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Boundedness of Pseudodifferential Operators on Realized Homogeneous

Besov Spaces

Saliha Meliani and Madani Moussai*

Abstract. Using the notion of realizations, the realized homogeneous Besov spaces

E; o(R™) are subsets of tempered distributions. Then we will study the boundedness

of some pseudodifferential operators on E;,Q(R"), in the cases either s < n/p or

s=n/pand ¢ =1.

1. Introduction and main results

For a function a: R™ x R™ — C we study the boundedness of the corresponding pseudod-
ifferential operator (abbreviated ps.d.o) f — a(z, D)f on the homogeneous Besov spaces
B;q(R"), where a(z, D) is defined by

o~

a(z, D) f(z) = (27)" / e a(z, ) F(€)dE, Yz R

n

the function a is called the symbol. We will use the notation a(z,§) instead of a.

The space B;q(R") is defined modulo polynomials since || f]| By, = 0 for all polynomial
functions f. Then a ps.d.o cannot map e.g., Byt™(R™) into By (R™) in general, since,
for instance, if we take the constant function f(x) := 1 we have a(z,D)f(x) = a(x,0)
and it suffices to choose the symbol a(x,&) satisfying a(x,0) ¢ B;q(R”), (cf., see Exam-
ple below). For this reason, we will show the boundedness problem on the realized
homogeneous Besov spaces E;,q(R"), and exactly from nggm(R”) into E;q(R"), where
throughout the paper we will make use of the following convention: the parameters s, p, q
and m will verify

se€R, meR and p,qe€[l,x)]

unless otherwise stated. Recall that the notion of the realization has been initiated by

G. Bourdaud in [2], where its essential purpose is to give for any element of an homogeneous
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space (e.g., B;yq(R”)) an unique representative which belongs to the tempered distributions
space S'(R™). Actually, there are many references about this subject e.g., [3, Section 3], [4]
and |11} Section 3]. The space thq(R”) is a subset of §’(R™) (see Sectionbelow), where
under the following condition:

1.1 either s < ﬁ, or s= n and ¢=1,
(
p p

all element of E;,q (R™) can be characterize via the Littlewood-Paley decomposition; how-
ever, for other cases given to the parameters n, s, p and ¢, the characterization of E;(](R”)
relies on a polynomial with degree depending on s — n/p and ¢q. On the one hand, (1.1

presents one of assumptions of the main results, and on the other hand, since in this paper

we also work in E;ZW(R"), we mention the following condition:

(1.2) either s+m<ﬁ, or s+m=— and g=1.
p p

To formulate the results we introduce ST(;N(E) (so-called the homogeneous class of sym-
bols) the set of C*>°(R™ xR™\ {0}) functions a(z, §), such that for any o € N” with |a| < N

there exists a constant ¢ := ¢(a)) > 0, such that

[0ga(-, )|, <cle™ !, Ve e R\ {0}

In the same way, we define the inhomogeneous class ST(’)N(E) of C*°(R™ x R™) symbols
a(x,§) satisfying
l0ga(-,&)[| 5 < e+ g™, veeR™,
with |a] < N and ¢ := ¢(a) > 0. Noticing that the sets S%N(E) and S%N(E) are Fréchet
spaces with the seminorms
My(a) == sup sup (&7 [|9ga(-, &),
la] <N eR™\{0}

and

My(a) := sup sup (1+ [¢))""H || oga(-, )|,
la|<N £€R™

respectively. Now in case of the homogeneous class, we deal with E := Lo, (R")N B, {Ip (R™),

endowed with the norm
1715 = 17w + W71 g

where [f]p denotes the equivalence class of f modulo polynomials, and in case of the
inhomogeneous class, we work with £ := L(R") N Bg,{]p (R™) N B;L,{]p “"(R") endowed
with the corresponding norm. To explain the difference between these two classes, we
give the following observation: Except the case m = 0, there are no embeddings between
By {Jp (R™) and By {Ip “"(R™). We will prove essentially the following results:



Boundedness of Pseudodifferential Operators on Realized Homogeneous Besov Spaces 443

Theorem 1.1. Let s >0 and 1 < p < co. Assume that (1.1) and (1.2)) hold. Let N be an
even natural number satisfying N > 3n/2+2. If a symbol a(x,§) belongs to ST(;N(LOO (R™N
B;{IP(R")), then the ps.d.o a(x, D) takes the space nggm(R”) into E;Q(R”). Moreover,

there exists a constant ¢ > 0 such that the inequality

(13) lla(z, D) flpllg, < eTx(@) [[f1p ] gy

holds, for all f € E;ng(R”)

Theorem 1.2. Let s > 0, 1 < p < oo and m > 0. Assume that and
hold. Let N be an even natural number satisfying N > 3n/2 + 2. If a symbol a(x,§)
belongs to S{%N(LOO(R”) N BS,QP(R") N B;ép_m(R”)), then the ps.d.o a(x, D) takes the
space E;Zm(R”) into Ef,’q(]R”). Moreover, there exists a constant ¢ > 0 such that the
inequality

Ilata. D) flpll s, < elln(a) 1717l g5

holds, for all f € BStm(R™).

In [5], R. R. Coifman and Y. Meyer proved that any ps.d.o of order 0 (i.e., m = 0) can
be decomposed as the sum of a regularized operator with another one which is associated
to an elementary symbol (i.e., an elementary symbol a(z,§) is given by the following
expression: a(z,§) = > oy x;(2)0(277€), where (x;)jen is a bounded sequence in an
appropriate functions space and § € D(R™ \ {0})), see also e.g., [8,|9]. Then the proofs of
Theorems [I.1] and [T.2] are based on the following three assertions:

e a reduction to elementary symbols in the homogeneous case,

e an almost orthogonality estimate of type of G. Gibbons [6] which will be obtained
by Nikol’skij representation method (see Lemma below),

e a pointwise multipliers property of realized homogeneous Besov space (see Lemma
below).

We will also extend the principal result to, both, the symbols class S,ThN’M(E) (see The-

orem below) and by taking in other cases on the parameters n, s, p and ¢ (see
Theorem below).

Notations. As usual, N denotes the set of natural numbers including 0, Z the set of
integers and R the set of real numbers. All function spaces occurring in this work are
defined on Euclidean space R™, then we omit R” in notation. For ¢ € R, [t] denotes the
greatest integer less than or equal to t. For b € R we put by := max(0,b). We denote
by |||, the L, norm. The symbol — indicates that the embedding is continuous. For
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a, f € N multi-indices, o = (o, ..., ay), B = (B1,...,0n), we say that a < § if a; < B
forall j =1,...,n and ai < B for at least one index 1 < k < n. The standard norms of
fin § are given by

Cu(f) = suwp sup (1+ [a) | f@(2)|, M eN.
|| <M z€R™

If f € Ly, the Fourier transform of f and its Fourier transform inverse on R" are defined

FIO=F©) = [ e f@)de and FH (@)= 2n) " f(-a).

They are extended to S’ in the usual way. We denote by P, the set of all polynomials
on R™. We denote by S the orthogonal of Py, in S, i.e., the set of all u € S such that
(fyu) =0 for all f € Ps. For all f € &', then [f]p is the equivalence class of f modulo
Poo, this notation has been defined before. The mapping which takes any [f]p to the
restriction of f to Sy turns out to be an isomorphism from §'/Ps onto S.; for this
reason, S, is called the space of distributions modulo polynomials. The constants ¢ are
strictly positive and depend only on the fixed parameters n, s, p and ¢ and probably on
auxiliary functions, their values may vary from line to line. Finally, sometimes we will use
the symbol < instead of <, the notation A < B means that A < ¢B.

The paper is organized as follows. In Section [2| we collect information about homo-
geneous, inhomogeneous and the realized version, of Besov spaces. In Section [3] we give
the proofs of Theorems and In Section [4 we discuss some generalizations and

remarks.

2. The Besov space

2.1. The Littlewood-Paley setting

We choose, once and for all, a standard cut-off function. More precisely, we assume that
p is a radial C* function satisfying 0 < p < 1, p(§) = 1if || < 1, p(&) = 0 if [£] > 3/2.
Then p is a radial and real-valued function. We define v(§) := p(§) — p(2€) for all £ € R™,
which is supported by the compact annulus 1/2 < |¢| < 3/2, and the following identities
hold:

D (208 =1, VEeR™\{0},
JEZ
p(27F) +> (2798 =1, VkeZ VEeR™
i>k
For any j € Z, we introduce the ps.d.o S; := p(277D) and Q; := v(277D). It is clear
that S; is defined on &’ and that Q; is defined on S, since Q;f = 0 for all f € Pu. All



Boundedness of Pseudodifferential Operators on Realized Homogeneous Besov Spaces 445

these operators take values in the space of analytical functions of exponential type, see
the Paley-Wiener Theorem. By abuse of notation, if f € S/, then for any f1, fo € &’ with
f = 1[filp = [fo]p, we have Q;fi = Qjfo (recall that f; — fo € Ps). For this reason we
say:

if f eS8, weset Qjf:=Q;f1forall fi €S such that [fi]p = f.

Using the Young inequality, the families of operators (S;)jez and (Qj)jcz constitute
bounded subsets of the normed space £(L,) for any p € [1,00]. We also have the fol-

lowing assertion which is proved in |11, Proposition 2.5].

Proposition 2.1. (i) For any N € N, there exist a positive constant ¢ and a natural
number M such that ||ij||p < 27Ny (f) holds, for all f €S and all j € N,

(ii) For any N € N, there exist a positive constant ¢ and a natural number M such that
1Q; fIl, + 1S5 f1l, < 29N ¢ (f) holds, for all f € Soo and all negative integers j.

As a consequence of this proposition is the convergence of the Littlewood-Paley de-

compositions of a distribution which is described in the following well known statement.

Proposition 2.2. (i) For every f € Soo (S., respectively), it holds that f = > jen Qif
in Seo (S.,, Tespectively).

[eop)

(ii) For every f € S (S, respectively) and every k € Z, it holds that f = Skf+2j>k Q;f
inS (S', respectively).

2.2. Homogeneous Besov spaces

The Littlewood-Paley approach presents the basic definition of the Besov spaces.

Definition 2.3. The homogeneous Besov space Bf,’q is the set of f € S/ such that

1/q

1l = [ @7 1Qif)7 ) <o

JET

The space B;q is a Banach space, and the following chain of continuous embeddings
holds:
Soo > By, 8L
We also have the embeddings B;m — B;qQ if g1 < g2, and B;iq — B;;q if p1 < p2 and
s1 —n/p1 = s —n/pa, see |7, Theorem 2.1].
On the other hand, one of the tools for the proofs of main results is the Nikol’skij type

estimates. We recall here the following statement.
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Proposition 2.4. Let s > 0 and 1 < p < co. Assume that (1.1)) holds. Let b > 0. Let

(uj)jez be a sequence in S satisfying the following two conditions:

e U; is supported by the ball |£] < b27,

, 1/q
o A= (Tjea@lul,)) " < 0.

Then the series )z u; converges in S’ to a limit u which satisfies ||[ulp| 3, < cA, and
p.q

where ¢ depends only onn, s, p, ¢ and b.

Proof. The proof is given in |11, Proposition 2.15]. See also [10, Proposition 3.4] or [14,

Proposition 2.3.2/1, p. 59] or [17] for the case of inhomogeneous Besov spaces. O

By replacing the discrete Littlewood-Paley decompositions by continuous ones, we

obtain equivalent continuous norms of B;,q which easily yield the following result.

Proposition 2.5. There exist constants c1,co > 0, depending only on s, p, q, n, such

that the inequality
. n/p—s A .
cillfllgy , < AVPNFAC s, < callflls,
holds, for all f € B, and all A > 0.

Now, in connection with the boundedness of the ps.d.o on homogeneous Besov spaces,

we give the following example:

Example 2.6. Let g be a C* positive function supported by the compact annulus 7/9 <
|€| < 7/8. We set

)= 2P (Frlg) (), Vo eR"

Jj=0
Clearly it holds Qyf(£) = 2k@n/p=s=n) (2~ ) (27k€) if k> 0 and Qpf(¢) =0 if k < o,
which imply that HQka = ok(n/p=s) | F~4( ) , (Yk > 0), then [f]p ¢ B
consequently [flp ¢ B;, . Now, if we put a(x O) f(x), then the assomated ps.d.o
a(x, D) is not bounded from B;j;m into B; Recall that (a(z, D)1)(z) = a(x,0) and the

constant function 1 belongs to Bf,j;m.

2.3. Realized homogeneous Besov spaces

The difficulty to handle distributions modulo polynomials requires the use of both the
realizations and the convergence in &’ in the weak sense. We will outline these two

approaches and refer to G. Bourdaud [2(-4] for definitions below.
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Definition 2.7. Let E be a vector subspace of S., endowed with a norm which renders
continuous the embedding £ C S._. A realization of E in &' is a continuous linear mapping
o: E — &' such that [o(f)]p = f for all f € E. The image set o(E) is called the realized
space of E.

Definition 2.8. We say that a tempered distribution f € S’ vanishes at infinity in the
weak sense if limy_,o f(A7!(:)) =0in &, i.e., limyo (f(A7!(:)), ) =0 for all ¢ € S. The
set of all such distributions is denoted by Co.

On the one hand, let us give examples of such distributions: (i) functions in L, for
1 < p < oo, (ii) derivatives of functions in Luo, (iii) derivatives of the members of Cy. On
the other hand, in connection with the polynomial functions we have at our disposal the

following easy lemma which is proved in [2, p. 46].

Lemma 2.9. If f is a polynomial vanishing at infinity in the weak sense, then f = 0,
i.e., 60 NP = {0}.
We now turn to the realizations. A typical example of realization is given by the

classical Littlewood-Paley decomposition. We recall the following assertion.

Proposition 2.10. Assume that (1.1) holds. If u € BZ’QJ then the series ZjEZ Qju
converges in S'. We put f := ZjEZ Qju. Then f belongs to Cy and is the unique tempered

distribution satisfying [u]p = f in SL.
Proof. See [4, Proposition 4.6] and |11, Theorems 1.2, 4.1, Section 4.2]. O

Now, we are able to define the realized homogeneous Besov space.

Definition 2.11. Assume that (1.1]) holds. The realized homogeneous Besov space E;q
is the set of all g € 8’ such that [g]p € B;,’q and g € Cp.

Clearly in Proposition if we define o(u) := 3, Qju for all u € B, then o is

P,
a realization on By , which commutes with translations and dilations, i.e., o(u)(z —a) =

o(u(- —a))(z) and o(u)(x/A) = o(u(- /\))(z) for all z,a € R™ and all A > 0, and we have

(21) (Brg) = Brg:
indeed, we have “C” by the definition. Let now g € Eg’q, then [g]p € B;,q and g—o([g]p) €
Po, by Lemma 2.9 we conclude that g = o([g]p), and this proves “D7.

The space qu is endowed with the same norm of BS, ie., [|fl|ls, = [[[flrllzs
) ’ P.q P,4q

and is a Banach space in &’ defined by “true” distributions not distributions modulo
polynomials, as was mentioned at the introduction. We also note, that some properties of
Efo’q as, embeddings, interpolations, etc, can be found in, e.g., [2,/4,11.|18].

Remark 2.12. Based on Proposition and conditions (L.1)—(1.2)), we note that in The-
orems and the two spaces E;q and Egzm are well-defined.
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2.4. Inhomogeneous Besov spaces

By using the inhomogeneous Littlewood-Paley decomposition instead of the homogeneous

one (see Section [2.1]), we obtain the inhomogeneous, or ordinary, Besov spaces.

Definition 2.13. The inhomogeneous Besov space B} , is the set of f € S’ such that
1/q

1y, = I1S0fll, + [ @7 1Qi1,)7 ] <.

Jj=1
The links exist between the homogeneous space and its inhomogeneous counterpart at

least for s > 0. Indeed we have the following assertion, see e.g., Triebel [16, Theorem 2.3.3].

Proposition 2.14. If s > 0, then B, , is the set of f € Ly, such that [f]p € B;q, and

”pr + H[f]pHB;ﬂ is an equivalent norm in By .

For Besov spaces we do not go into details, instead we refer to, e.g., [1,{10,13-16].

3. Proofs of Theorems and

Theorems [1.1] and [I.2] can be easily derived from the following statement.

Proposition 3.1. Let s > 0 and 1 < p < co. Assume that (1.1) and (1.2) hold. Let
a(x,€&) be a C*°(R™ x R™) function.

(i) a(z,§&) can be decomposed into a sum T(x,&) + 6(x,§) where T(x,&) =0 if |€] > 3/2
and 0(x,8) == ) gegn Vi (2, €) with 0(z, &) = 0 if |{| < 1, and the functions Vi (x,§)

are elementary symbols-type.

(ii) Let N be an even natural number satisfying N > 3n/2 + 2. If a(z,§) belongs to
S{%N(LOOOBZ{{IP), then the ps.d.o O(x, D) takes the space é;fgm nto E;vq. Moreover,

there exists a constant ¢ > 0 such that the inequality
166z D) flpll g, < el (a) 1717l g

holds, for all f € Ezzm.

(iii) Assume in addition m > 0. Let N be an even natural number satisfying N > n. If

a(x, &) belongs to STdN(LooﬂBg,{lpfm), then the ps.d.o T(x, D) takes the space Efj{}m

mnto E;q. Moreover, there exists a constant ¢ > 0 such that the inequality
Il (z, D) flpll s < clln(a) [[[flpl gotm

holds, for all f € B3t
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As mentioned in Section [I] we will formulate two properties, an almost orthogonality
estimate-type and a pointwise multipliers in realized homogeneous Besov spaces, respec-

tively, and which are needed for the proof of the above proposition.

Lemma 3.2. Let s >0 and 1 < p < co. Assume that (1.1)) holds. Let b > 0. Let (uj)jcz

and (x;)jez be sequences in S’ satisfying the following three conditions:
(i) @j is supported by the ball |¢| < b27,
) A= (Sen@ sl ) " < o
(ii)) B = supjez (sl + I DxalPll gy ) < 0.
Then the series ZjeZ Xju; converges in S’ to a limit u which satisfies
(3.1) lfulpllz, < cAB,
where ¢ depends only on n, s, p, q and b.

Proof. Step 1: Convergence in 8'. The proof is the same as in |11, Proposition 2.15/Sub-
step 1.2]. We omit the details.

Step 2: Proof of (3.1). In ZjeZ X;u; we split the area of summation with respect to j.
That is, by Propositionwe write x; = SjX; + 2 _j~; QrX; (vecall that x; € S'), which
implies that ZjeZ xjuj =V + W, where
(3.2) V= ZuijXj and W := ZZUijXj,

JEL keZ j<k
with F(u;Sjx;) and F <2j<k uijXj> are supported by the balls |¢] < (3/2 + b)27 and
€] < (3/2+b/2)2F, respectively. This allows to apply Proposition [2.4]to the series V and
W.
Substep 2.1: Estimate of ||[V]p| g. . It is immediate by using [|S;x;l|, < B, VJj € Z.
p,q
Substep 2.2: Estimate of ||[[W]p|| 5. in the case 0 < s < n/p. We will use the following
p,q

inequality

(3.3) Do wiQixi| <D il 1Rk, -
i<k i<k
P
By Bernstein inequality (cf., |15, Remark 1.3.2/1]) we obtain
a\ 1/q
1Wels,. < (30 (2% Sl IQel,
keZ i<k
a\ 1/q

gsup\|xg|]3gég Z Zg(n/pfs)(jfk)(QSJ Huij)
tez = \kez <k
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Using the assumption on s, and applying Young inequality in ¢4(Z), i.e.,

(3.4) Z br—j€; < H(bj)J'EZ”zl(z) H(€j)jezng(z) )
ez kezllo,(z)
with b; := 267/PJ if > 0, b;:= 0 if j <0 and ¢; := 2% [[ujll,,, we conclude that

IW)plls, < AB.

Substep 2.3: Estimate of ||[[W]p| g in the case s = n/p and ¢ = 1. Applying ({3.3)
p,q

and Bernstein inequality, successively, we get

WPl gne < S D2 2wyl Qi

kEZ j<k
< S0 | S 27 Qs
JjEZ k>j
< AB.
The proof of Lemma is complete. O

Lemma 3.3. Let s > 0 and 1 < p < co. Assume that (1.1) and (L1.2) hold. Assume in
addition m > 0. Then there exists a constant ¢ > 0 such that the inequality

Ihglpllg, < c (PPl gop-m + [1hlls ) gl gstm
P,q D,q P,q

holds, for all g € C N B:m all h € Log N Bl ™.

Proof. Step 1. Let g and h be functions given as in this lemma. By assumption, the
functions g and h belong to S’. Clearly also that Sjg, Qrg and Qrh are C'* functions
for all j,k € Z. Then in &', we can write the following expressions g = Sjg + >~ ; Qk9;

Sjg = Zkgj Qrg, h = ZjeZ Qjh and S;h = Zkgj Qrh. Thus, for all ¢ € S, we get

<Z(Sjg)(th)7 <P> = (Qih, (Sj9)p) = <th, 9-Y Qg <P>

JEZ JEZ JEZ k>j
(hoge) =Y D (Qih, (Qrg)e)
keZ j<k—1
keZ

Hence, we arrive at the decomposition of hg in &’ into a sum hg = A; + Ay where

Ay = 3,05(559)(Q;h) and Ag =Y 5 (Sk—1h)(Qrg)-
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Step 2: Estimate of ||[A ]p||Bg , i = 1,2. We begin by noting that the functions
F{(S;9)(Q;h)} and F {(Sk— 1h)(ng)} are supported by the balls |¢] < 3-27 and |¢| <
(9/4)2%, respectively, then we can apply Proposition [2.4, First, we obtain

I[As)pl 5,
1/q
. q

S22 (27 1Sigl Qs )

JEZL

ay 1/q

< Z( o(n/p—m); 7 1Q;hl| ) 2(s+mfn/p)j22(”/”*“”1)]“2(%7”)]{||Qk:9||p

JEZ k<j

S Nbell gy Nsol g

where owing to assumptions (1.1)) and (|1.2)) we have used the convolution inequality, see
e.g., (3.4) or [17, Lemma 3.8|. Secondly, assume that m > 0, then we have

1/q
q
A2l , < (Z (2% 118k 1Al 1 @rll, ) )

keZ
q 1/q

gk 5 gmig(n/r-mi | Qun|| (2 SR | Qrgl )

j<k—1

A

27k " gmign/pmmiy Q n|| llglpll s
<k

{keZ

q\ 1/q
(keZ
<ol Mol g

Assume now m = 0. Then

. < .
lldalplls, < Ikl llglells,
holds. The proof of Lemma is complete. O

Proof of Proposition [3.1] For the simplicity we will divide the proof in several steps.
Step 1: Proof of (i). As mentioned in the introduction on the method of Coifman and
Meyer for the reduction to elementary symbols (cf. [5]), we will adapt this approach to
the homogeneous case. We give the following construction:
We introduce a radial and positive function ¥ € D(R™\ {0}) supported by the compact
annulus 1/4 < [£| < 7/4, and satisfies 7y = ~ (see the beginning of Section for the
definition of p and 7). We write a(z,§) = 7(z,§) +0(x, §) where 7(z,§) := a(x, &) p(§) and

0(x,€) := a(z,§)(1 - p(§)), with
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o 7(a,€) = 0if |¢] > 3/2,
e O(x,6)=0if |¢] < 1.
We now go to decompose 0(z,§). We first set
(3.5) 0;(x,) == 2727 W)0(x, 27 V), jeZ Va6 R,
which is well-defined. Then by definition of § we have

(3.6) 0(z,) = 0(z,6) Y (2778 = 2m0;(z,277tg).

JEZ. JEZ

Let us define the function

(3.7) = > 0(x,2V(¢ - 2rK)),

Kezn

which is 27-periodic with respect to €, satisfying w;(z, £)7(€) = 0;(z, 271¢). Consequently,

a Fourier expansion of w; gives

(3-8) 6;(x,2916) =75(€) Y Crjla)e™,

Kezn

Crj(z) == (27m)~ /_7r /_7r L€) de.

Now, by inserting (3.8) in , it follows
(3.9) = N 2Ok ()2 7).

KeZn jel

where

On the one hand, for £ € R” and K € Z" satisfying 1/2 < [{ —27K| < 3/2 and —7 <
& <m, L=1,...,n, we have |K| = 0. Hence, wj(z,&) coincides with 0;(z, 271¢) since the
function & + 6;(x, 2V!(¢ — 27K)) has a support in 1/2 < |¢ — 27K| < 3/2. Thus

(3.10) Ck j(z) = (2m)™" / ) e Eg (2, 21¢) de.

On the other hand, for N € N, which will be fixed later on, we set

(3.11) X () = (2m)" (1 + [K )2 Cxc (),

(3.12) O (€) = (2m) 7" (1 + [K ")~V (¢)e™

and

(3.13) O (2,8) =Y 2Mxk;(x)0k(277¢), K e€Z', Va, €R™

JEL
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By substituting these formulas, (3.11)—(3.13)), into (3.9)) we get the desired decomposition:
(3.14) 0(z,8) = ) Vg(x.8), Vo, R
Kezn

Step 2: Proof of (ii).

Substep 2.1: Estimate of |xk |l + llxxilrl 5 o/ We first choose N as an even
integer (i.e., we put N := 2M with M € N) and note “that by inserting (3.10]) in (3.11]) we
get

X (@) = / NI agM (6;(2,27)) de.

The expression (I — A¢)M (;(z, 2|j|§)) is the following sum (cf., see (3.5])

M! 21 ol . '
||Z: ZQ — |u])!p! (oz'n)‘ (=D)lHilel=miig ™ (€)0g0(w, 2'¢),
p|<M a+n M
which yields
XK,j(z Z Z M! '(Q‘M)' (—1)lulg(lal-m)j
(3.15) |u|<M atn= Q,u = |u)!pt aln!

x / e~ H€ 1) (£)020(z, 27€) de.

a!
Og0(x,§) = (1 - p(€))Falx, &) - BZ R

(see Section [1] for the definition of <), then using the assumption on the symbol a(z, &),

©8)(¢)0f a(x, €)

we arrive at

(3.16) 2(101=mi |92 g (2, 27€)| < TIn(a) | gaj(§) + Y hai(€)
B=<a
where
(3.17) Ga i (€) 1= 2U=mi (1 4 27 g ym=lel |1 — p(27g)|
and
(3.18) he(6) 1= 2001 (1 4+ 27 gl ymoIAl o= 2ig) 5 < ar

On supp ga,; we have 1 < 27 |¢|, which implies that:

e if m — |a] > 0, then

190 (O)] < (1+ ol )20 (227 1o 5 Jem 1ol
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e if m — |a] <0, then
1904 (O] < (1+ |pll)20 ™7 (27 [yl < fgmlel.
Thus in all cases we obtain
(3.19) 1904 (O S e[, Viez

Similar to the function hg ;, on supp hg; we have 1 < 27 [£] < 3/2 (i.e., |¢| ~ 277) which
implies, both,

ollal=m)j < max(1, (3/2)\oc|—m) wm—\al7 1+ 97 w)m—lﬁ\ < max(gm—\b’I’ (5/2)m—|5\)
and

(3.20) hs ()] S 1™, viez.

Now, we are able to estimate ||xr ;. Indeed, by (3.19) and (3.20) we obtain

ey STI(e) D 3 //2<5|<3/2 ’7(77)(5)‘ g1 ag

(3.21) lul<M atn=2p "1
SIy(a), VK eZ" Vjel.

We now turn to the estimate of [|[xx ;]p|| zn/». From (3.15), we write (for all K € Z"
p,q
and all k,j € Z)

QrXx (T Z Z M (2“)( 1)Iu|2(\a|—m)j

I oln!
ioht atmman (M = et aln!

x / I 0 (6)Qu(0g 0, 276)) .

Again, on supp~" and because p,q > 1, it follows

A , < (laf=m)j ag(. 9i .
(3.22) Ixr.slPll o < >y 2 /1/2<|£<3/2 |[0g0(-, 2 5)]79\\3%9 dé.

lul<M a=2p
Consequently, as in (3.16]), the assumption a(z,§) € ST dN(LOO N B; {Ip ) yields

0= | [Dg0(, 2P| o S Tn(a) | 903 (€) + Y s s(6) | -
B=<a

see and (| - 3.18) for definitions of g, ;j and hg j respectively. Then by inserting (3.19)
and into , and by using the fact that 1/2 < [£| < 3/2, we get

(3.23) IxrlPll g S (), VE €27, Vj €L
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Now, the last inequality together with (3.21) yield that the sequence (xx ;) ez satisfies
the assumption (iii) of Lemma [3.2] uniformly with respect to K.

Substep 2.2: Estimate of H[G(m,D)f]pHBg’q for f € Byi™. Since Ok (see (3.12)) is
defined on R™ \ {0}, then by considering the intersection of the supports, i.e.,

2 e)y(@2 ) =0 if£<—3orl>2,

it holds that
OK(277¢) =Ox(279¢) Y y(2777%), VEeRn

—2<e<1
The assumption (|1.2]), Proposition and formula (2.1)) (ie., f=>] ez Qj f) yield
Oxk@277D)f= Y ("FlOx(2)* Q.

—2<¢<1

We continue, since the function & — O (277¢)y(2777%) has a support in the compact
annulus (1/8)27 < |¢| < 327 (here we note that the assumption (i) of Lemma
is satisfied), then Lemma can be applied to the elementary symbol defined by the

formula (3.13)), and it follows

e, D)ol 5,

(3.24) 1/q

STn(a) > Z(gj(8+m) H(z(j—e)nf—l@K(Qa‘—z-))*ijHp>q

—2<U<1 | jez

Then the first observation is that by the Young inequality we have
(3.25) H(QU‘—@"f—l@K(y—f 3) % ijH S |F el 1Qifll,, i€z VK ez
P

The second observation that for an even natural number Ny, we can still write

n

FlOx(e) = (2m) (14 )02 [ e a0 (6 de,
which, by the Cauchy-Schwartz inequality and Parseval equality, yields that

1/2 ) 1/2
lFonl, < ([ asfyea) ([ fu-agene]
(3.26) R 1/4<|€|<7/4

< sup @g?)H , VKeZ"

la|<No

with the condition Ny > n/2. Then we put

(3.27) No:= 2N, with le[g]ﬂ.
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We still get, from (3.12]),
OR©] s @+ KPS K FNE|, VK ez, veeR™
Btn=a
But, if |3] < Ny we have |K|1°1 (1 + |K|?)~N/2 < (1 +|K|»)®0=N)/2 for all K € Z", which
implies that

(3.28) sup
la[<No

By inserting (3.28) into (3.26]) and (3.25]) into (3.24)), we obtain that the right-hand side
of (3.24) is bounded by

@ﬁ?)HOO (1+|K)No-M/2 K ezn,

(1 + K)o a) [T gy

where the constant c is independent of K and a(x, ). We now turn to 6(z, D) f, see (3.14]).
We have

I0(z, D) flpll g, S > N9k, D)flpls,
Kezn

ST (@) [1flpllggem D (L4 KB,
Kezn

(3.29)

Clearly the last series converges if N — Ny > n, i.e., N > n + 2[n/4] + 2 since the
condition (3.27)). Then it suffices to choose N as an even integer satisfying

e,

and we deduce that ||[0(x, D) f]p||zs is bounded by clly(a) ||[f]p|| gs+m-
p,q . p,q
Substep 2.3: Proof of 0(x,D)f € S for f € E;j}m. Let ¢ € S§. We put Q; :=

7(277D), where the function ¥ is defined in the beginning of Step 1, and write ¢ =
S()(,D + 2321 QijgO. It holds

(0, D)f. )] = [(So(0(a, D)F),0) + D (Qs(6(, D)), Qse0)
j>1
(3:30) < 11800z, D))l llelly + D 12500, DY), || Qs
Jj=1

< IS0(6(x. D))l Il + D 2777 [1Qs6a, DI, [ Qe
Jj=1
First, we have

(3.31) 1S0(6(z. D) )l S D 27"/P7 (272 1|Q;(6(z, D) f)I],)-

J<0
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Secondly, by Proposition H@jcp ) < 277L¢ (o) for any L € N and some M € N, then
if 0 < s < n/p, we choose an integer L satisfying L > n/p — s, and obtain

[(0(z, D)f, )| S <Sup 25 | Qr (6 (=, D)f)\|p> > 20 g N ai/pmenl)
keZ

J<0 j>1
< 0. D) flpls,
< 6. D)1l

If s=n/p and ¢ = 1, then in (3.30) we use H@jgpul S lelly for all 5 > 1, and from (3.31))
it also holds

0, D), )l S el 0Cz, DY flpl gy < M110(2, DY oo

Substep 2.4: Proof of (xz,D)f € Co for f € Bs+m Let o € S and A > 0.
e The case s < n/p. As in the previous substep and using the same notations, it holds
that

(6, D)f(-/A) %)l

<ZHQ] 0(x fC/N) OOHQJSOH
JEZ
<327 1Q(0. D) (- I, 2 | Qs
JEZL
< 6 DYFC Nlplgy 207 Qe
JEZ

< 6. D)FC NIplsy | Curle) S0 g, S |

i1 <0

for some integer L > n/p — s and some M € N. Consequently, Proposition gives

(0, D)F(- /), ) S NP2 N [flpll gy (Gar(2) + lllly)-

Then the result follows by taking A — 0.

e The case s =n/p and ¢ = 1. The embedding B;L/lp — 32071 implies that [0(x, D) f]p
belongs to Bgo,l' Then we have .7 [|Q;(0(x, D)f)|l,, < co. Now, let € > 0 be fixed
arbitrarily. We write, for a J € N,

[0, DYF(- /X))l S D 11Qi(8(, DY f)llo + D HQ;(8(z, D)F)(- /A), )]
li1>J lil<J
Choosing J such that the first term (i.e., with Z|j|>J --+) is less than e. For the second
term (i.e., with ngJ --+), we apply the following lemma which is proved in |2, p. 46]
or |4, Proposition 4.4]:
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Lemma 3.4. If a function h € Lo satisfies that Supp/ﬁ is a compact set in R™\ {0}, then
h € 50.

Thus im0 3 j;<; (Q;(0(z, D) f)(- /A), )| = 0.
Summarizing, from Substep 2.1 through 2.4, we have proved that the operator (x, D)

is bounded from Egzm into E;,q and the proof of (ii) is complete.

Step 3: Proof of (iii). Arguing so as in Step 1 (i.e., (3.7)—(3.14)) to decompose 7(z,£)
as an elementary symbol. We introduce a radial and positive function p € D, supported
by the ball |{] < 7/4 and satisfying pp = p. We also introduce a 2m-periodic function
denoted by

v(z, &) == Z T(z,€§ — 27K).

Keznr

Since 7(z,& — 21 K)p(§) = 0 if K # 0, then from the Fourier expansion of v, we have

(3.2) o(a, 7€) = (2, €) =€) 3 Crel)e’™ €.

Keznr

If £ € R" and K € Z" satisfy both [ — 27 K| < 3/2 and —7w < & < m, £ =1,...,n, then
K =0 and v(x,§) = 7(x, ). This yields

Ck(z) = (2n)™ /7;/7; e Ey(z,6)dE = (2m) ™™ /Rn e B (x,€) de.

We continue, for an even natural number N € N (N := 2M), which will be chosen later

on, we set

xiele) = (2m) (1 K VCrc(a),
o) = [ e A (e ) .

Consequently, as in (3.14]) and from (3.32), we arrive at the following expression

(3.33) T(x, D)f(x) = Y (1+|KP) " Px(2)F (5] (= + K),
Kezn
wherein Lemma [3.3| can be applied with h := yg and g := f_l(ﬁf)(~ + K):
ohelon Bn/p ™ i.e., estimate of || xx|lo + ||[XK]77||Bn/p_m. This can be done as
the estimate of (xk,j)jez in Substep 2.1. Indeed, instead of (3.21)) and (3.22)), we still get

Pl STIx(@ 32 30 [ @[+ ey a5

|u|<M a+n=2p
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for all K € Z", and

il s 32 3 [ e Olel gy

|u|<M a=2p " 1€1<3/2
STn(a) Y Z/ (1+ [ehmlelae
<M a=2p " [€1<3/2
< Oy (a)

for all K € Z", respectively.
egc(C™nN E;ﬂc}m. We first see the estimate of H “15) x f(- + K)] ’p‘ Brtm: By the
Young inequality it holds HQj ( —175) * f) Hp < H]—" pH HQ]fH Consequently by using

the fact that || || 5s+m is translation invariant, we obtain
p.q

[[(F~2) = f(- + K)lp|

Byt = H[( @ *fP\ Bstm S ]PHB;ﬁ,;m-

Secondly, we prove that g € Co. Indeed, we apply the following assertion: If f € 5’0,
p €S and a € R” then

(FAT'O) =a),0) = (FOAT()) e +Aa)) =0 as A —0

since (- 4+ Aa) still belongs to S. Thus by a simple calculation, for all ¢ € S, we have

(AT, 0) = (FOTIO) F 1 oxoa (K = ATH())) - with oy = o(A()),

and (g(A™'(-)), ) — 0 as A — 0 since F~1px ¢y (K —A7(-)) € S. Finally it is clear
that g is a C°° function.
Applying now Lemma to the expression (3.33)), and choosing N an even integer

greater than n, we obtain

lire, D)l < T (@) (1l sgim 30 (U [K)7N2 < Tv(a) [l syt
Kezn

We note that the proof of, both, 7(z,D)f € & and 7(x,D)f € Cp for all f € B5+m i
similar to the case of the operator 6(x, D), see Substeps 2.3 and 2.4. Hence the proof of
Proposition is complete. ]

Proof of Theorem [L1] This is similar to the proofs of Proposition [3.1fi) and (ii) where we
do not need of the decomposition a(x,§) = 7(x, &) +0(x, &), but we take 0(x,&) := a(z,§),
e.g., instead of (3.5) we directly write

0;(x,€) == 27y(27VI¢)a(x,227Vl¢), jeZ, V€ €R",



460 Saliha Meliani and Madani Moussai

and obtain the functions Vg (z,&) and the decomposition a(z,&) = > xezm Vi (,€) as in
(3.13) and (3.14)), respectively. In the same way of (3.21)) and (3.23) we have

Icieslloe + Nacalel gy S Tivta), VE €27, ¥j €2

The rest of the proof is unchanged. O
Proof of Theorem [1.2] This follows from Proposition [3.1 O

4. Some generalizations and remarks

We begin by an extension on the symbol classes: For (u,n) € R?, (M,N) € N? and a
Banach space E, we introduce the classes S5 " (E) and S5 (E) of functions a(z, €)
in C*°(R" x R™\ {0}) and in C*°(R™ x R"), respectively. These classes are defined (as

Fréchet spaces) by the seminorms

’f‘—m+u|a|—nlﬁ\ ’

Mxar(a) = sup  sup ogoa(,9)|| .
|a|§]\1\4f ¢eR™\{0} E

18I<

Iyar(a) = sup sup (1 + |¢])~mFrlal=ml8l ‘
|| <N £ER™
|BI<M

ogofa(-.9)|| .

respectively. Then Theorems and [I.2] can be generalized in the following sense:

Theorem 4.1. Let s, p, q, m, N be real numbers given as in Theorem respec-
tively). Let M € N, n € R and u > 1. If a symbol a(x,&) belongs to S,ThN’M(LOO N Bg,/]p)
('S;T;,N’M(LOQ N B;,{]p N Bg,{]p_m), respectively), then the ps.d.o a(z,D) takes the space
Byt™ into By, ,, with an estimate similar to (L3)) wherein Ty (a) is replaced by Ty ar(a)
(M (a), respectively).

Proof. We only check the similar estimates of functions g, j(§) and hg () given in (3.17)
and (3.18)), respectively, which must be replaced by

9aj(€) =200 (L 2T jg)m el L — p(27€)], Ja| < N

and
B (€) 1= 200173 (1 4+ 23 gy

PO, Jal SN, v<a
Owing to the support of 1 — p(27¢) we have 1 < 27|¢|, then as in (3.19)) we obtain:
e if m — pi|a| > 0, then

190, (€)] < (14 [|pll )20~ (2. 27 |¢]ym—sle]
< g(=wlalj |gm—ple

< Jgmled,



Boundedness of Pseudodifferential Operators on Realized Homogeneous Besov Spaces 461

o if m — p|al <0, then

190, ()] < (1 + ||p| o )20Iel=m)3 (27 ¢ |ym—Hled
< o(1=p)lalj |£|m—,u|a|

< Jgmled,

and in all cases we obtain |g,;(£)] < |£|m_|a‘. Similarly for h, (&) (here as in (3.20))
since on the support of p(®=)(27¢) we have |£| ~ 277, Consequently, the argument proof
of Theorem [4.1] remains completely similar to the proofs of Theorems [I.1] and O

Now, we see an extension on the realized spaces: The condition (1.1]) can be extended

in the following sense. For
n + n

(4.1) s——€eR"\N, or s——eN\{0} and ¢=1,
p p

we denote by v the integer > 1 defined by s —n/p <v <s—n/p+1,ie.,

[s—n/p|+1 ifs—n/peRT\N,
s—mn/p if s —n/pe N\ {0} and ¢ =1.

(4.2) V=

Then the realized homogeneous Besov space E;,q in this case is defined as the following,
cf., [2, p. 47] or 18] p. 113] or [11, p. 150]:

Definition 4.2. Assume that (4.1)) holds. The space Elf)’q is the set of all f € S’ satisfying
the following four conditions: (i) [f]p € B;q, (ii) f is of class C¥~1, (iii) f(®)(0) = 0 for
la] < v, (iv) @ e Cy for |a| = v.

We have the following result:

Theorem 4.3. Let s > 0 and 1 < p < co. Assume that (4.1) holds. Let N be an even

natural number satisfying N > 3n/2 4+ 2. Let m be a real number satisfying

(4.3) s+m—ﬁeR+\N, or s+m—Q€N\{O} and q=1.
p p

If a symbol a(x, &) belongs to S%N(Loo N B}Z{]p), then the ps.d.o a(xz, D) takes the space

Ef):zm into E;’;’q. Moreover, an estimate similar to (1.3) is obtained for all f € E;"Zm.

The proof is similar to that of Theorem We give a sketchy proof. According
to Propositions and Lemma [3.2) we have the following assertions, in which the
two propositions below are proved in |11, Proposition 2.17] and [11 Theorems 1.2, 4.5,

Section 4.2], respectively.
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Proposition 4.4. Let s > 0 and 1 < p < co. Assume that (4.1) holds. Let b > 0. Let

(uj)jez be a sequence in S satisfying the following two conditions:

e U; is supported by the ball |£] < b27,

: 1/q
o A= (T5en2 ull,)) < oo

We put wj(z) = u;(®) — X 1<p-1 u§~a)(0)xa/a! for all j € Z and all z € R™, (v is
defined in (4.2))). Then the series Zjez wj converges in &' to a limit w which satisfies
|[w]p|l 53 < cA, and where ¢ depends only onn, s, p, q and b.

p,q

Proposition 4.5. Assume that (4.1) holds. If u € Bf,,q, we put vj(z) = Qju(r) —

Z|Q|SV_1(qu)(a)(0)xa/a! forallj € Z and allx € R". Then the series ) ;.7 v; converges
inS'. Weput f =3 ;zv;. Then 7@ (la| = v) belongs to Cy, and f is the unique
tempered distribution satisfying [ulp = f in S.,.

Remark 4.6. As in Remark owing to conditions (4.1)) and (4.3)), Proposition

guarantees that the two spaces E;,q and E;ﬁgm are well-defined as subspaces of S’.

Lemma 4.7. Let s >0 and 1 < p < co. Assume that (4.1)) holds. Let b > 0. Let (uj)jcz
and (x;)jez be sequences in S’ satisfying the following three conditions:

(i) @; is supported by the ball |€| < b27,

. js 4 1/q

(i) A= (e lusl,)7) " < ox,

(iii) B = SUPjeZ (HX]'HOO + ”[Xj]PHB;ﬁ/qp) < Q0.

We put zj(x) == xjuj(z) — Z\a|§u—1(Xjuj)(a) (0)x*/a! for all j € Z and all x € R™. Then
the series 3 ez 2j converges in S’ to a limit z which satisfies ||[z]p|| 3, < cAB, and where
p.q

¢ depends only on n, s, p, q and b.

Proof. This can be done as the proof of Lemma [3.2] we only give a little change in
definitions of V and W of (3.2). We put ZjeZ zj = ZjeZ Vi + > kez Wi, where

Vi(z) == uj(2)Sjxj(a) — > <Uj5m>(°‘)<0>§’
lo|<v—1
Wi (x) = ZU](fE)QkX](x) - Z Z(uijXj)(a)(o)%O;’

i<k la|<v—1j<k

then instead of Proposition we apply Proposition to the sequences (V});jez and
(Wk)kez. We omit the details. O
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Proof of Theorem [£.3] Steps 1 and 2 of the proof of Proposition [3.1] are globally un-
changed, we briefly outline. Since ||g[| 3s = 0 for all g € Pu, then
p,q

llae, D)flpllg,, = || [al@. D)f = ¥ (ala, D)) (0)=
7 lo|<v—1 ’ P Bﬁ,q

Using notations of the proof of Proposition then it reduces to estimate ||[U(f)]p| g
p,q

where

xO&

U(f) = 3 | Ok D)f@@) = 32 Ikl D)) (0)

Kezn lo|<v—1
We argue so as in , then it suffices to apply Lemma to the elementary symbol
Vg (x,€), see (3.13)-(3.14), we obtain the correct bound. To prove that U(f) € &’ and
U(f)® e Cy for la] = v and all f € E;fqm, we apply the same method used in proofs of
Substeps 2.3 and 2.4 of Proposition [3.1 O

al

Remark 4.8. Theorem holds also for symbols of the class Sm;?N’M(LOO N By ép ) with
N >3n/2+2 (N is an even integer), M € N, p € R and p > 1, cf., Theorem

Remark 4.9. Tt seems clearly that we can replace Besov spaces by Triebel-Lizorkin spaces

in all the above results, see [4,/11].

Remark 4.10. It would be interesting to extend the boundedness of the ps.d.o on localized
of realized homogeneous Besov spaces (Ef,’q) ¢,(zn), 1 <7 < 0o, which is defined as the set
of f € 8§ such that

1/r
M@Mwm:(ZHw-KMM%J <o,

Kezn

where 9 is a C*° function supported by the ball [{| < R, with R > /n, and satisfies that
S gegn V(€ —K) =1 for all £ € R”, cf., [12)].
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