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Boundedness of Pseudodifferential Operators on Realized Homogeneous

Besov Spaces

Saliha Meliani and Madani Moussai*

Abstract. Using the notion of realizations, the realized homogeneous Besov spaces
˙̃
Bsp,q(Rn) are subsets of tempered distributions. Then we will study the boundedness

of some pseudodifferential operators on
˙̃
Bsp,q(Rn), in the cases either s < n/p or

s = n/p and q = 1.

1. Introduction and main results

For a function a : Rn ×Rn → C we study the boundedness of the corresponding pseudod-

ifferential operator (abbreviated ps.d.o) f → a(x,D)f on the homogeneous Besov spaces

Ḃs
p,q(Rn), where a(x,D) is defined by

a(x,D)f(x) := (2π)−n
∫
Rn

eix·ξa(x, ξ)f̂(ξ) dξ, ∀x ∈ Rn;

the function a is called the symbol. We will use the notation a(x, ξ) instead of a.

The space Ḃs
p,q(Rn) is defined modulo polynomials since ‖f‖Ḃs

p,q
= 0 for all polynomial

functions f . Then a ps.d.o cannot map e.g., Ḃs+m
p,q (Rn) into Ḃs

p,q(Rn) in general, since,

for instance, if we take the constant function f(x) := 1 we have a(x,D)f(x) = a(x, 0)

and it suffices to choose the symbol a(x, ξ) satisfying a(x, 0) /∈ Ḃs
p,q(Rn), (cf., see Exam-

ple 2.6 below). For this reason, we will show the boundedness problem on the realized

homogeneous Besov spaces
˙̃
Bs
p,q(Rn), and exactly from

˙̃
Bs+m
p,q (Rn) into

˙̃
Bs
p,q(Rn), where

throughout the paper we will make use of the following convention: the parameters s, p, q

and m will verify

s ∈ R, m ∈ R and p, q ∈ [1,∞]

unless otherwise stated. Recall that the notion of the realization has been initiated by

G. Bourdaud in [2], where its essential purpose is to give for any element of an homogeneous
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space (e.g., Ḃs
p,q(Rn)) an unique representative which belongs to the tempered distributions

space S ′(Rn). Actually, there are many references about this subject e.g., [3, Section 3], [4]

and [11, Section 3]. The space
˙̃
Bs
p,q(Rn) is a subset of S ′(Rn) (see Section 2.3 below), where

under the following condition:

(1.1) either s <
n

p
, or s =

n

p
and q = 1,

all element of
˙̃
Bs
p,q(Rn) can be characterize via the Littlewood-Paley decomposition; how-

ever, for other cases given to the parameters n, s, p and q, the characterization of
˙̃
Bs
p,q(Rn)

relies on a polynomial with degree depending on s − n/p and q. On the one hand, (1.1)

presents one of assumptions of the main results, and on the other hand, since in this paper

we also work in
˙̃
Bs+m
p,q (Rn), we mention the following condition:

(1.2) either s+m <
n

p
, or s+m =

n

p
and q = 1.

To formulate the results we introduce Ṡm,N1,0 (E) (so-called the homogeneous class of sym-

bols) the set of C∞(Rn×Rn\{0}) functions a(x, ξ), such that for any α ∈ Nn with |α| ≤ N
there exists a constant c := c(α) > 0, such that∥∥∂αξ a(· , ξ)

∥∥
E
≤ c |ξ|m−|α| , ∀ ξ ∈ Rn \ {0} .

In the same way, we define the inhomogeneous class Sm,N1,0 (E) of C∞(Rn × Rn) symbols

a(x, ξ) satisfying ∥∥∂αξ a(· , ξ)
∥∥
E
≤ c(1 + |ξ|)m−|α|, ∀ ξ ∈ Rn,

with |α| ≤ N and c := c(α) > 0. Noticing that the sets Ṡm,N1,0 (E) and Sm,N1,0 (E) are Fréchet

spaces with the seminorms

Π̇N (a) := sup
|α|≤N

sup
ξ∈Rn\{0}

|ξ|−m+|α| ∥∥∂αξ a(· , ξ)
∥∥
E

and

ΠN (a) := sup
|α|≤N

sup
ξ∈Rn

(1 + |ξ|)−m+|α| ∥∥∂αξ a(· , ξ)
∥∥
E
,

respectively. Now in case of the homogeneous class, we deal with E := L∞(Rn)∩Ḃn/p
p,q (Rn),

endowed with the norm

‖f‖E := ‖f‖∞ + ‖[f ]P‖Ḃn/p
p,q

,

where [f ]P denotes the equivalence class of f modulo polynomials, and in case of the

inhomogeneous class, we work with E := L∞(Rn) ∩ Ḃn/p
p,q (Rn) ∩ Ḃn/p−m

p,q (Rn) endowed

with the corresponding norm. To explain the difference between these two classes, we

give the following observation: Except the case m = 0, there are no embeddings between

Ḃ
n/p
p,q (Rn) and Ḃ

n/p−m
p,q (Rn). We will prove essentially the following results:
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Theorem 1.1. Let s > 0 and 1 ≤ p <∞. Assume that (1.1) and (1.2) hold. Let N be an

even natural number satisfying N > 3n/2+2. If a symbol a(x, ξ) belongs to Ṡm,N1,0 (L∞(Rn)∩

Ḃ
n/p
p,q (Rn)), then the ps.d.o a(x,D) takes the space

˙̃
Bs+m
p,q (Rn) into

˙̃
Bs
p,q(Rn). Moreover,

there exists a constant c > 0 such that the inequality

(1.3) ‖[a(x,D)f ]P‖Ḃs
p,q
≤ cΠ̇N (a) ‖[f ]P‖Ḃs+m

p,q

holds, for all f ∈ ˙̃
Bs+m
p,q (Rn).

Theorem 1.2. Let s > 0, 1 ≤ p < ∞ and m ≥ 0. Assume that (1.1) and (1.2)

hold. Let N be an even natural number satisfying N > 3n/2 + 2. If a symbol a(x, ξ)

belongs to Sm,N1,0 (L∞(Rn) ∩ Ḃn/p
p,q (Rn) ∩ Ḃn/p−m

p,q (Rn)), then the ps.d.o a(x,D) takes the

space
˙̃
Bs+m
p,q (Rn) into

˙̃
Bs
p,q(Rn). Moreover, there exists a constant c > 0 such that the

inequality

‖[a(x,D)f ]P‖Ḃs
p,q
≤ cΠN (a) ‖[f ]P‖Ḃs+m

p,q

holds, for all f ∈ ˙̃
Bs+m
p,q (Rn).

In [5], R. R. Coifman and Y. Meyer proved that any ps.d.o of order 0 (i.e., m = 0) can

be decomposed as the sum of a regularized operator with another one which is associated

to an elementary symbol (i.e., an elementary symbol a(x, ξ) is given by the following

expression: a(x, ξ) =
∑

j∈N χj(x)θ(2−jξ), where (χj)j∈N is a bounded sequence in an

appropriate functions space and θ ∈ D(Rn \ {0})), see also e.g., [8, 9]. Then the proofs of

Theorems 1.1 and 1.2 are based on the following three assertions:

• a reduction to elementary symbols in the homogeneous case,

• an almost orthogonality estimate of type of G. Gibbons [6] which will be obtained

by Nikol’skij representation method (see Lemma 3.2 below),

• a pointwise multipliers property of realized homogeneous Besov space (see Lemma 3.3

below).

We will also extend the principal result to, both, the symbols class Sm,N,Mµ,η (E) (see The-

orem 4.1 below) and by taking (1.1) in other cases on the parameters n, s, p and q (see

Theorem 4.3 below).

Notations. As usual, N denotes the set of natural numbers including 0, Z the set of

integers and R the set of real numbers. All function spaces occurring in this work are

defined on Euclidean space Rn, then we omit Rn in notation. For t ∈ R, [t] denotes the

greatest integer less than or equal to t. For b ∈ R we put b+ := max(0, b). We denote

by ‖ · ‖p the Lp norm. The symbol ↪→ indicates that the embedding is continuous. For
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α, β ∈ Nn multi-indices, α = (α1, . . . , αn), β = (β1, . . . , βn), we say that α ≺ β if αj ≤ βj

for all j = 1, . . . , n and αk < βk for at least one index 1 ≤ k ≤ n. The standard norms of

f in S are given by

ζM (f) := sup
|α|≤M

sup
x∈Rn

(1 + |x|)M
∣∣∣f (α)(x)

∣∣∣ , M ∈ N.

If f ∈ L1, the Fourier transform of f and its Fourier transform inverse on Rn are defined

by

Ff(ξ) = f̂(ξ) :=

∫
Rn

e−ix·ξf(x) dx and F−1f(x) := (2π)−nf̂(−x).

They are extended to S ′ in the usual way. We denote by P∞ the set of all polynomials

on Rn. We denote by S∞ the orthogonal of P∞ in S, i.e., the set of all u ∈ S such that

〈f, u〉 = 0 for all f ∈ P∞. For all f ∈ S ′, then [f ]P is the equivalence class of f modulo

P∞, this notation has been defined before. The mapping which takes any [f ]P to the

restriction of f to S∞ turns out to be an isomorphism from S ′/P∞ onto S ′∞; for this

reason, S ′∞ is called the space of distributions modulo polynomials. The constants c are

strictly positive and depend only on the fixed parameters n, s, p and q and probably on

auxiliary functions, their values may vary from line to line. Finally, sometimes we will use

the symbol . instead of ≤, the notation A . B means that A ≤ cB.

The paper is organized as follows. In Section 2, we collect information about homo-

geneous, inhomogeneous and the realized version, of Besov spaces. In Section 3, we give

the proofs of Theorems 1.1 and 1.2. In Section 4, we discuss some generalizations and

remarks.

2. The Besov space

2.1. The Littlewood-Paley setting

We choose, once and for all, a standard cut-off function. More precisely, we assume that

ρ is a radial C∞ function satisfying 0 ≤ ρ ≤ 1, ρ(ξ) = 1 if |ξ| ≤ 1, ρ(ξ) = 0 if |ξ| ≥ 3/2.

Then ρ̂ is a radial and real-valued function. We define γ(ξ) := ρ(ξ)− ρ(2ξ) for all ξ ∈ Rn,

which is supported by the compact annulus 1/2 ≤ |ξ| ≤ 3/2, and the following identities

hold: ∑
j∈Z

γ(2jξ) = 1, ∀ ξ ∈ Rn \ {0} ,

ρ(2−kξ) +
∑
j>k

γ(2−jξ) = 1, ∀ k ∈ Z, ∀ ξ ∈ Rn.

For any j ∈ Z, we introduce the ps.d.o Sj := ρ(2−jD) and Qj := γ(2−jD). It is clear

that Sj is defined on S ′ and that Qj is defined on S ′∞ since Qjf = 0 for all f ∈ P∞. All
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these operators take values in the space of analytical functions of exponential type, see

the Paley-Wiener Theorem. By abuse of notation, if f ∈ S ′∞, then for any f1, f2 ∈ S ′ with

f = [f1]P = [f2]P , we have Qjf1 = Qjf2 (recall that f1 − f2 ∈ P∞). For this reason we

say:

if f ∈ S ′∞ we set Qjf := Qjf1 for all f1 ∈ S ′ such that [f1]P = f .

Using the Young inequality, the families of operators (Sj)j∈Z and (Qj)j∈Z constitute

bounded subsets of the normed space L(Lp) for any p ∈ [1,∞]. We also have the fol-

lowing assertion which is proved in [11, Proposition 2.5].

Proposition 2.1. (i) For any N ∈ N, there exist a positive constant c and a natural

number M such that ‖Qjf‖p ≤ c2
−jNζM (f) holds, for all f ∈ S and all j ∈ N.

(ii) For any N ∈ N, there exist a positive constant c and a natural number M such that

‖Qjf‖p + ‖Sjf‖p ≤ c2
jNζM (f) holds, for all f ∈ S∞ and all negative integers j.

As a consequence of this proposition is the convergence of the Littlewood-Paley de-

compositions of a distribution which is described in the following well known statement.

Proposition 2.2. (i) For every f ∈ S∞ (S ′∞, respectively), it holds that f =
∑

j∈ZQjf

in S∞ (S ′∞, respectively).

(ii) For every f ∈ S (S ′, respectively) and every k ∈ Z, it holds that f = Skf+
∑

j>kQjf

in S (S ′, respectively).

2.2. Homogeneous Besov spaces

The Littlewood-Paley approach presents the basic definition of the Besov spaces.

Definition 2.3. The homogeneous Besov space Ḃs
p,q is the set of f ∈ S ′∞ such that

‖f‖Ḃs
p,q

:=

∑
j∈Z

(2sj ‖Qjf‖p)
q

1/q

<∞.

The space Ḃs
p,q is a Banach space, and the following chain of continuous embeddings

holds:

S∞ ↪→ Ḃs
p,q ↪→ S ′∞.

We also have the embeddings Ḃs
p,q1 ↪→ Ḃs

p,q2 if q1 < q2, and Ḃs1
p1,q ↪→ Ḃs2

p2,q if p1 < p2 and

s1 − n/p1 = s2 − n/p2, see [7, Theorem 2.1].

On the other hand, one of the tools for the proofs of main results is the Nikol’skij type

estimates. We recall here the following statement.
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Proposition 2.4. Let s > 0 and 1 ≤ p < ∞. Assume that (1.1) holds. Let b > 0. Let

(uj)j∈Z be a sequence in S ′ satisfying the following two conditions:

• ûj is supported by the ball |ξ| ≤ b2j,

• A :=
(∑

j∈Z(2js ‖uj‖p)
q
)1/q

<∞.

Then the series
∑

j∈Z uj converges in S ′ to a limit u which satisfies ‖[u]P‖Ḃs
p,q
≤ cA, and

where c depends only on n, s, p, q and b.

Proof. The proof is given in [11, Proposition 2.15]. See also [10, Proposition 3.4] or [14,

Proposition 2.3.2/1, p. 59] or [17] for the case of inhomogeneous Besov spaces.

By replacing the discrete Littlewood-Paley decompositions by continuous ones, we

obtain equivalent continuous norms of Ḃs
p,q which easily yield the following result.

Proposition 2.5. There exist constants c1, c2 > 0, depending only on s, p, q, n, such

that the inequality

c1 ‖f‖Ḃs
p,q
≤ λn/p−s ‖f(λ(·))‖Ḃs

p,q
≤ c2 ‖f‖Ḃs

p,q

holds, for all f ∈ Ḃs
p,q and all λ > 0.

Now, in connection with the boundedness of the ps.d.o on homogeneous Besov spaces,

we give the following example:

Example 2.6. Let g be a C∞ positive function supported by the compact annulus 7/9 ≤
|ξ| ≤ 7/8. We set

f(x) :=
∑
j≥0

2j(2n/p−s)(F−1g)(2jx), ∀x ∈ Rn.

Clearly it holds Q̂kf(ξ) = 2k(2n/p−s−n)g(2−kξ)γ(2−kξ) if k ≥ 0 and Q̂kf(ξ) = 0 if k < 0,

which imply that ‖Qkf‖p = 2k(n/p−s) ∥∥F−1(gγ)
∥∥
p
, (∀ k ≥ 0), then [f ]P /∈ Ḃs

p,∞ and

consequently [f ]P /∈ Ḃs
p,q. Now, if we put a(x, 0) := f(x), then the associated ps.d.o

a(x,D) is not bounded from Ḃs+m
p,q into Ḃs

p,q. Recall that (a(x,D)1)(x) = a(x, 0) and the

constant function 1 belongs to Ḃs+m
p,q .

2.3. Realized homogeneous Besov spaces

The difficulty to handle distributions modulo polynomials requires the use of both the

realizations and the convergence in S ′ in the weak sense. We will outline these two

approaches and refer to G. Bourdaud [2–4] for definitions below.
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Definition 2.7. Let E be a vector subspace of S ′∞, endowed with a norm which renders

continuous the embedding E ⊂ S ′∞. A realization of E in S ′ is a continuous linear mapping

σ : E → S ′ such that [σ(f)]P = f for all f ∈ E. The image set σ(E) is called the realized

space of E.

Definition 2.8. We say that a tempered distribution f ∈ S ′ vanishes at infinity in the

weak sense if limλ→0 f(λ−1(·)) = 0 in S ′, i.e., limλ→0

〈
f(λ−1(·)), ϕ

〉
= 0 for all ϕ ∈ S. The

set of all such distributions is denoted by C̃0.

On the one hand, let us give examples of such distributions: (i) functions in Lp for

1 ≤ p <∞, (ii) derivatives of functions in L∞, (iii) derivatives of the members of C̃0. On

the other hand, in connection with the polynomial functions we have at our disposal the

following easy lemma which is proved in [2, p. 46].

Lemma 2.9. If f is a polynomial vanishing at infinity in the weak sense, then f = 0,

i.e., C̃0 ∩ P∞ = {0}.

We now turn to the realizations. A typical example of realization is given by the

classical Littlewood-Paley decomposition. We recall the following assertion.

Proposition 2.10. Assume that (1.1) holds. If u ∈ Ḃs
p,q, then the series

∑
j∈ZQju

converges in S ′. We put f :=
∑

j∈ZQju. Then f belongs to C̃0 and is the unique tempered

distribution satisfying [u]P = f in S ′∞.

Proof. See [4, Proposition 4.6] and [11, Theorems 1.2, 4.1, Section 4.2].

Now, we are able to define the realized homogeneous Besov space.

Definition 2.11. Assume that (1.1) holds. The realized homogeneous Besov space
˙̃
Bs
p,q

is the set of all g ∈ S ′ such that [g]P ∈ Ḃs
p,q and g ∈ C̃0.

Clearly in Proposition 2.10, if we define σ(u) :=
∑

j∈ZQju for all u ∈ Ḃs
p,q, then σ is

a realization on Ḃs
p,q which commutes with translations and dilations, i.e., σ(u)(x− a) =

σ(u(· − a))(x) and σ(u)(x/λ) = σ(u(· /λ))(x) for all x, a ∈ Rn and all λ > 0, and we have

(2.1) σ(Ḃs
p,q) =

˙̃
Bs
p,q,

indeed, we have “⊂” by the definition. Let now g ∈ ˙̃
Bs
p,q, then [g]P ∈ Ḃs

p,q and g−σ([g]P) ∈
P∞, by Lemma 2.9 we conclude that g = σ([g]P), and this proves “⊃”.

The space
˙̃
Bs
p,q is endowed with the same norm of Ḃs

p,q, i.e., ‖f‖ ˙̃
Bs

p,q

:= ‖[f ]P‖Ḃs
p,q

,

and is a Banach space in S ′ defined by “true” distributions not distributions modulo

polynomials, as was mentioned at the introduction. We also note, that some properties of
˙̃
Bs
p,q as, embeddings, interpolations, etc, can be found in, e.g., [2, 4, 11,18].

Remark 2.12. Based on Proposition 2.10 and conditions (1.1)–(1.2), we note that in The-

orems 1.1 and 1.2, the two spaces
˙̃
Bs
p,q and

˙̃
Bs+m
p,q are well-defined.
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2.4. Inhomogeneous Besov spaces

By using the inhomogeneous Littlewood-Paley decomposition instead of the homogeneous

one (see Section 2.1), we obtain the inhomogeneous, or ordinary, Besov spaces.

Definition 2.13. The inhomogeneous Besov space Bs
p,q is the set of f ∈ S ′ such that

‖f‖Bs
p,q

:= ‖S0f‖p +

∑
j≥1

(2sj ‖Qjf‖p)
q

1/q

<∞.

The links exist between the homogeneous space and its inhomogeneous counterpart at

least for s > 0. Indeed we have the following assertion, see e.g., Triebel [16, Theorem 2.3.3].

Proposition 2.14. If s > 0, then Bs
p,q is the set of f ∈ Lp such that [f ]P ∈ Ḃs

p,q, and

‖f‖p + ‖[f ]P‖Ḃs
p,q

is an equivalent norm in Bs
p,q.

For Besov spaces we do not go into details, instead we refer to, e.g., [1, 10,13–16].

3. Proofs of Theorems 1.1 and 1.2

Theorems 1.1 and 1.2 can be easily derived from the following statement.

Proposition 3.1. Let s > 0 and 1 ≤ p < ∞. Assume that (1.1) and (1.2) hold. Let

a(x, ξ) be a C∞(Rn × Rn) function.

(i) a(x, ξ) can be decomposed into a sum τ(x, ξ) + θ(x, ξ) where τ(x, ξ) = 0 if |ξ| ≥ 3/2

and θ(x, ξ) :=
∑

K∈Zn ϑK(x, ξ) with θ(x, ξ) = 0 if |ξ| ≤ 1, and the functions ϑK(x, ξ)

are elementary symbols-type.

(ii) Let N be an even natural number satisfying N > 3n/2 + 2. If a(x, ξ) belongs to

Sm,N1,0 (L∞∩Ḃn/p
p,q ), then the ps.d.o θ(x,D) takes the space

˙̃
Bs+m
p,q into

˙̃
Bs
p,q. Moreover,

there exists a constant c > 0 such that the inequality

‖[θ(x,D)f ]P‖Ḃs
p,q
≤ cΠN (a) ‖[f ]P‖Ḃs+m

p,q

holds, for all f ∈ ˙̃
Bs+m
p,q .

(iii) Assume in addition m ≥ 0. Let N be an even natural number satisfying N > n. If

a(x, ξ) belongs to Sm,N1,0 (L∞∩Ḃn/p−m
p,q ), then the ps.d.o τ(x,D) takes the space

˙̃
Bs+m
p,q

into
˙̃
Bs
p,q. Moreover, there exists a constant c > 0 such that the inequality

‖[τ(x,D)f ]P‖Ḃs
p,q
≤ cΠN (a) ‖[f ]P‖Ḃs+m

p,q

holds, for all f ∈ ˙̃
Bs+m
p,q .
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As mentioned in Section 1 we will formulate two properties, an almost orthogonality

estimate-type and a pointwise multipliers in realized homogeneous Besov spaces, respec-

tively, and which are needed for the proof of the above proposition.

Lemma 3.2. Let s > 0 and 1 ≤ p <∞. Assume that (1.1) holds. Let b > 0. Let (uj)j∈Z

and (χj)j∈Z be sequences in S ′ satisfying the following three conditions:

(i) ûj is supported by the ball |ξ| ≤ b2j,

(ii) A :=
(∑

j∈Z(2js ‖uj‖p)
q
)1/q

<∞,

(iii) B := supj∈Z

(
‖χj‖∞ + ‖[χj ]P‖Ḃn/p

p,q

)
<∞.

Then the series
∑

j∈Z χjuj converges in S ′ to a limit u which satisfies

(3.1) ‖[u]P‖Ḃs
p,q
≤ cAB,

where c depends only on n, s, p, q and b.

Proof. Step 1: Convergence in S ′. The proof is the same as in [11, Proposition 2.15/Sub-

step 1.2]. We omit the details.

Step 2: Proof of (3.1). In
∑

j∈Z χjuj we split the area of summation with respect to j.

That is, by Proposition 2.2 we write χj = Sjχj +
∑

k>j Qkχj (recall that χj ∈ S ′), which

implies that
∑

j∈Z χjuj = V +W , where

(3.2) V :=
∑
j∈Z

ujSjχj and W :=
∑
k∈Z

∑
j<k

ujQkχj ,

with F(ujSjχj) and F
(∑

j<k ujQkχj

)
are supported by the balls |ξ| ≤ (3/2 + b)2j and

|ξ| ≤ (3/2 + b/2)2k, respectively. This allows to apply Proposition 2.4 to the series V and

W .

Substep 2.1: Estimate of ‖[V ]P‖Ḃs
p,q

. It is immediate by using ‖Sjχj‖∞ . B, ∀ j ∈ Z.

Substep 2.2: Estimate of ‖[W ]P‖Ḃs
p,q

in the case 0 < s < n/p. We will use the following

inequality

(3.3)

∥∥∥∥∥∥
∑
j<k

ujQkχj

∥∥∥∥∥∥
p

≤
∑
j<k

‖uj‖∞ ‖Qkχj‖p .

By Bernstein inequality (cf., [15, Remark 1.3.2/1]) we obtain

‖[W ]P‖Ḃs
p,q

.

∑
k∈Z

2sk
∑
j<k

‖uj‖∞ ‖Qkχj‖p

q1/q

. sup
`∈Z
‖χ`‖Ḃn/p

p,∞

∑
k∈Z

∑
j<k

2(n/p−s)(j−k)(2sj ‖uj‖p)

q1/q

.
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Using the assumption on s, and applying Young inequality in `q(Z), i.e.,

(3.4)

∥∥∥∥∥∥
∑
j∈Z

bk−jεj


k∈Z

∥∥∥∥∥∥
`q(Z)

≤ ‖(bj)j∈Z‖`1(Z) ‖(εj)j∈Z‖`q(Z) ,

with bj := 2(s−n/p)j if j > 0, bj := 0 if j ≤ 0 and εj := 2sj ‖uj‖p, we conclude that

‖[W ]P‖Ḃs
p,q

. AB.

Substep 2.3: Estimate of ‖[W ]P‖Ḃs
p,q

in the case s = n/p and q = 1. Applying (3.3)

and Bernstein inequality, successively, we get

‖[W ]P‖Ḃn/p
p,1

.
∑
k∈Z

2kn/p
∑
j<k

2jn/p ‖uj‖p ‖Qkχj‖p

.
∑
j∈Z

2jn/p ‖uj‖p
∑
k>j

2kn/p ‖Qkχj‖p

. AB.

The proof of Lemma 3.2 is complete.

Lemma 3.3. Let s > 0 and 1 ≤ p < ∞. Assume that (1.1) and (1.2) hold. Assume in

addition m ≥ 0. Then there exists a constant c > 0 such that the inequality

‖[hg]P‖Ḃs
p,q
≤ c

(
‖[h]P‖Ḃn/p−m

p,q
+ ‖h‖∞

)
‖[g]P‖Ḃs+m

p,q

holds, for all g ∈ C∞ ∩ ˙̃
Bs+m
p,q all h ∈ L∞ ∩

˙̃
B
n/p−m
p,q .

Proof. Step 1. Let g and h be functions given as in this lemma. By assumption, the

functions g and h belong to S ′. Clearly also that Sjg, Qkg and Qkh are C∞ functions

for all j, k ∈ Z. Then in S ′, we can write the following expressions g = Sjg +
∑

k>j Qkg,

Sjg =
∑

k≤j Qkg, h =
∑

j∈ZQjh and Sjh =
∑

k≤j Qkh. Thus, for all ϕ ∈ S, we get〈∑
j∈Z

(Sjg)(Qjh), ϕ

〉
=
∑
j∈Z
〈Qjh, (Sjg)ϕ〉 =

∑
j∈Z

〈
Qjh,

g −∑
k>j

Qkg

ϕ

〉

= 〈h, gϕ〉 −
∑
k∈Z

∑
j≤k−1

〈Qjh, (Qkg)ϕ〉

= 〈hg, ϕ〉 −

〈∑
k∈Z

(Sk−1h)(Qkg), ϕ

〉
.

Hence, we arrive at the decomposition of hg in S ′ into a sum hg = A1 + A2 where

A1 :=
∑

j∈Z(Sjg)(Qjh) and A2 :=
∑

k∈Z(Sk−1h)(Qkg).
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Step 2: Estimate of ‖[Ai]P‖Ḃs
p,q

, i = 1, 2. We begin by noting that the functions

F {(Sjg)(Qjh)} and F {(Sk−1h)(Qkg)} are supported by the balls |ξ| ≤ 3 · 2j and |ξ| ≤
(9/4)2k, respectively, then we can apply Proposition 2.4. First, we obtain

‖[A1]P‖Ḃs
p,q

.

∑
j∈Z

(
2sj ‖Sjg‖∞ ‖Qjh‖p

)q1/q

.

∑
j∈Z

(
2(n/p−m)j ‖Qjh‖p

)q2(s+m−n/p)j
∑
k≤j

2(n/p−s−m)k2(s+m)k ‖Qkg‖p

q
1/q

. ‖[h]P‖Ḃn/p−m
p,q

‖[g]P‖Ḃs+m
p,q

,

where owing to assumptions (1.1) and (1.2) we have used the convolution inequality, see

e.g., (3.4) or [17, Lemma 3.8]. Secondly, assume that m > 0, then we have

‖[A2]P‖Ḃs
p,q

.

(∑
k∈Z

(
2sk ‖Sk−1h‖∞ ‖Qkg‖p

)q)1/q

.

∑
k∈Z

2−mk
∑
j≤k−1

2mj2(n/p−m)j ‖Qjh‖p

q (
2(s+m)k ‖Qkg‖p

)q
1/q

.

∑
k∈Z

2−mk
∑
j≤k

2mj2(n/p−m)j ‖Qjh‖p

q1/q

‖[g]P‖Ḃs+m
p,∞

. ‖[h]P‖Ḃn/p−m
p,q

‖[g]P‖Ḃs+m
p,q

.

Assume now m = 0. Then

‖[A2]P‖Ḃs
p,q

. ‖h‖∞ ‖[g]P‖Ḃs
p,q

holds. The proof of Lemma 3.3 is complete.

Proof of Proposition 3.1. For the simplicity we will divide the proof in several steps.

Step 1: Proof of (i). As mentioned in the introduction on the method of Coifman and

Meyer for the reduction to elementary symbols (cf. [5]), we will adapt this approach to

the homogeneous case. We give the following construction:

We introduce a radial and positive function γ̃ ∈ D(Rn \{0}) supported by the compact

annulus 1/4 ≤ |ξ| ≤ 7/4, and satisfies γ̃γ = γ (see the beginning of Section 2.1 for the

definition of ρ and γ). We write a(x, ξ) = τ(x, ξ)+θ(x, ξ) where τ(x, ξ) := a(x, ξ)ρ(ξ) and

θ(x, ξ) := a(x, ξ)(1− ρ(ξ)), with
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• τ(x, ξ) = 0 if |ξ| ≥ 3/2,

• θ(x, ξ) = 0 if |ξ| ≤ 1.

We now go to decompose θ(x, ξ). We first set

(3.5) θj(x, ξ) := 2−mjγ(2−|j|ξ)θ(x, 2j−|j|ξ), j ∈ Z, ∀x, ξ ∈ Rn,

which is well-defined. Then by definition of θ we have

(3.6) θ(x, ξ) = θ(x, ξ)
∑
j∈Z

γ(2−jξ) =
∑
j∈Z

2mjθj(x, 2
−j+|j|ξ).

Let us define the function

(3.7) wj(x, ξ) :=
∑
K∈Zn

θj(x, 2
|j|(ξ − 2πK)),

which is 2π-periodic with respect to ξ, satisfying wj(x, ξ)γ̃(ξ) = θj(x, 2
|j|ξ). Consequently,

a Fourier expansion of wj gives

(3.8) θj(x, 2
|j|ξ) = γ̃(ξ)

∑
K∈Zn

CK,j(x)eiK·ξ,

where

CK,j(x) := (2π)−n
∫ π

−π
· · ·
∫ π

−π
e−iK·ξwj(x, ξ) dξ.

Now, by inserting (3.8) in (3.6), it follows

(3.9) θ(x, ξ) :=
∑
K∈Zn

∑
j∈Z

2mjCK,j(x)γ̃(2−jξ)ei2
−jK·ξ.

On the one hand, for ξ ∈ Rn and K ∈ Zn satisfying 1/2 ≤ |ξ − 2πK| ≤ 3/2 and −π ≤
ξ` ≤ π, ` = 1, . . . , n, we have |K| = 0. Hence, wj(x, ξ) coincides with θj(x, 2

|j|ξ) since the

function ξ 7→ θj(x, 2
|j|(ξ − 2πK)) has a support in 1/2 ≤ |ξ − 2πK| ≤ 3/2. Thus

(3.10) CK,j(x) = (2π)−n
∫
Rn

e−iK·ξθj(x, 2
|j|ξ) dξ.

On the other hand, for N ∈ N, which will be fixed later on, we set

χK,j(x) := (2π)n(1 + |K|2)N/2CK,j(x),(3.11)

ΘK(ξ) := (2π)−n(1 + |K|2)−N/2γ̃(ξ)eiK·ξ(3.12)

and

ϑK(x, ξ) :=
∑
j∈Z

2mjχK,j(x)ΘK(2−jξ), K ∈ Zn, ∀x, ξ ∈ Rn.(3.13)
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By substituting these formulas, (3.11)–(3.13), into (3.9) we get the desired decomposition:

(3.14) θ(x, ξ) =
∑
K∈Zn

ϑK(x, ξ), ∀x, ξ ∈ Rn.

Step 2: Proof of (ii).

Substep 2.1: Estimate of ‖χK,j‖∞ + ‖[χK,j ]P‖Ḃn/p
p,q

. We first choose N as an even

integer (i.e., we put N := 2M with M ∈ N) and note that by inserting (3.10) in (3.11) we

get

χK,j(x) =

∫
Rn

e−iK·ξ(I −∆ξ)
M
(
θj(x, 2

|j|ξ)
)

dξ.

The expression (I −∆ξ)
M
(
θj(x, 2

|j|ξ)
)

is the following sum (cf., see (3.5))∑
|µ|≤M

∑
α+η=2µ

M !

(M − |µ|)!µ!

(2µ)!

α!η!
(−1)|µ|2(|α|−m)jγ(η)(ξ)∂αξ θ(x, 2

jξ),

which yields

χK,j(x) =
∑
|µ|≤M

∑
α+η=2µ

M !

(M − |µ|)!µ!

(2µ)!

α!η!
(−1)|µ|2(|α|−m)j

×
∫
Rn

e−iK·ξγ(η)(ξ)∂αξ θ(x, 2
jξ) dξ.

(3.15)

As

∂αξ θ(x, ξ) = (1− ρ(ξ))∂αξ a(x, ξ)−
∑
β≺α

α!

(α− β)!β!
ρ(α−β)(ξ)∂βξ a(x, ξ)

(see Section 1 for the definition of ≺), then using the assumption on the symbol a(x, ξ),

we arrive at

(3.16) 2(|α|−m)j
∣∣∂αξ θ(x, 2jξ)∣∣ . ΠN (a)

gα,j(ξ) +
∑
β≺α

hβ,j(ξ)


where

(3.17) gα,j(ξ) := 2(|α|−m)j(1 + 2j |ξ|)m−|α|
∣∣1− ρ(2jξ)

∣∣
and

(3.18) hβ,j(ξ) := 2(|α|−m)j(1 + 2j |ξ|)m−|β|
∣∣∣ρ(α−β)(2jξ)

∣∣∣ , β ≺ α.

On supp gα,j we have 1 ≤ 2j |ξ|, which implies that:

• if m− |α| > 0, then

|gα,j(ξ)| ≤ (1 + ‖ρ‖∞)2(|α|−m)j(2 · 2j |ξ|)m−|α| . |ξ|m−|α| ;
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• if m− |α| ≤ 0, then

|gα,j(ξ)| ≤ (1 + ‖ρ‖∞)2(|α|−m)j(2j |ξ|)m−|α| . |ξ|m−|α| .

Thus in all cases we obtain

(3.19) |gα,j(ξ)| . |ξ|m−|α| , ∀ j ∈ Z.

Similar to the function hβ,j , on supphβ,j we have 1 ≤ 2j |ξ| ≤ 3/2 (i.e., |ξ| ∼ 2−j) which

implies, both,

2(|α|−m)j ≤ max(1, (3/2)|α|−m) |ξ|m−|α| , (1 + 2j |ξ|)m−|β| ≤ max(2m−|β|, (5/2)m−|β|)

and

(3.20) |hβ,j(ξ)| . |ξ|m−|α| , ∀ j ∈ Z.

Now, we are able to estimate ‖χK,j‖∞. Indeed, by (3.19) and (3.20) we obtain

‖χK,j‖∞ . ΠN (a)
∑
|µ|≤M

∑
α+η=2µ

∫
1/2≤|ξ|≤3/2

∣∣∣γ(η)(ξ)
∣∣∣ |ξ|m−|α| dξ

. ΠN (a), ∀K ∈ Zn, ∀ j ∈ Z.

(3.21)

We now turn to the estimate of ‖[χK,j ]P‖Ḃn/p
p,q

. From (3.15), we write (for all K ∈ Zn

and all k, j ∈ Z)

QkχK,j(x) =
∑
|µ|≤M

∑
α+η=2µ

M !

(M − |µ|)!µ!

(2µ)!

α!η!
(−1)|µ|2(|α|−m)j

×
∫
Rn

e−iK·ξγ(η)(ξ)Qk(∂
α
ξ θ(x, 2

jξ)) dξ.

Again, on supp γ(η) and because p, q ≥ 1, it follows

(3.22) ‖[χK,j ]P‖Ḃn/p
p,q

.
∑
|µ|≤M

∑
α=2µ

2(|α|−m)j

∫
1/2≤|ξ|≤3/2

∥∥[∂αξ θ(· , 2jξ)]P
∥∥
Ḃ

n/p
p,q

dξ.

Consequently, as in (3.16), the assumption a(x, ξ) ∈ Sm,N1,0 (L∞ ∩ Ḃn/p
p,q ) yields

2(|α|−m)j
∥∥[∂αξ θ(· , 2jξ)]P

∥∥
Ḃ

n/p
p,q

. ΠN (a)

gα,j(ξ) +
∑
β≺α

hβ,j(ξ)

 ,

see (3.17) and (3.18) for definitions of gα,j and hα,j respectively. Then by inserting (3.19)

and (3.20) into (3.22), and by using the fact that 1/2 ≤ |ξ| ≤ 3/2, we get

(3.23) ‖[χK,j ]P‖Ḃn/p
p,q

. ΠN (a), ∀K ∈ Zn, ∀ j ∈ Z.
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Now, the last inequality together with (3.21) yield that the sequence (χK,j)j∈Z satisfies

the assumption (iii) of Lemma 3.2 uniformly with respect to K.

Substep 2.2: Estimate of ‖[θ(x,D)f ]P‖Ḃs
p,q

for f ∈ ˙̃
Bs+m
p,q . Since ΘK (see (3.12)) is

defined on Rn \ {0}, then by considering the intersection of the supports, i.e.,

γ̃(2−jξ)γ(2−j−`ξ) = 0 if ` ≤ −3 or ` ≥ 2,

it holds that

ΘK(2−jξ) = ΘK(2−jξ)
∑
−2≤`≤1

γ(2−j−`ξ), ∀ ξ ∈ Rn.

The assumption (1.2), Proposition 2.10 and formula (2.1) (i.e., f =
∑

j∈ZQjf) yield

ΘK(2−jD)f =
∑
−2≤`≤1

(2jnF−1ΘK(2j ·)) ∗Qj+`f.

We continue, since the function ξ 7→ ΘK(2−jξ)γ(2−j−`ξ) has a support in the compact

annulus (1/8)2j ≤ |ξ| ≤ 3 · 2j (here we note that the assumption (i) of Lemma 3.2

is satisfied), then Lemma 3.2 can be applied to the elementary symbol defined by the

formula (3.13), and it follows

‖[ϑK(x,D)f ]P‖Ḃs
p,q

. ΠN (a)
∑
−2≤`≤1

∑
j∈Z

(
2j(s+m)

∥∥∥(2(j−`)nF−1ΘK(2j−` ·)) ∗Qjf
∥∥∥
p

)q
1/q

.
(3.24)

Then the first observation is that by the Young inequality we have

(3.25)
∥∥∥(2(j−`)nF−1ΘK(2j−` ·)) ∗Qjf

∥∥∥
p
.
∥∥F−1ΘK

∥∥
1
‖Qjf‖p , ∀ j ∈ Z, ∀K ∈ Zn.

The second observation that for an even natural number N0, we can still write

F−1ΘK(x) = (2π)−n(1 + |x|2)−N0/2

∫
Rn

eix·ξ(I −∆ξ)
N0/2ΘK(ξ) dξ,

which, by the Cauchy-Schwartz inequality and Parseval equality, yields that

∥∥F−1ΘK

∥∥
1
.

(∫
Rn

(1 + |x|2)−N0 dx

)1/2
(∫

1/4≤|ξ|≤7/4

∣∣∣(I −∆ξ)
N0/2ΘK(ξ)

∣∣∣2 dξ

)1/2

. sup
|α|≤N0

∥∥∥Θ
(α)
K

∥∥∥
∞
, ∀K ∈ Zn

(3.26)

with the condition N0 > n/2. Then we put

(3.27) N0 := 2N1 with N1 =
[n

4

]
+ 1.
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We still get, from (3.12),∣∣∣Θ(α)
K (ξ)

∣∣∣ . (1 + |K|2)−N/2
∑

β+η=α

|K||β|
∣∣∣γ̃(η)(ξ)

∣∣∣ , ∀K ∈ Zn, ∀ ξ ∈ Rn.

But, if |β| ≤ N0 we have |K||β| (1 + |K|2)−N/2 ≤ (1 + |K|2)(N0−N)/2 for all K ∈ Zn, which

implies that

(3.28) sup
|α|≤N0

∥∥∥Θ
(α)
K

∥∥∥
∞

. (1 + |K|2)(N0−N)/2, ∀K ∈ Zn.

By inserting (3.28) into (3.26) and (3.25) into (3.24), we obtain that the right-hand side

of (3.24) is bounded by

c(1 + |K|2)(N0−N)/2ΠN (a) ‖[f ]P‖Ḃs+m
p,q

,

where the constant c is independent of K and a(x, ξ). We now turn to θ(x,D)f , see (3.14).

We have

‖[θ(x,D)f ]P‖Ḃs
p,q

.
∑
K∈Zn

‖[ϑK(x,D)f ]P‖Ḃs
p,q

. ΠN (a) ‖[f ]P‖Ḃs+m
p,q

∑
K∈Zn

(1 + |K|2)(N0−N)/2.
(3.29)

Clearly the last series converges if N − N0 > n, i.e., N > n + 2[n/4] + 2 since the

condition (3.27). Then it suffices to choose N as an even integer satisfying

N >
3n

2
+ 2,

and we deduce that ‖[θ(x,D)f ]P‖Ḃs
p,q

is bounded by cΠN (a) ‖[f ]P‖Ḃs+m
p,q

.

Substep 2.3: Proof of θ(x,D)f ∈ S ′ for f ∈ ˙̃
Bs+m
p,q . Let ϕ ∈ S. We put Q̃j :=

γ̃(2−jD), where the function γ̃ is defined in the beginning of Step 1, and write ϕ =

S0ϕ+
∑

j≥1QjQ̃jϕ. It holds

|〈θ(x,D)f, ϕ〉| =

∣∣∣∣∣∣〈S0(θ(x,D)f), ϕ〉+
∑
j≥1

〈
Qj(θ(x,D)f), Q̃jϕ

〉∣∣∣∣∣∣
≤ ‖S0(θ(x,D)f)‖∞ ‖ϕ‖1 +

∑
j≥1

‖Qj(θ(x,D)f)‖∞
∥∥∥Q̃jϕ∥∥∥

1

. ‖S0(θ(x,D)f)‖∞ ‖ϕ‖1 +
∑
j≥1

2jn/p ‖Qj(θ(x,D)f)‖p
∥∥∥Q̃jϕ∥∥∥

1
.

(3.30)

First, we have

(3.31) ‖S0(θ(x,D)f)‖∞ .
∑
j≤0

2j(n/p−s)(2js ‖Qj(θ(x,D)f)‖p).
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Secondly, by Proposition 2.1,
∥∥∥Q̃jϕ∥∥∥

1
. 2−jLζM (ϕ) for any L ∈ N and some M ∈ N, then

if 0 < s < n/p, we choose an integer L satisfying L > n/p− s, and obtain

|〈θ(x,D)f, ϕ〉| .
(

sup
k∈Z

2ks ‖Qk(θ(x,D)f)‖p
)∑

j≤0

2j(n/p−s) +
∑
j≥1

2j(n/p−s−L)


. ‖[θ(x,D)f ]P‖Ḃs

p,∞

. ‖[θ(x,D)f ]P‖Ḃs
p,q
.

If s = n/p and q = 1, then in (3.30) we use
∥∥∥Q̃jϕ∥∥∥

1
. ‖ϕ‖1 for all j ≥ 1, and from (3.31)

it also holds

|〈θ(x,D)f, ϕ〉| . ‖ϕ‖1 ‖[θ(x,D)f ]P‖Ḃn/p
p,1

. ‖[θ(x,D)f ]P‖Ḃn/p
p,1

.

Substep 2.4: Proof of θ(x,D)f ∈ C̃0 for f ∈ ˙̃
Bs+m
p,q . Let ϕ ∈ S and λ > 0.

• The case s < n/p. As in the previous substep and using the same notations, it holds

that

|〈θ(x,D)f(· /λ), ϕ〉|

≤
∑
j∈Z
‖Qj(θ(x,D)f(· /λ))‖∞

∥∥∥Q̃jϕ∥∥∥
1

.
∑
j∈Z

2sj ‖Qj(θ(x,D)f(· /λ))‖p 2j(n/p−s)
∥∥∥Q̃jϕ∥∥∥

1

. ‖[θ(x,D)f(· /λ)]P‖Ḃs
p,∞

∑
j∈Z

2j(n/p−s)
∥∥∥Q̃jϕ∥∥∥

1
,

. ‖[θ(x,D)f(· /λ)]P‖Ḃs
p,q

ζM (ϕ)
∑
j≥1

2j(n/p−s−L) + ‖ϕ‖1
∑
j≤0

2j(n/p−s)

 ,

for some integer L > n/p− s and some M ∈ N. Consequently, Proposition 2.5 gives

|〈θ(x,D)f(· /λ), ϕ〉| . λn/p−s ‖[f ]P‖Ḃs+m
p,q

(ζM (ϕ) + ‖ϕ‖1).

Then the result follows by taking λ→ 0.

• The case s = n/p and q = 1. The embedding Ḃ
n/p
p,1 ↪→ Ḃ0

∞,1 implies that [θ(x,D)f ]P

belongs to Ḃ0
∞,1. Then we have

∑
j∈Z ‖Qj(θ(x,D)f)‖∞ < ∞. Now, let ε > 0 be fixed

arbitrarily. We write, for a J ∈ N,

|〈θ(x,D)f(· /λ), ϕ〉| .
∑
|j|>J

‖Qj(θ(x,D)f)‖∞ +
∑
|j|≤J

|〈Qj(θ(x,D)f)(· /λ), ϕ〉| .

Choosing J such that the first term (i.e., with
∑
|j|>J · · · ) is less than ε. For the second

term (i.e., with
∑
|j|≤J · · · ), we apply the following lemma which is proved in [2, p. 46]

or [4, Proposition 4.4]:
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Lemma 3.4. If a function h ∈ L∞ satisfies that supp ĥ is a compact set in Rn \{0}, then

h ∈ C̃0.

Thus limλ→0
∑
|j|≤J |〈Qj(θ(x,D)f)(· /λ), ϕ〉| = 0.

Summarizing, from Substep 2.1 through 2.4, we have proved that the operator θ(x,D)

is bounded from
˙̃
Bs+m
p,q into

˙̃
Bs
p,q and the proof of (ii) is complete.

Step 3: Proof of (iii). Arguing so as in Step 1 (i.e., (3.7)–(3.14)) to decompose τ(x, ξ)

as an elementary symbol. We introduce a radial and positive function ρ̃ ∈ D, supported

by the ball |ξ| ≤ 7/4 and satisfying ρ̃ρ = ρ. We also introduce a 2π-periodic function

denoted by

v(x, ξ) :=
∑
K∈Zn

τ(x, ξ − 2πK).

Since τ(x, ξ − 2πK)ρ̃(ξ) = 0 if K 6= 0, then from the Fourier expansion of v, we have

(3.32) v(x, ξ)ρ̃(ξ) = τ(x, ξ) = ρ̃(ξ)
∑
K∈Zn

CK(x)eiK·ξ.

If ξ ∈ Rn and K ∈ Zn satisfy both |ξ − 2πK| ≤ 3/2 and −π ≤ ξ` ≤ π, ` = 1, . . . , n, then

K = 0 and v(x, ξ) = τ(x, ξ). This yields

CK(x) := (2π)−n
∫ π

−π
· · ·
∫ π

−π
e−iK·ξv(x, ξ) dξ = (2π)−n

∫
Rn

e−iK·ξτ(x, ξ) dξ.

We continue, for an even natural number N ∈ N (N := 2M), which will be chosen later

on, we set

χK(x) := (2π)−n(1 + |K|2)N/2CK(x),

i.e.,

χK(x) =

∫
Rn

e−iK·ξ(I −∆ξ)
N/2τ(x, ξ) dξ.

Consequently, as in (3.14) and from (3.32), we arrive at the following expression

(3.33) τ(x,D)f(x) =
∑
K∈Zn

(1 + |K|2)−N/2χK(x)F−1(ρ̃f̂)(x+K),

wherein Lemma 3.3 can be applied with h := χK and g := F−1(ρ̃f̂)(·+K):

• h ∈ L∞ ∩
˙̃
B
n/p−m
p,q , i.e., estimate of ‖χK‖∞ + ‖[χK ]P‖Ḃn/p−m

p,q
. This can be done as

the estimate of (χK,j)j∈Z in Substep 2.1. Indeed, instead of (3.21) and (3.22), we still get

‖χK‖∞ . ΠN (a)
∑
|µ|≤M

∑
α+η=2µ

∫
|ξ|≤3/2

∣∣∣ρ(η)(ξ)
∣∣∣ (1 + |ξ|)m−|α| dξ . ΠN (a)
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for all K ∈ Zn, and

‖[χK ]P‖Ḃn/p−m
p,q

.
∑
|µ|≤M

∑
α=2µ

∫
|ξ|≤3/2

∥∥[∂αξ τ(· , ξ)]P
∥∥
Ḃ

n/p−m
p,q

dξ

. ΠN (a)
∑
|µ|≤M

∑
α=2µ

∫
|ξ|≤3/2

(1 + |ξ|)m−|α| dξ

. ΠN (a)

for all K ∈ Zn, respectively.

• g ∈ C∞ ∩ ˙̃
Bs+m
p,q . We first see the estimate of

∥∥[(F−1ρ̃) ∗ f(·+K)]P
∥∥
Ḃs+m

p,q
. By the

Young inequality it holds
∥∥Qj ((F−1ρ̃) ∗ f

)∥∥
p
≤
∥∥F−1ρ̃

∥∥
1
‖Qjf‖p. Consequently by using

the fact that ‖ · ‖Ḃs+m
p,q

is translation invariant, we obtain∥∥[(F−1ρ̃) ∗ f(·+K)]P
∥∥
Ḃs+m

p,q
=
∥∥[(F−1ρ̃) ∗ f ]P

∥∥
Ḃs+m

p,q
. ‖[f ]P‖Ḃs+m

p,q
.

Secondly, we prove that g ∈ C̃0. Indeed, we apply the following assertion: If f ∈ C̃0,

ϕ ∈ S and a ∈ Rn then〈
f
(
λ−1(·)− a

)
, ϕ
〉

=
〈
f(λ−1(·)), ϕ(·+ λa)

〉
→ 0 as λ→ 0

since ϕ(·+ λa) still belongs to S. Thus by a simple calculation, for all ϕ ∈ S, we have〈
g(λ−1(·)), ϕ

〉
=
〈
f(λ−1(·)),F−1ρ̃ ∗ ϕλ

(
K − λ−1(·)

)〉
with ϕλ := ϕ(λ(·)),

and
〈
g(λ−1(·)), ϕ

〉
→ 0 as λ → 0 since F−1ρ̃ ∗ ϕλ

(
K − λ−1(·)

)
∈ S. Finally it is clear

that g is a C∞ function.

Applying now Lemma 3.3 to the expression (3.33), and choosing N an even integer

greater than n, we obtain

‖[τ(x,D)f ]P‖Ḃs
p,q

. ΠN (a) ‖[f ]P‖Ḃs+m
p,q

∑
K∈Zn

(1 + |K|2)−N/2 . ΠN (a) ‖[f ]P‖Ḃs+m
p,q

.

We note that the proof of, both, τ(x,D)f ∈ S ′ and τ(x,D)f ∈ C̃0 for all f ∈ ˙̃
Bs+m
p,q is

similar to the case of the operator θ(x,D), see Substeps 2.3 and 2.4. Hence the proof of

Proposition 3.1 is complete.

Proof of Theorem 1.1. This is similar to the proofs of Proposition 3.1(i) and (ii) where we

do not need of the decomposition a(x, ξ) = τ(x, ξ) + θ(x, ξ), but we take θ(x, ξ) := a(x, ξ),

e.g., instead of (3.5) we directly write

θj(x, ξ) := 2−mjγ(2−|j|ξ)a(x, 2j−|j|ξ), j ∈ Z, ∀x, ξ ∈ Rn,
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and obtain the functions ϑK(x, ξ) and the decomposition a(x, ξ) =
∑

K∈Zn ϑK(x, ξ) as in

(3.13) and (3.14), respectively. In the same way of (3.21) and (3.23) we have

‖χK,j‖∞ + ‖[χK,j ]P‖Ḃn/p
p,q

. Π̇N (a), ∀K ∈ Zn, ∀ j ∈ Z.

The rest of the proof is unchanged.

Proof of Theorem 1.2. This follows from Proposition 3.1.

4. Some generalizations and remarks

We begin by an extension on the symbol classes: For (µ, η) ∈ R2, (M,N) ∈ N2 and a

Banach space E, we introduce the classes Ṡm,N,Mµ,η (E) and Sm,N,Mµ,η (E) of functions a(x, ξ)

in C∞(Rn × Rn \ {0}) and in C∞(Rn × Rn), respectively. These classes are defined (as

Fréchet spaces) by the seminorms

Π̇N,M (a) := sup
|α|≤N
|β|≤M

sup
ξ∈Rn\{0}

|ξ|−m+µ|α|−η|β|
∥∥∥∂αξ ∂βxa(· , ξ)

∥∥∥
E
,

ΠN,M (a) := sup
|α|≤N
|β|≤M

sup
ξ∈Rn

(1 + |ξ|)−m+µ|α|−η|β|
∥∥∥∂αξ ∂βxa(· , ξ)

∥∥∥
E
,

respectively. Then Theorems 1.1 and 1.2 can be generalized in the following sense:

Theorem 4.1. Let s, p, q, m, N be real numbers given as in Theorem 1.1 ( 1.2, respec-

tively). Let M ∈ N, η ∈ R and µ ≥ 1. If a symbol a(x, ξ) belongs to Ṡm,N,Mµ,η (L∞ ∩ Ḃn/p
p,q )

(Sm,N,Mµ,η (L∞ ∩ Ḃn/p
p,q ∩ Ḃn/p−m

p,q ), respectively), then the ps.d.o a(x,D) takes the space
˙̃
Bs+m
p,q into

˙̃
Bs
p,q, with an estimate similar to (1.3) wherein Π̇N (a) is replaced by Π̇N,M (a)

(ΠN,M (a), respectively).

Proof. We only check the similar estimates of functions gα,j(ξ) and hβ,j(ξ) given in (3.17)

and (3.18), respectively, which must be replaced by

gα,j(ξ) := 2(|α|−m)j(1 + 2j |ξ|)m−µ|α|
∣∣1− ρ(2jξ)

∣∣ , |α| ≤ N

and

hν,j(ξ) := 2(|α|−m)j(1 + 2j |ξ|)m−µ|α|
∣∣∣ρ(α−ν)(2jξ)

∣∣∣ , |α| ≤ N, ν ≺ α.

Owing to the support of 1− ρ(2jξ) we have 1 ≤ 2j |ξ|, then as in (3.19) we obtain:

• if m− µ |α| > 0, then

|gα,j(ξ)| ≤ (1 + ‖ρ‖∞)2(|α|−m)j(2 · 2j |ξ|)m−µ|α|

. 2(1−µ)|α|j |ξ|m−µ|α|

. |ξ|m−|α| ,



Boundedness of Pseudodifferential Operators on Realized Homogeneous Besov Spaces 461

• if m− µ |α| ≤ 0, then

|gα,j(ξ)| ≤ (1 + ‖ρ‖∞)2(|α|−m)j(2j |ξ|)m−µ|α|

. 2(1−µ)|α|j |ξ|m−µ|α|

. |ξ|m−|α| ,

and in all cases we obtain |gα,j(ξ)| . |ξ|m−|α|. Similarly for hν,j(ξ) (here as in (3.20))

since on the support of ρ(α−ν)(2jξ) we have |ξ| ∼ 2−j . Consequently, the argument proof

of Theorem 4.1 remains completely similar to the proofs of Theorems 1.1 and 1.2.

Now, we see an extension on the realized spaces: The condition (1.1) can be extended

in the following sense. For

(4.1) s− n

p
∈ R+ \ N, or s− n

p
∈ N \ {0} and q = 1,

we denote by ν the integer ≥ 1 defined by s− n/p ≤ ν < s− n/p+ 1, i.e.,

(4.2) ν :=

[s− n/p] + 1 if s− n/p ∈ R+ \ N,

s− n/p if s− n/p ∈ N \ {0} and q = 1.

Then the realized homogeneous Besov space
˙̃
Bs
p,q in this case is defined as the following,

cf., [2, p. 47] or [18, p. 113] or [11, p. 150]:

Definition 4.2. Assume that (4.1) holds. The space
˙̃
Bs
p,q is the set of all f ∈ S ′ satisfying

the following four conditions: (i) [f ]P ∈ Ḃs
p,q, (ii) f is of class Cν−1, (iii) f (α)(0) = 0 for

|α| < ν, (iv) f (α) ∈ C̃0 for |α| = ν.

We have the following result:

Theorem 4.3. Let s > 0 and 1 ≤ p < ∞. Assume that (4.1) holds. Let N be an even

natural number satisfying N > 3n/2 + 2. Let m be a real number satisfying

(4.3) s+m− n

p
∈ R+ \ N, or s+m− n

p
∈ N \ {0} and q = 1.

If a symbol a(x, ξ) belongs to Ṡm,N1,0 (L∞ ∩ Ḃn/p
p,q ), then the ps.d.o a(x,D) takes the space

˙̃
Bs+m
p,q into

˙̃
Bs
p,q. Moreover, an estimate similar to (1.3) is obtained for all f ∈ ˙̃

Bs+m
p,q .

The proof is similar to that of Theorem 1.1. We give a sketchy proof. According

to Propositions 2.4, 2.10 and Lemma 3.2 we have the following assertions, in which the

two propositions below are proved in [11, Proposition 2.17] and [11, Theorems 1.2, 4.5,

Section 4.2], respectively.
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Proposition 4.4. Let s > 0 and 1 ≤ p < ∞. Assume that (4.1) holds. Let b > 0. Let

(uj)j∈Z be a sequence in S ′ satisfying the following two conditions:

• ûj is supported by the ball |ξ| ≤ b2j,

• A :=
(∑

j∈Z(2js ‖uj‖p)
q
)1/q

<∞.

We put wj(x) := uj(x) −
∑
|α|≤ν−1 u

(α)
j (0)xα/α! for all j ∈ Z and all x ∈ Rn, (ν is

defined in (4.2)). Then the series
∑

j∈Zwj converges in S ′ to a limit w which satisfies

‖[w]P‖Ḃs
p,q
≤ cA, and where c depends only on n, s, p, q and b.

Proposition 4.5. Assume that (4.1) holds. If u ∈ Ḃs
p,q, we put vj(x) := Qju(x) −∑

|α|≤ν−1(Qju)(α)(0)xα/α! for all j ∈ Z and all x ∈ Rn. Then the series
∑

j∈Z vj converges

in S ′. We put f :=
∑

j∈Z vj. Then f (α) (|α| = ν) belongs to C̃0, and f is the unique

tempered distribution satisfying [u]P = f in S ′∞.

Remark 4.6. As in Remark 2.12, owing to conditions (4.1) and (4.3), Proposition 4.5

guarantees that the two spaces
˙̃
Bs
p,q and

˙̃
Bs+m
p,q are well-defined as subspaces of S ′.

Lemma 4.7. Let s > 0 and 1 ≤ p <∞. Assume that (4.1) holds. Let b > 0. Let (uj)j∈Z

and (χj)j∈Z be sequences in S ′ satisfying the following three conditions:

(i) ûj is supported by the ball |ξ| ≤ b2j,

(ii) A :=
(∑

j∈Z(2js ‖uj‖p)
q
)1/q

<∞,

(iii) B := supj∈Z

(
‖χj‖∞ + ‖[χj ]P‖Ḃn/p

p,q

)
<∞.

We put zj(x) := χjuj(x)−
∑
|α|≤ν−1(χjuj)

(α)(0)xα/α! for all j ∈ Z and all x ∈ Rn. Then

the series
∑

j∈Z zj converges in S ′ to a limit z which satisfies ‖[z]P‖Ḃs
p,q
≤ cAB, and where

c depends only on n, s, p, q and b.

Proof. This can be done as the proof of Lemma 3.2, we only give a little change in

definitions of V and W of (3.2). We put
∑

j∈Z zj =
∑

j∈Z Vj +
∑

k∈ZWk, where

Vj(x) := uj(x)Sjχj(x)−
∑
|α|≤ν−1

(ujSjχj)
(α)(0)

xα

α!
,

Wk(x) :=
∑
j<k

uj(x)Qkχj(x)−
∑
|α|≤ν−1

∑
j<k

(ujQkχj)
(α)(0)

xα

α!
,

then instead of Proposition 2.4 we apply Proposition 4.4 to the sequences (Vj)j∈Z and

(Wk)k∈Z. We omit the details.
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Proof of Theorem 4.3. Steps 1 and 2 of the proof of Proposition 3.1 are globally un-

changed, we briefly outline. Since ‖g‖Ḃs
p,q

= 0 for all g ∈ P∞, then

‖[a(x,D)f ]P‖Ḃs
p,q

=

∥∥∥∥∥∥
a(x,D)f −

∑
|α|≤ν−1

(a(x,D)f)(α) (0)
xα

α!


P

∥∥∥∥∥∥
Ḃs

p,q

.

Using notations of the proof of Proposition 3.1, then it reduces to estimate ‖[U(f)]P‖Ḃs
p,q

where

U(f) :=
∑
K∈Zn

ϑK(x,D)f(x)−
∑
|α|≤ν−1

(ϑK(x,D)f)(α) (0)
xα

α!

 .

We argue so as in (3.29), then it suffices to apply Lemma 4.7 to the elementary symbol

ϑK(x, ξ), see (3.13)–(3.14), we obtain the correct bound. To prove that U(f) ∈ S ′ and

U(f)(α) ∈ C̃0 for |α| = ν and all f ∈ ˙̃
Bs+m
p,q , we apply the same method used in proofs of

Substeps 2.3 and 2.4 of Proposition 3.1.

Remark 4.8. Theorem 4.3 holds also for symbols of the class Ṡm,N,Mµ,η (L∞ ∩ Ḃn/p
p,q ) with

N > 3n/2 + 2 (N is an even integer), M ∈ N, η ∈ R and µ ≥ 1, cf., Theorem 4.1.

Remark 4.9. It seems clearly that we can replace Besov spaces by Triebel-Lizorkin spaces

in all the above results, see [4, 11].

Remark 4.10. It would be interesting to extend the boundedness of the ps.d.o on localized

of realized homogeneous Besov spaces (
˙̃
Bs
p,q)`r(Zn), 1 ≤ r ≤ ∞, which is defined as the set

of f ∈ S ′ such that

‖f‖
(

˙̃
Bs

p,q)`r(Zn)

:=

( ∑
K∈Zn

‖[ψ(· −K)f ]P‖rḂs
p,q

)1/r

<∞,

where ψ is a C∞ function supported by the ball |ξ| ≤ R, with R >
√
n, and satisfies that∑

K∈Zn ψ(ξ −K) = 1 for all ξ ∈ Rn, cf., [12].
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