitrary, and $\epsilon=0$ if $D>0$ and $\epsilon=1$ if $D=0$. This sequence is called a computation sequence from D to Z_{E}. When $D=0$, it is a Laufer's computation sequence of Z_{E}. We can always construct a computation sequence from D to Z_{E} as in [3].

Lemma 2.3. 8, Lemma 1.1] Let D be a cycle on E such that $0 \leq D \leq Z_{E}$. Then $p_{a}(D) \leq p_{f}(X, o)$.

Proof. Let $Z_{0}=D, Z_{1}=Z_{0}+E_{i_{1}}, \ldots, Z_{j+1}=Z_{j}+E_{i_{j+1}}, \ldots, Z_{l}=Z_{E}$ be a computation sequence from D to Z_{E}. Then for $j=0, \ldots, l-1$, following (1.1) and (1.2), we have

$$
p_{a}\left(Z_{j+1}\right)=p_{a}\left(Z_{j}\right)+p_{a}\left(E_{i_{j+1}}\right)-1+Z_{j} E_{i_{j+1}} \geq p_{a}\left(Z_{j}\right) .
$$

Definition 2.4. [8, Definition 1.2] Let A be a cycle on E satisfying $0<A \leq Z_{E}$. Suppose $p_{f}(X, o) \geq 1$. Then A is said to be a minimal cycle on E if $p_{a}(A)=p_{f}(X, o)$ and $p_{a}(D)<p_{f}(X, o)$ for any cycle D with $D<A$.

In 1977, Laufer (4) showed that if (X, o) is an elliptic singularity (i.e., $p_{f}(X, o)=1$), then A is the minimally elliptic cycle. In other words, if (X, o) is a minimally elliptic singularity, then $A=Z_{E}$ (cf. [4]). In fact, as Tomaru [8] said, for the definition of minimally elliptic cycle, we need not the assumption $A \leq Z_{E}$. However, in the case of $p_{f}(X, o) \geq 2$, we need the assumption $A \leq Z_{E}$. Further, as the minimally elliptic cycle, the existence and the uniqueness of the minimal cycle A can also be shown as in [4].

Lemma 2.5. [8, Lemma 1.4] Let $Z_{0}=A, Z_{1}=Z_{0}+E_{i_{1}}, \ldots, Z_{E}=Z_{l}=Z_{l-1}+E_{i_{l}}$ be a computation sequence from A to Z_{E}. Then $E_{i_{k}}$ is a smooth rational cure and $Z_{k-1} E_{i_{k}}=1$ for $k=1,2, \ldots, l$.

Suppose that $E=\bigcup_{i=0}^{N} E_{i}$ whose dual graph is star-shaped with central curve E_{0}. Let $\bigcup_{i=1}^{s} E_{i}$ be a cyclic branch with $E_{0} \cap E_{1} \neq \varnothing$. Suppose that the weighted dual graph of $E_{0} \cup\left(\bigcup_{i=1}^{s} E_{i}\right)$ is as in Figure 2.2 , where $E_{i}^{2}=-b_{i}, i=1,2, \ldots, s$.

Figure 2.2: The weighed dual graph of $\bigcup_{i=1}^{s} E_{i}$
Let d, e be positive integers and $d / e=\left[\left[b_{1}, \ldots, b_{s}\right]\right]$ satisfying $\operatorname{gcd}(d, e)=1$. Let $c_{0}=d$, $c_{1}=e$ and let $c_{2}, c_{3}, \ldots, c_{s}$ be the integers which are inductively defined by the relation $c_{i+1}=b_{i} c_{i}-c_{i-1}$ for $1 \leq i \leq s-1$, thus $c_{s}=1$ by Lemma 2.1(4). Then we have the following lemma.

Lemma 2.6. [8, Lemma 3.2] Suppose that the coefficient of E_{0} in Z_{E} is dt, where t is a positive integer. Then the coefficient of E_{i} in Z_{E} is given by $t c_{i}, i=1,2, \ldots, s$. In particular, $Z_{E} E_{i}=0$ for $i=1,2, \ldots, s$.

Let d, e and b_{1}, \ldots, b_{s} be as above. Let l, μ be integers defined by $\mu d-e l=1$ with $0<\mu<d$. Then $l / \mu=\left[\left[b_{1}, \ldots, b_{s-1}, b_{s}-1\right]\right]$. Put $\gamma_{0}=l, \gamma_{1}=\mu$ and define $\gamma_{2}, \ldots, \gamma_{s}$ inductively by $\gamma_{i}=b_{i-1} \gamma_{i-1}-\gamma_{i-2}(i=2, \ldots, s)$, then $\gamma_{s-1}=b_{s}-1$ and $\gamma_{s}=1$.

Lemma 2.7. [8, Lemma 3.3] If the coefficient of E_{0} in Z_{E} is l, then the coefficient of E_{i} in Z_{E} is given by $\gamma_{i}, 1 \leq i \leq s$. In particular, $Z_{E} E_{i}=0$ for $i=1, \ldots, s-1$ and $Z_{E} E_{s}=-1$. Furthermore, if $\left\lfloor\frac{d}{l}\right\rfloor=1$, then $b_{s} \geq 3$.

3. Minimal cycles over (W, o)

In this section, we consider the minimal cycles over Brieskorn complete intersection surface singularity (W, o) defined as in Section 1, and provide a condition for the coincidence of the fundamental cycle and the minimal cycle on the minimal resolution space. Let $\pi:(\widetilde{W}, E) \rightarrow(W, o)$ be the minimal good resolution of (W, o). Let $\alpha_{i}:=n_{i m}, \beta_{i}:=\mu_{i m}$ and $d_{m}=\operatorname{lcm}\left(a_{1}, \ldots, a_{m}\right)$.
Theorem 3.1. 5, Theorem 4.4] Let g and $-c_{0}$ denote the genus and the self-intersection number of E_{0}, respectively. Then the weighted dual graph of the exceptional set E is as in Figure 3.1, where the invariants are as follows:

$$
\begin{gathered}
2 g-2=(m-2) \widehat{g}-\sum_{i=1}^{m} \widehat{g}_{i}, \quad c_{0}=\sum_{w=1}^{m} \frac{\widehat{g}_{w} \beta_{w}}{\alpha_{w}}+\frac{a_{1} \cdots a_{m}}{d_{m}^{2}}, \\
\beta_{w} / \alpha_{w}= \begin{cases}{\left[\left[c_{w, 1}, \ldots, c_{w, s_{w}}\right]\right]^{-1}} & \text { if } \alpha_{w} \geq 2 \\
0 & \text { if } \alpha_{w}=1 .\end{cases}
\end{gathered}
$$

Figure 3.1: The weighted dual graph of the exceptional set E.

Theorem 3.2. 5, Theorem 5.1] Let $\epsilon_{w, \nu}=\left[\left[c_{w, \nu}, \ldots, c_{w, s_{w}}\right]\right]$ if $s_{w}>0$, and let

$$
Z_{E}=\theta_{0} E_{0}+\sum_{w=1}^{m} \sum_{\nu=1}^{s_{w}} \sum_{\xi=1}^{\widehat{g}_{w}} \theta_{w, \nu, \xi} E_{w, \nu, \xi} .
$$

Then θ_{0} and the sequence $\left\{\theta_{w, \nu, \xi}\right\}$ are determined by the following:

$$
\begin{aligned}
& \theta_{w, 0, \xi}:=\theta_{0}:=\min \left(e_{m m}, \alpha_{1} \cdots \alpha_{m}\right), \\
& \theta_{w, \nu, \xi}=\left\lceil\theta_{w, \nu-1, \xi} / \epsilon_{w, \nu}\right\rceil \quad\left(1 \leq \nu \leq s_{w}\right) .
\end{aligned}
$$

Theorem 3.3. Let $\pi^{\prime}:(\widehat{W}, E) \rightarrow(W, o)$ be the minimal resolution of (W, o). Assume $\operatorname{lcm}\left(a_{1}, \ldots, a_{m-1}\right) \leq a_{m}<2 \cdot \operatorname{lcm}\left(a_{1}, \ldots, a_{m-1}\right)$, then $Z_{E}=A$ on E.

Proof. Following the proof of Lemma 2.3, by Definition 2.4, we need only to prove that $p_{a}\left(Z_{E}-E_{i}\right)<p_{f}(W, o)$ for any irreducible component E_{i} of E. By 1.1) and (1.2), we have

$$
p_{a}\left(Z_{E}\right)=p_{a}\left(Z_{E}-E_{i}+E_{i}\right)=p_{a}\left(Z_{E}-E_{i}\right)+p_{a}\left(E_{i}\right)-1+\left(Z_{E}-E_{i}\right) E_{i},
$$

which implies that

$$
\begin{equation*}
p_{a}\left(Z_{E}-E_{i}\right)=p_{a}\left(Z_{E}\right)-p_{a}\left(E_{i}\right)+1-Z_{E} E_{i}+E_{i}^{2} . \tag{3.1}
\end{equation*}
$$

Assume that π^{\prime} is the minimal good resolution, then $E_{0}^{2} \leq-2\left(\right.$ or $E_{0}^{2}=-1$ and $\left.g\left(E_{0}\right) \geq 1\right)$ and the weighted dual graph of the minimal good resolution of (W, o) is given as in Figure 3.1. Let B be any irreducible component of $E-E_{0}-\bigcup_{w=1}^{m}\left(\bigcup_{\xi=1}^{\widehat{g}_{w}} E_{w, s_{w}, \xi}\right)$, by Lemma 2.1. Theorem 3.2 and (3.1), we have $Z_{E} B=0$ and

$$
p_{a}\left(Z_{E}-B\right)<p_{f}(W, o) .
$$

Since $\operatorname{lcm}\left(a_{1}, \ldots, a_{m-1}\right) \leq a_{m}, e_{m m} \leq \alpha_{m} \leq \alpha_{1} \cdots \alpha_{m}$. In particular, in this case, $Z_{E}=$ $M_{E}=\left(x_{m}\right)_{E}$ obtained by Meng-Okuma (cf. [5]), where M_{E} is the maximal ideal cycle on E. From Theorem 3.2, the coefficient of E_{0} in Z_{E} is $e_{m m}$. It follows from Theorem 3.2, Lemma 2.6, Lemma 2.7 and Lemma 2.1(3) that for $w \in\{1, \ldots, m\}$ and $\xi \in\left\{1, \ldots, \widehat{g}_{w}\right\}$, we have

$$
Z_{E} E_{w, s_{w}, \xi}= \begin{cases}0 & \text { if } w \neq m \\ -1 & \text { if } w=m\end{cases}
$$

Since $\operatorname{lcm}\left(a_{1}, \ldots, a_{m-1}\right) \leq a_{m}<2 \cdot \operatorname{lcm}\left(a_{1}, \ldots, a_{m-1}\right), e_{m m} \leq \alpha_{m}<2 e_{m m}$, which implies $\left\lfloor\frac{\alpha_{m}}{e_{m m}}\right\rfloor=1$. Following Lemma 2.7. we have $\left(E_{m, s_{m}, \xi}\right)^{2}<-2, \xi \in\left\{1, \ldots, \widehat{g}_{m}\right\}$. Then by (3.1), we have

$$
p_{a}\left(Z_{E}-E_{w, s_{w}, \xi}\right)<p_{f}(W, o), \quad w=1, \ldots, m ; \xi=1, \ldots, \widehat{g}_{w} .
$$

From Theorem 3.1, we have

$$
\begin{aligned}
-Z_{E} \cdot E_{0} & =c_{0} e_{m m}-\sum_{w=1}^{m-1} \frac{\widehat{g}_{w} e_{m m} \beta_{w}}{\alpha_{w}}-\frac{\widehat{g}_{m}\left(e_{m m} \beta_{m}+1\right)}{\alpha_{m}} \\
& =e_{m m}\left(c_{0}-\sum_{w=1}^{m} \frac{\widehat{g}_{w} \beta_{w}}{\alpha_{w}}\right)-\frac{\widehat{g}_{m}}{\alpha_{m}} \\
& =\frac{e_{m m} a_{1} \cdots a_{m}}{d_{m}^{2}}-\frac{\widehat{g}_{m}}{\alpha_{m}} \\
& =\frac{e_{m m} \widehat{g}}{d_{m}}-\frac{\widehat{g}_{m}}{\alpha_{m}}=0 .
\end{aligned}
$$

Therefore, by (3.1) and the adjunction formula, we also have

$$
p_{a}\left(Z_{E}-E_{0}\right)=p_{a}\left(Z_{E}\right)-g\left(E_{0}\right)+1+E_{0}^{2}<p_{f}(W, o) .
$$

Similar as the proof of Theorem 4.4 in [8] we assume that the minimal resolution does not coincide the minimal good resolution. Let $\pi:=\phi \circ \pi^{\prime}:(\bar{W}, \bar{E}) \xrightarrow{\phi}(\widehat{W}, E) \xrightarrow{\pi^{\prime}}$ (W, o) be the minimal good resolution, where ϕ is a birational morphism obtained by iterating monoidal transforms centered at a point. We may assume that E has at least two irreducible components, otherwise $Z_{E}=A$ obviously. It suffices to show that $p_{a}\left(Z_{E}-\right.$ $\left.E_{i}\right)<p_{f}(W, o)$ for any $E_{i} \subset E$. Suppose that $p_{a}\left(Z_{E}-E_{i}\right)=p_{f}(W, o)=p_{a}\left(Z_{E}\right)$ for some
$E_{i} \subset E$. Since $Z_{E}=Z_{E}-E_{i}+E_{i}$ is a part of a computation sequence for Z_{E}, it follows from Lemma 2.5 that E_{i} is a smooth rational curve and

$$
Z_{E} E_{i}=\left(Z_{E}-E_{i}+E_{i}\right) E_{i}=\left(Z_{E}-E_{i}\right) E_{i}+E_{i}^{2}=1+E_{i}^{2}
$$

Since E_{i} is smooth, $g\left(E_{i}\right)=0$. Hence by (1.1) and the adjunction formula $K_{\widehat{W}} E_{i}=$ $-E_{i}^{2}+2 g\left(E_{i}\right)-2$ for any $E_{i} \subset E$, where $K_{\widehat{W}}$ is the canonical divisor on \widehat{W}, we have

$$
\begin{aligned}
p_{a}\left(Z_{E}-E_{i}\right)-p_{a}\left(Z_{E}\right)= & 1+\frac{1}{2}\left(\left(Z_{E}-E_{i}\right)^{2}+K_{\widehat{W}}\left(Z_{E}-E_{i}\right)\right) \\
& +1+\frac{1}{2}\left(Z_{E}^{2}+K_{\widehat{W}} Z_{E}\right) \\
= & -1-Z_{E} E_{i}=0
\end{aligned}
$$

which implies $Z_{E} E_{i}=-1$. Thus $E_{i}^{2}=-2$. Let \bar{E}_{i} be the proper transform of E_{i} by ϕ. Then $Z_{E} E_{i}=Z_{\bar{E}} \bar{E}_{i}=-1$ by (0.2.2) in [9], which implies that $\bar{E}_{i}=E_{m, s_{m}, \xi}$, $\xi \in\left\{1, \ldots, \widehat{g}_{m}\right\}$ and the coefficient of \bar{E}_{i} in $Z_{\bar{E}}$ is 1 by Lemma 2.7. From Proposition 2.9 in [9], the coefficient of E_{i} in Z_{E} is 1 . It follows that there exists only one irreducible component $E_{j} \subset E$ that intersects E_{i} transversely, which implies that ϕ doesn't contain any monoidal transform centered at a point of E_{i}. Then $E_{m, s_{m}, \xi}^{2}=\bar{E}_{i}^{2}=E_{i}^{2}=-2$, which contradicts Lemma 2.7. Hence we complete the proof.

In fact, as Tomaru [8] said, in elliptic case, i.e., $\left(a_{1}, a_{2}\right)=(2,3)$ or $(2,4)$ or $(3,3)$, the result of Theorem 3.3 is already known by the classification of minimally elliptic singularities (cf. [4]).

Let $\pi:(\widetilde{W}, E) \rightarrow(W, o)$ be a resolution of (W, o). We define the \mathbb{Q}-coefficient cycle K on E by the relation:

$$
-K E_{i}=K_{\widetilde{W}} E_{i}
$$

for any irreducible component $E_{i} \subseteq E$, where $K_{\widetilde{W}}$ is a canonical divisor of \widetilde{W}. We call K the canonical cycle on E (cf. [10, Definition 2.18]). Since (W, o) is a Gorenstein singularity, there exists a cycle K such that $-K$ is a canonical divisor of \widetilde{W}.

Theorem 3.4. 8, Theorem 1.6] Let $\pi:(\widetilde{W}, E) \rightarrow(W, o)$ be the minimal good resolution and A the minimal cycle on E. Suppose $p_{f}(W, o) \geq 2$. Then $-K \geq Z_{E}+A$.

Example 3.5. Let $(W, o)=\left\{x_{1}^{2}+x_{2}^{3}+x_{3}^{4}=0,2 x_{1}^{2}+3 x_{2}^{3}+x_{4}^{5}=0\right\} \subset \mathbb{C}^{4}$. Note that $\operatorname{lcm}(2,3,4) \nless 5<2 \cdot \operatorname{lcm}(2,3,4)$. The minimal resolution graph (is also the minimal good
resolution graph) of (W, o) is given as follows:

Then the fundamental cycle $Z_{E}=12 E_{0}+4 E_{1}+4 E_{2}+5 E_{3}+3 E_{4}+5 E_{5}+3 E_{6}+6 E_{7}$ and $p_{f}(W, o)=7$. The minimal cycle $A=12 E_{0}+4 E_{1}+4 E_{2}+5 E_{3}+2 E_{4}+5 E_{5}+2 E_{6}+6 E_{7}$ and $-K=44 E_{0}+15 E_{1}+15 E_{2}+18 E_{3}+9 E_{4}+18 E_{5}+9 E_{6}+22 E_{7}$. It is clear that $Z_{E} \neq A$ and $-K>Z_{E}+A$.

Example 3.6. Let $(W, o)=\left\{x_{1}^{2}+x_{2}^{3}+x_{3}^{4}=0,3 x_{1}^{2}+5 x_{2}^{3}+x_{4}^{13}=0\right\} \subset \mathbb{C}^{4}$. Note that $\operatorname{lcm}(2,3,4)<13<2 \cdot \operatorname{lcm}(2,3,4)$. The minimal resolution graph (is also the minimal good resolution graph) of (W, o) is given as follows:

Then we have $Z_{E}=A=12 E_{0}+E_{1}+E_{2}+8 E_{3}+4 E_{4}+8 E_{5}+4 E_{6}+6 E_{7}, p_{f}(W, o)=11$ and $-K=132 E_{0}+11 E_{1}+11 E_{2}+95 E_{3}+48 E_{4}+95 E_{5}+48 E_{6}+66 E_{7}$. It is easy to see that $-K>Z_{E}+A$.

Acknowledgments

This work is supported by the NSF of China (11271090) and the NSF of Guangdong Province (2015A030313346, S2012010010121), the National Natural Science Foundation under Grant nos: 11301008 and 11226088, the Visiting Scholar Program of Department of Mathematics and Statistics at Curtin University of Technology when the second author worked as a visiting scholar (1990580481).

References

[1] F. Hirzebruch, Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953), 1-22. http://dx.doi.org/10.1007/bf01343146
[2] K. Konno and D. Nagashima, Maximal ideal cycles over normal surface singularities of Brieskorn type, Osaka J. Math, 49 (2012), no. 1, 225-245.
[3] H. B. Laufer, On rational singularities, Amer. J. Math. 94 (1972), 597-608.
[4] , On minimally elliptic singularities, Amer. J. Math. 99 (1977), no. 6, 12571295. http://dx.doi.org/10.2307/2374025
[5] F.-N. Meng and T. Okuma, The maximal ideal cycles over complete intersection surface singularities of Brieskorn type, Kyushu J. Math. 68 (2014), no. 1, 121-137. http://dx.doi.org/10.2206/kyushujm.68.121
[6] W. D. Neumann, Abelian covers of quasihomogeneous surface singularities, Singularities, Part 2 (Arcata, Calif., 1981), 233-243, Proc. Sympos. Pure Math., 40 Amer. Math. Soc., Providence, RI, 1983. http://dx.doi.org/10.1090/pspum/040.2/713252
[7] J. Stevens, Kulikov singularities, Thesis, 1985.
[8] T. Tomaru, On Gorenstein surface singularities with fundamental genus $p_{f} \geq 2$ which satisfy some minimality conditions, Pacific J. Math. 170 (1995), no. 1, 271-295. http://dx.doi.org/10.2140/pjm.1995.170.271
[9] P. Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), no. 2, 419454. http://dx.doi.org/10.2307/2373333
[10] S. S. T. Yau, On maximally elliptic singularities, Trans. Amer. Math. Soc. 257 (1980), no. 2, 269-329. http://dx.doi.org/10.1090/s0002-9947-1980-0552260-6

Fanning Meng
School of Mathematics and Information Sciences, Guangzhou University, Guangzhou 510006, P. R. China
E-mail address: mfnfdbx@163.com

Wenjun Yuan
Key Laboratory of Mathematics and Interdisciplinary Sciences, Guangdong Higher Education Institutes, Guangzhou University, Guangzhou 510006, P. R. China E-mail address: wjyuan1957@126.com

Zhigang Wang
School of Mathematics and Computing Science, Hunan First Normal University,
Changsha, 410205, P. R. China
E-mail address: zhigangwang@foxmail.com

