
TAIWANESE JOURNAL OF MATHEMATICS

Vol. 21, No. 2, pp. 363–383, April 2017

DOI: 10.11650/tjm/7784

This paper is available online at http://journal.tms.org.tw
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Abstract. This paper is dedicated to studying the following Schrödinger-Poisson sys-

tem −∆u+ V (x)u+K(x)φ(x)u = f(x, u), x ∈ R3,

−∆φ = K(x)u2, x ∈ R3,

where V (x), K(x) and f(x, u) are periodic or asymptotically periodic in x. We use the

non-Nehari manifold approach to establish the existence of the Nehari type ground

state solutions in two cases: the periodic one and the asymptotically periodic case, by

introducing weaker conditions lim|t|→∞

(∫ t

0
f(x, s) ds

)
/|t|3 =∞ uniformly in x ∈ R3

and[
f(x, τ)

τ3
− f(x, tτ)

(tτ)3

]
sign(1− t) + θ0V (x)

|1− t2|
(tτ)2

≥ 0, ∀x ∈ R3, t > 0, τ 6= 0

with constant θ0 ∈ (0, 1), instead of lim|t|→∞

(∫ t

0
f(x, s) ds

)
/|t|4 = ∞ uniformly in

x ∈ R3 and the usual Nehari-type monotonic condition on f(x, t)/|t|3.

1. Introduction

In this paper we are concerned with the existence of ground state solutions for the nonlinear

system

(SP)

−4u+ V (x)u+K(x)φ(x)u = f(x, u), x ∈ R3,

−4φ = K(x)u2, x ∈ R3,

where V,K : R3 → R and f : R3 × R→ R satisfy the following basic assumptions, respec-

tively

(V0) V ∈ L∞(R3) and infx∈R3 V (x) > 0;
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(K0) K ∈ L∞(R3), 0 ≤ K(x) ≤ K∞, ∀x ∈ R3 and K(x) 6≡ 0;

(F0) f ∈ C(R3 × R,R), f(x, t) = o(|t|) as t → 0, uniformly in x ∈ R3, and there exist

constants C0 > 0 and κ ∈ (2, 6) such that

|f(x, t)| ≤ C0

(
1 + |t|κ−1

)
, ∀ (x, t) ∈ R3 × R.

Under assumption (V0), the set

E =

{
u ∈ H1(R3) :

∫
R3

(
|∇u|2 + V (x)u2

)
dx < +∞

}
,

is a Hilbert space equipped with the norm

‖u‖ =

(∫
R3

(
|∇u|2 + V (x)u2

)
dx

)1/2

.

It is well known that the Poisson equation is solved by using Lax-Milgram theorem. Indeed,

as we shall see in Section 2, for every u ∈ E, a unique φu ∈ D1,2(R3) is obtained, such

that −4φ = K(x)u2 and so (SP) can be reduced to a single equation with a non-local

term

(1.1) −4u+ V (x)u+K(x)φu(x)u = f(x, u).

Moreover, (1.1) is variational and its solutions are the critical points of the functional Φ

defined on E by

(1.2) Φ(u) =
1

2

∫
R3

(
|∇u|2 + V (x)u2

)
dx+

1

4

∫
R3

K(x)φu(x)u2 dx−
∫
R3

F (x, u) dx,

where F (x, t) =
∫ t

0 f(x, s) ds. Define

(1.3) N :=
{
u ∈ E :

〈
Φ′(u), u

〉
= 0, u 6= 0

}
,

which is the Nehari mainfold of Φ.

System (SP), also known as the nonlinear Schrödinger-Maxwell system, has a strong

physical meaning because it appears in quantum mechanical models (see e.g., [5, 6, 15])

and in semiconductor theory [4, 19, 21]. For more details in the physical aspects, we refer

the readers to [3, 4]. Note that when φ ≡ 0, (SP) reduces to the well-known Schrödinger

equation, which has been studied extensively in the last two decades, see for example

[9–11,18,22,23,30–33] and the references therein.

In recent years, there have been enormous results on existence, nonexistence and mul-

tiplicity of solutions for systems like (SP) under various hypotheses on the potential and

the nonlinearities. The greatest part of the literature focuses on the study of Problem (SP)

with V (x) ≡ 1 or V (x) = V (|x|), and f(x, u) = |u|p−1 u or f(x, u) = a(x) |u|p−1 u with
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p ∈ (3, 5), see e.g., [1, 2, 7, 12, 24, 35]. Moreover, in [2, 7, 35], the existence of ground state

solutions was obtained in several situations, where V (x) ≡ 1 or lim|x|→∞ V (x) = 1, and

f(x, u) = |u|p−1 u with p ∈ (3, 5). We refer to [8, 13, 14, 26] and the references therein for

other cases.

When the potential and the nonlinearity are periodic, that is V and f satisfy

(V1) V ∈ C(R3, (0,∞)) and V (x) is 1-periodic in x1, x2 and x3;

(F1) f(x, t) is 1-periodic in x1, x2 and x3;

as far as we know, there are only two papers [27,35] dealing with the existence of ground

state solutions to (SP) with K ≡ 1. Indeed, using the Nehari manifold approach, Zhao

and Zhao [35] proved an existence theorem in the case when f ∈ C1 and f , fu satisfy some

suitable conditions. When only f ∈ C, because N may not be a manifold, the arguments

based on the Nehari manifold approach become invalid. Sun and Ma [27] adopted a

technique developed in [28,29] to prove that (SP) has a ground solution if V and f satisfy

(V1), (F0), (F1) and the following two assumptions:

(Ne) f(x, t)/|t|3 is increasing in t on R \ {0} for every x ∈ R3;

(QF) lim|t|→∞ F (x, t)/|t|4 =∞ uniformly in x ∈ R3.

We point out that assumption (Ne) is very crucial in [27]. In fact, the starting point of

their approach is to show that for each u ∈ E \{0}, the Nehari manifold N intersects E in

exactly one point m̂(u) = tuu with tu > 0. The uniqueness of m̂(u) enables one to define

a map u 7→ m̂(u), which is important in the remaining proof. If t 7→ f(x, t)/|t|3 is not

strictly increasing, then m̂(u) may not be unique and their arguments become invalid. This

paper intends to address this problem caused by the dropping of this “strictly increasing”

condition on f . Motivated by the works [27, 35], we will use the non-Nehari manifold

approach developed by Tang [32,33] to generalize and improve the results obtained in [27]

by relaxing (Ne) and (QF) to the following assumptions:

(F2) there exists θ0 ∈ (0, 1) such that

(1.4)[
f(x, τ)

τ3
− f(x, tτ)

(tτ)3

]
sign(1− t) + θ0V (x)

∣∣1− t2∣∣
(tτ)2

≥ 0, ∀x ∈ R3, t > 0, τ 6= 0

and

(F3) lim|t|→∞ F (x, t)/|t|3 =∞ uniformly in x ∈ R3,

respectively. Unlike the Nahari manifold method and the one used in [27], our approach

lies on finding a minimizing Cerami sequence for Φ outside N by using the diagonal

method, see Lemma 2.5.
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Obviously, (1.4) is equivalent to


f(x,τ)
τ3
− f(x,tτ)

(tτ)3
+ θ0V (x) 1−t2

(tτ)2
≥ 0, 0 < t ≤ 1,

f(x,tτ)
(tτ)3

− f(x,τ)
τ3

+ θ0V (x) t
2−1

(tτ)2
≥ 0, t > 1,

∀x ∈ R3, τ 6= 0,

⇐⇒


f(x,τ)

|τ |3 −
f(x,tτ)

|tτ |3 + θ0V (x)
|1−t2|
(tτ)2

≥ 0, τ ≥ tτ,
f(x,tτ)

|tτ |3 −
f(x,τ)

|τ |3 + θ0V (x)
|1−t2|
(tτ)2

≥ 0, τ ≤ tτ,
∀x ∈ R3, t > 0, τ 6= 0.(1.5)

Since V (x) > 0 for all x ∈ R3, it follows from (1.5) that (F2) is much weaker than (Ne).

Furthermore, there are many functions satisfying (F1)–(F3), but not (Ne). We give the

following example. For simplicity, we assume that V (x) = 1.

Example 1.1. f(x, τ) = b(x) |τ |3 τ+|τ | τ/2 for all (x, τ) ∈ R3×R, where b(x) is 1-periodic

in x1, x2 and x3 and infR3 b ≥ 1.

It is easy to see that f satisfies (F1) and (F3), but not satisfy (Ne). Next, we show

that f satisfies (F2). By elementary computations, one has

[
f(x, τ)

τ3
− f(x, tτ)

(tτ)3

]
sign(1− t) + θ0V (x)

∣∣1− t2∣∣
(tτ)2

= b(x) |1− t| |τ | − |1− t|
2t |τ |

+ θ0

∣∣1− t2∣∣
(tτ)2

=
|1− t|
(tτ)2

[
b(x) |τ |3 t2 − 1

2
|τ | t+ θ0(1 + t)

]
, ∀x ∈ R3, t > 0, τ 6= 0.

(1.6)

Note that|τ |
3 t2 − 1

2 |τ | t+ θ0(1 + t) ≥
(
θ0 − 1

2

)
t, |τ | ≤ 1, ∀ t > 0,

|τ |3 t2 − 1
2 |τ | t+ θ0(1 + t) ≥

(
t |τ | − 1

4

)2
+ θ0 − 1

16 , |τ | > 1, ∀ t > 0,

then (1.6) implies that f satisfies (1.4) with θ0 = 1/2.

In addition, (F3) is much weaker than (QF). Here, we give a nonlinear function sat-

isfying assumptions (F1)–(F3), but they do not satisfy (Ne) and (QF). We assume that

V (x) = 1.

Example 1.2. f(x, τ) = b(x)τ3 − |τ |3/2 τ + |τ | τ for all (x, τ) ∈ R3 × R, where b(x) is

1-periodic in x1, x2 and x3 and infR3 b > 0.

Clearly, f satisfies (F1) and (F3), but does not satisfy (Ne) and (QF). Next, we show
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that f satisfies (F2). It is easy to check that[
f(x, τ)

τ3
− f(x, tτ)

(tτ)3

]
sign(1− t) + θ0V (x)

∣∣1− t2∣∣
(tτ)2

=

∣∣1− t1/2∣∣
|tτ |1/2

− |1− t|
|tτ |

+ θ0

∣∣1− t2∣∣
(tτ)2

=

∣∣1− t1/2∣∣
(tτ)2

[
|tτ |3/2 − (1 + t1/2) |tτ |+ θ0(1 + t1/2)(1 + t)

]
:=

∣∣1− t1/2∣∣
(tτ)2

h(t, |τ |), ∀x ∈ R3, t > 0, τ 6= 0.

(1.7)

By elementary computations, for any t > 0, we have

h(t, |τ |) ≥ min
τ 6=0

h(t, |τ |) = h(t, τ0) with τ0 =
4(1 + t1/2)2

9t
,

and so

h(t, |τ |) ≥ − 4

27
(1 + t1/2)3 + θ0(1 + t1/2)(1 + t)

= (1 + t1/2)

[(
θ0 −

4

27

)
t− 8

27
t1/2 +

(
θ0 −

4

27

)]
= (1 + t1/2)

27θ0 − 4

27

[(
t1/2 − 4

27θ0 − 4

)2

+ 1− 16

(27θ0 − 4)2

]
.

(1.8)

Hence, (1.7) and (1.8) imply that f satisfies (1.4) with θ0 = 1/3.

Before presenting our theorems, in addition to (V0), (V1), (K0) and (F0)–(F3), we

introduce the following assumption:

(K1) K ∈ C(R3,R+) and K(x) is 1-periodic in x1, x2 and x3.

Now, we state the first result of this paper. In the periodic case, we establish the

following theorem.

Theorem 1.3. Assume that V , K and f satisfy (V1), (K1) and (F0)–(F3). Then Prob-

lem (SP) has a solution u0 ∈ E such that Φ(u0) = infN Φ > 0.

Next, we assume that V (x) is asymptotically periodic. In this case, the functional Φ

loses the Z3-translation invariance. For this reason, many effective methods for periodic

problems cannot be applied to asymptotically periodic ones. To the best of our knowledge,

there are no results on the existence of ground state solutions for (SP) when V (x) is

asymptotically periodic. In this paper, we present new tricks to overcome the difficulties

caused by the dropping of periodicity of V (x).

Instead of (V1), (K1) and (F1), we make the following assumptions.
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(V2) V (x) = V0(x) + V1(x), V0, V1 ∈ C(R3,R), V0(x) is 1-periodic in x1, x2 and x3, and

−V0(x) < V1(x) ≤ 0 for x ∈ R3, lim|x|→∞ V1(x) = 0;

(K2) K(x) = K0(x) + K1(x), K0,K1 ∈ C(R3,R), K0(x) is 1-periodic in x1, x2 and x3,

and −K0(x) ≤ K1(x) ≤ 0 for x ∈ R3, lim|x|→∞K1(x) = 0;

(F1′) f(x, t) = f0(x, t) + f1(x, t), f0 ∈ C(R3×R,R), f0(x, t) is 1-periodic in x1, x2 and x3,

and for any x ∈ R3, t > 0 and τ 6= 0

(1.9)

[
f0(x, τ)

τ3
− f0(x, tτ)

(tτ)3

]
sign(1− t) + V0(x)

∣∣1− t2∣∣
(tτ)2

≥ 0;

f1 ∈ C(R3 × R,R) satisfies that

−V1(x)t2 + 2F1(x, t) ≥ 0, |f1(x, t)| ≤ a(x)
(
|t|+ |t|κ0−1

)
,

where F1(x, t) =
∫ t

0 f1(x, s) ds, κ0 ∈ (2, 6) and a ∈ C(R3,R+) with lim|x|→∞ a(x) = 0.

We are now in a position to state the second result of this paper.

Theorem 1.4. Assume that V , K and f satisfy (V2), (K2), (F0), (F1′), (F2) and (F3).

Then Problem (SP) has a solution u0 ∈ E such that Φ(u0) = infN Φ > 0.

The paper is organized as follows. In Section 2, we introduce some notations and

preliminaries. We complete the proofs of Theorems 1.3 and 1.4 in Sections 3 and 4

respectively.

Throughout this paper, we denote the norm of Ls(R3) by ‖u‖s =
(∫

R3 |u|s dx
)1/s

for

s ≥ 2, Br(x) =
{
y ∈ R3 : |y − x| < r

}
, and positive constants possibly different in different

places, by C1, C2, . . ..

2. Notations and preliminaries

Hereafter, H1(R3) is the usual Sobolev space with the standard scalar product and norm

(u, v)H1 =

∫
R3

(∇u∇v + uv) dx, ‖u‖2H1 =

∫
R3

(
|∇u|2 + u2

)
dx,

and

D1,2(R3) =
{
u ∈ L6(R3) : ∇u ∈ L2(R3)

}
equipped with the norm defined by

‖u‖2D1,2 =

∫
R3

|∇u|2 dx.
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It is easy to show that (SP) can be reduced to a single equation with a non-local term.

Namely, for any Ku2 ∈ L1
loc(R3) such that∫

R3

∫
R3

u2(x)u2(y)

|x− y|
dxdy <∞,

the distributional solution

(2.1) φu(x) =

∫
R3

K(y)u2(y)

|x− y|
dy =

1

|x|
∗Ku2

of the Poisson equation

−4φ = K(x)u2, x ∈ R3

belongs to D1,2(R3) and is the unique weak solution in D1,2(R3) (see e.g., [25] for more

details), and ∫
R3

∇φu∇v dx =

∫
R3

K(x)u2v dx, ∀ v ∈ H1(R3),(2.2) ∫
R3

∫
R3

K(x)K(y)

|x− y|
u2(x)u2(y) dxdy =

∫
R3

K(x)φu(x)u2 dx.(2.3)

Moreover, φu(x) > 0 when u 6= 0, because K does (see (K0)). By using Hardy-Littlewood-

Sobolev inequality (see [16] or [17, p. 98]), we have the following inequality:

(2.4)

∫
R3

∫
R3

|u(x)v(y)|
|x− y|

dxdy ≤ 8 3
√

2

3 3
√
π
‖u‖6/5 ‖v‖6/5 , u, v ∈ L6/5(R3).

Formally, the solutions of (SP) are then the critical points of the reduced functional (1.2).

Indeed, (V0), (K0), (F0) and (2.4) imply that Φ is a well-defined of class C1 functional,

and that

(2.5)
〈
Φ′(u), v

〉
=

∫
R3

(∇u∇v + V (x)uv) dx+

∫
R3

[K(x)φu(x)u− f(x, u)] v dx.

Hence if u ∈ E is a critical point of Φ , then the pair (u, φu), with φu as in (2.1), is a

solution of (SP).

Lemma 2.1. Under assumptions (V0), (K0), (F0) and (F2),

(2.6) Φ(u) ≥ Φ(tu) +
1− t4

4

〈
Φ′(u), u

〉
+

(1− θ0)(1− t2)2

4
‖u‖2 , ∀u ∈ E, t ≥ 0.

Proof. For any x ∈ R3, t ≥ 0, τ 6= 0, (F2) yields

1− t4

4
τf(x, τ) + F (x, tτ)− F (x, τ) +

θ0V (x)

4
(1− t2)2τ2

=

∫ 1

t

[
f(x, τ)

τ3
− f(x, sτ)

(sτ)3
+ θ0V (x)

(1− s2)

(sτ)2

]
s3τ4 ds

≥ 0.

(2.7)



370 Sitong Chen and Xianhua Tang

Note that

(2.8) Φ(u) =
1

2
‖u‖2 +

1

4

∫
R3

K(x)φu(x)u2 dx−
∫
R3

F (x, u) dx

and

(2.9)
〈
Φ′(u), u

〉
= ‖u‖2 +

∫
R3

K(x)φu(x)u2 dx−
∫
R3

f(x, u)udx.

Thus, by (2.7), (2.8) and (2.9), one has

Φ(u)− Φ(tu) =
1− t2

2
‖u‖2 +

1− t4

4

∫
R3

K(x)φu(x)u2 dx+

∫
R3

[F (x, tu)− F (x, u)] dx

=
1− t4

4

〈
Φ′(u), u

〉
+

(1− t2)2

4
‖u‖2

+

∫
R3

[
1− t4

4
f(x, u)u+ F (x, tu)− F (x, u)

]
dx

≥ 1− t4

4

〈
Φ′(u), u

〉
+

(1− θ0)(1− t2)2

4
‖u‖2

+

∫
R3

[
1− t4

4
f(x, u)u+ F (x, tu)− F (x, u) +

θ0V (x)

4
(1− t2)2u2

]
dx

≥ 1− t4

4

〈
Φ′(u), u

〉
+

(1− θ0)(1− t2)2

4
‖u‖2 , t ≥ 0.

This shows that (2.6) holds.

Corollary 2.2. Under assumptions (V0), (K0), (F0) and (F2), for u ∈ N

(2.10) Φ(u) = max
t≥0

Φ(tu).

Unlike the super-cubic case (i.e., f satisfies (QF)), to show N 6= ∅ in our situation, we

have to overcome the competing effect of the nonlocal term. To this end, we define a set

Λ as follows:

Λ =

{
u ∈ E :

∫
R3

[
V (x)u2 +K(x)φuu

2 − f(x, u)u
]

dx < 0

}
.

Lemma 2.3. Under assumptions (V0), (K0), (F0), (F2) and (F3), Λ 6= ∅ and N ⊂ Λ.

Then, for any u ∈ Λ, there exists a unique t(u) > 0 such that t(u)u ∈ N .

Proof. First, we show that Λ 6= ∅. From (2.4) and Sobolev imbedding theorem, there

exists C1 > 0 such that
∫
R3 φuu

2 dx ≤ C1 ‖u‖4 for all u ∈ E. For any fixed u ∈ E with

u 6= 0, set ut(x) = u(tx) for t > 0. By (V0) and (K0), one has∫
R3

[
V (x)(tut)

2 +K(x)φ(tut)(tut)
2 − f(x, tut)tut

]
dx

= t−1

∫
R3

V (t−1x)u2 dx+ t−1

∫
R3

K(t−1x)φuu
2 dx−

∫
R3

f(t−1x, tu)tu

t3
dx

≤ V∞t−1 ‖u‖22 + C1K∞t
−1 ‖u‖4 −

∫
R3

f(t−1x, tu)tu

t3
dx,

(2.11)
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where V∞ := supx∈R3 V (x). Note that for u(x) 6= 0, F (t−1x, tu)/|tu|3 → +∞ as t→ +∞
uniformly in x ∈ R3 by (F2), and (2.7) with t = 0 yields

(2.12)
1

4
f(x, τ)τ − F (x, τ) +

θ0V (x)

4
τ2 ≥ 0, ∀x ∈ R3, τ ∈ R,

then we have

(2.13)
f(t−1x, tu)tu

|tu|3
→ +∞ as t→ +∞ uniformly in x ∈ R3.

Thus, it follows from (V0), (K0), (2.11) and (2.13) that∫
R3

[
V (x)(tut)

2 +K(x)φ(tut)(tut)
2 − f(x, tut)tut

]
dx→ −∞ as t→ +∞.

Thus, taking v = TuT for T large, we have v ∈ Λ. Hence, Λ 6= ∅. From (2.5), it is easy to

see that N ⊂ Λ.

Next, we prove the last part of lemma. Let u ∈ Λ be fixed and define a function

g(t) := 〈Φ′(tu), tu〉 on [0,∞). By (F2), one has

(2.14) f(x, tτ)tτ ≥ f(x, τ)τt4 − θ0V (x)(t2 − 1)(tτ)2, ∀x ∈ R3, t ≥ 1, τ ∈ R,

which yields ∫
R3

[
θ0V (x)(tτ)2 +K(x)φtτ (tτ)2 − f(x, tτ)tτ

]
dx

≤ t4
∫
R3

[
θ0V (x)τ2 +K(x)φττ

2 − f(x, τ)τ
]

dx, ∀ t ≥ 1, τ ∈ R.
(2.15)

From (2.5) and (2.15) it follows that

g(t) ≤ t2 ‖u‖2 + t4
∫
R3

[
V (x)u2 +K(x)φuu

2 − f(x, u)u
]

dx

− θ0t
2

∫
R3

V (x)u2 dx, ∀ t ≥ 1.

(2.16)

Using (F0), (2.5) and (2.16), it is easy to verify that g(0) = 0, g(t) > 0 for t > 0 small and

g(t) < 0 for t large due to u ∈ Λ. Therefore, there exist a t0 = t(u) > 0 so that g(t0) = 0

and t(u)u ∈ N . We claim that t(u) is unique for any u ∈ Λ. In fact, for any given u ∈ Λ,

let t1, t2 > 0 such that g(t1) = g(t2) = 0. Jointly with (2.6), we have

Φ(t1u) ≥ Φ(t2u) +
t41 − t42

4t41

〈
Φ′(t1u), t1u

〉
+

(1− θ0)(t21 − t22)2

4t41
‖u‖2

= Φ(t2u) +
(1− θ0)(t21 − t22)2

4t41
‖u‖2

(2.17)
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and

Φ(t2u) ≥ Φ(t1u) +
t42 − t41

4t42

〈
Φ′(t2u), t2u

〉
+

(1− θ0)(t22 − t21)2

4t42
‖u‖2

= Φ(t1u) +
(1− θ0)(t22 − t21)2

4t42
‖u‖2 .

(2.18)

(2.17) and (2.18) imply t1 = t2. Hence, t(u) > 0 is unique for any u ∈ Λ.

Lemma 2.4. Under assumptions (V0), (K0), (F0), (F2) and (F3), then

inf
u∈N

Φ(u) := c = inf
u∈Λ,u6=0

max
t≥0

Φ(tu) > 0.

Proof. Both Corollary 2.2 and Lemma 2.3 imply that c = infu∈Λ,u6=0 maxt≥0 Φ(tu). Using

Lemma 2.1, it is easy to see that c > 0.

Lemma 2.5. Under assumptions (V0), (K0), (F0), (F2) and (F3), there exist a constant

c∗ ∈ (0, c] and a sequence {un} ⊂ E satisfying

(2.19) Φ(un)→ c∗,
∥∥Φ′(un)

∥∥ (1 + ‖un‖)→ 0.

Proof. By (F0) and (1.2), we know that there exist δ0 > 0 and ρ0 > 0 such that

(2.20) Φ(u) ≥ ρ0, ‖u‖ = δ0.

In view of Lemmas 2.3 and 2.4, we may choose vk ∈ N ⊂ Λ such that

(2.21) c− 1

k
< Φ(vk) < c+

1

k
, k ∈ N.

Using Lemma 2.1 and (2.20), it is easy to check that Φ(tvk) ≥ ρ0 for small t > 0 and

Φ(tvk) < 0 for large t > 0 due to vk ∈ Λ. Since Φ(0) = 0, then the Mountain pass Lemma

implies that there exists a sequence {uk,n}n∈N ⊂ E satisfying

(2.22) Φ(uk,n)→ ck,
∥∥Φ′(uk,n)

∥∥ (1 + ‖uk,n‖)→ 0, k ∈ N,

where ck ∈
[
ρ0, supt≥0 Φ(tvk)

]
. By virtue of Corollary 2.2, one has Φ(vk) = supt≥0 Φ(tvk).

Hence, by (2.21) and (2.22), one has

(2.23) Φ(uk,n)→ ck ∈
[
ρ0, c+

1

k

)
,
∥∥Φ′(uk,n)

∥∥ (1 + ‖uk,n‖)→ 0, k ∈ N.

Now, we can choose a sequence {nk} ⊂ N such that

(2.24) Φ(uk,nk
) ∈

[
ρ0, c+

1

k

)
,
∥∥Φ′(uk,nk

)
∥∥ (1 + ‖uk,nk

‖) < 1

k
, k ∈ N.

Let uk = uk,nk
, k ∈ N. Then, going if necessary to a subsequence, we have

Φ(un)→ c∗ ∈ [ρ0, c],
∥∥Φ′(un)

∥∥ (1 + ‖un‖)→ 0.
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Lemma 2.6. Under assumptions (V0), (K0), (F0), (F2) and (F3), any sequence {un} ⊂ E
satisfying (2.19) is bounded in E.

Proof. By Lemma 2.1, one has

c∗ + o(1) = Φ(un)− 1

4

〈
Φ′(un), un

〉
≥ 1− θ0

4
‖un‖2 .

This shows that sequence {un} is bounded in E.

Next, we prove the minimizer of the constrained problem is a critical point, which

plays a crucial role in the asymptotically periodic case.

Lemma 2.7. Under assumptions (V0), (K0), (F0), (F2) and (F3), if u0 ∈ N and Φ(u0) =

c, then u0 is a critical point of Φ.

Proof. Assume that u0 ∈ N , Φ(u0) = c and Φ′(u0) 6= 0. Then there exist δ > 0 and % > 0

such that

(2.25) ‖u− u0‖ ≤ 3δ =⇒
∥∥Φ′(u)

∥∥ ≥ %.
In view of Lemma 2.1, one has

Φ(tu0) ≤ Φ(u0)− (1− θ0)(1− t2)2

4
‖u0‖2

= c− (1− θ0)(1− t2)2

4
‖u0‖2 , ∀ t ≥ 0.

(2.26)

For ε := min
{

3(1− θ0) ‖u0‖2 /64, 1, %δ/8
}

, S := B(u0, δ), [34, Lemma 2.3] yields a defor-

mation η ∈ C([0, 1]× E,E) such that

(i) η(1, u) = u if Φ(u) < c− 2ε or Φ(u) > c+ 2ε;

(ii) η (1,Φc+ε ∩B(u0, δ)) ⊂ Φc−ε;

(iii) Φ(η(1, u)) ≤ Φ(u), ∀u ∈ E;

(iv) η(1, u) is a homeomorphism of E.

By Corollary 2.2, Φ(tu0) ≤ Φ(u0) = c for t ≥ 0, then it follows from (ii) that

(2.27) Φ(η(1, tu0)) ≤ c− ε, ∀ t ≥ 0, |t− 1| < δ/ ‖u0‖ .

On the other hand, by (iii) and (2.26), one has

Φ(η(1, tu0)) ≤ Φ(tu0)

≤ c− (1− θ0)(1− t2)2

4
‖u0‖2

≤ c− (1− θ0)δ2

4
, ∀ t ≥ 0, |t− 1| ≥ δ/ ‖u0‖ .

(2.28)
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Combining (2.27) with (2.28), we have

(2.29) max
t∈[1/2,

√
7/2]

Φ(η(1, tu0)) < c.

We prove that η(1, tu0) ∩ N 6= ∅ for some t ∈ [1/2,
√

7/2], contradicting to the definition

of c. Define

Ψ0(t) :=
〈
Φ′(tu0), tu0

〉
, Ψ1(t) :=

〈
Φ′(η(1, tu0)), η(1, tu0)

〉
, ∀ t ≥ 0.

Since u0 6= 0, it follows from (iv) that η(1, tu0) 6= 0 for all t > 0. By Lemma 2.3 and the

degree theory, one can derive that deg(Ψ0, (1/2,
√

7/2), 0) = 1. It follows from (2.26) and

(i) that η(1, tu0) = tu0 for t = 1/2 and t =
√

7/2. Thus, deg(Ψ1, (1/2,
√

7/2), 0) =

deg(Ψ0, (1/2,
√

7/2), 0) = 1. Hence, Ψ1(t0) = 0 for some t0 ∈ (1/2,
√

7/2), that is

η(1, t0u0) ∈ N , which is a contradiction.

3. The periodic case

In this section, we give the proof of Theorem 1.3.

Proof of Theorem 1.3. Lemma 2.5 implies the existence of a sequence {un} ⊂ E satisfying

(2.19), then

(3.1) Φ(un)→ c∗ > 0,
〈
Φ′(un), un

〉
→ 0.

By Lemma 2.6, {un} is bounded in E. If

δ := lim sup
n→∞

sup
y∈R3

∫
B1(y)

|un|2 dx = 0,

then by Lion’s concentration compactness principle [20] or [34, Lemma 1.21], un → 0 in

Ls(R3) for 2 < s < 6. Moreover, there exists C2 > 0 such that ‖un‖2 ≤ C2. By (F0), for

ε = c∗/2C
2
2 , there exists Cε > 0 such that

(3.2) lim sup
n→∞

∫
R3

∣∣∣∣12f(x, un)un − F (x, un)

∣∣∣∣dx ≤ 3

2
εC2

2 + Cε lim
n→∞

‖un‖κκ =
3c∗
4
.

By (K0), (2.3) and (2.4), we have

lim sup
n→∞

∫
R3

K(x)φun(x)u2
n dx = lim sup

n→∞

∫
R3

∫
R3

K(x)K(y)

|x− y|
u2
n(x)u2

n(y) dxdy

≤ K2
∞ lim sup

n→∞

∫
R3

∫
R3

u2
n(x)u2

n(y)

|x− y|
dxdy

≤ C1K
2
∞ lim sup

n→∞
‖un‖412/5

= 0,

(3.3)
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where and in the sequel, C1 = 8 3
√

2/3 3
√
π. From (1.2), (2.5), (3.1), (3.2) and (3.3), one has

c∗ = Φ(un)− 1

2

〈
Φ′(un), un

〉
+ o(1)

= −1

4

∫
R3

K(x)φun(x)u2
n dx+

∫
R3

[
1

2
f(x, un)un − F (x, un)

]
dx+ o(1)

≤ 3c∗
4

+ o(1).

This contradiction shows δ > 0.

Going if necessary to a subsequence, we may assume the existence of kn ∈ Z3 such

that

(3.4)

∫
B2(kn)

|un|2 dx >
δ

2
.

Let vn(x) = un(x+ kn). Then

(3.5)

∫
B2(0)

|vn|2 dx >
δ

2
.

Since V (x), K(x) and f(x, u) are periodic on x, we have

(3.6) Φ(vn)→ c∗ ∈ (0, c],
∥∥Φ′(vn)

∥∥ (1 + ‖vn‖)→ 0.

Passing to a subsequence, we have vn ⇀ v in E, vn → v in Lsloc(R3), 2 ≤ s < 6 and

vn(x)→ v(x) a.e. on R3. Thus, (3.5) implies that v 6= 0. For every φ ∈ C∞0 (R3), we have〈
Φ′(v), φ

〉
= lim

n→∞

〈
Φ′(vn), φ

〉
= 0.

Hence Φ′(v) = 0. This shows that v ∈ N is a nontrivial solution of Problem (SP) and

Φ(v) ≥ c. It follows from (F2), (3.6) and Fatou’s lemma that

c ≥ c∗ = lim
n→∞

[
Φ(vn)− 1

4

〈
Φ′(vn), vn

〉]
= lim

n→∞

{
1− θ0

4
‖vn‖2 +

θ0

4
‖vn‖2D1,2 +

∫
R3

[
1

4
f(x, vn)vn − F (x, vn) +

θ0V (x)

4
v2
n

]
dx

}
≥ 1

4
lim inf
n→∞

[
(1− θ0) ‖vn‖2 + θ0 ‖vn‖2D1,2

]
+ lim inf

n→∞

∫
R3

[
1

4
f(x, vn)vn − F (x, vn) +

θ0V (x)

4
v2
n

]
dx

≥ 1

4
‖v‖2 +

∫
R3

[
1

4
f(x, v)v − F (x, v)

]
dx

= Φ(v)− 1

4

〈
Φ′(v), v

〉
= Φ(v).

This shows that Φ(v) ≤ c and so Φ(v) = c = infN Φ > 0.
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4. The asymptotically periodic case

In this section, we have V (x) = V0(x) + V1(x), K(x) = K0(x) + K1(x) and f(x, u) =

f0(x, u) + f1(x, u). Define functional Φ0 as follows:

Φ0(u) =
1

2

∫
R3

(
|∇u|2 + V0(x)u2

)
dx+

1

4

∫
R3

∫
R3

K0(x)K0(y)

|x− y|
u2(x)u2(y) dxdy

−
∫
R3

F0(x, u) dx, u ∈ E,
(4.1)

where F0(x, u) :=
∫ u

0 f0(x, s) ds. Then (V2), (K2), (F0) and (F1′) imply that Φ0 ∈
C1(E,R) and

〈
Φ′0(u), v

〉
=

∫
R3

(∇u∇v + V0(x)uv) dx+

∫
R3

∫
R3

K0(x)K0(y)

|x− y|
u2(x)u2(y) dxdy

−
∫
R3

f0(x, u)v dx, u, v ∈ E.
(4.2)

Lemma 4.1. Under assumptions (V0), (V2), (K0), (K2), (F0) and (F1′), if un ⇀ 0 in

E, then

lim
n→∞

∫
R3

V1(x)u2
n dx = 0, lim

n→∞

∫
R3

V1(x)unv dx = 0, ∀ v ∈ E,(4.3)

lim
n→∞

∫
R3

F1(x, un) dx = 0, lim
n→∞

∫
R3

f1(x, un)v dx = 0, ∀ v ∈ E,(4.4)

lim
n→∞

∫
R3

K1(x)φun(x)u2
n dx = 0, lim

n→∞

∫
R3

K1(x)φun(x)unv dx = 0, ∀ v ∈ E,(4.5)

lim
n→∞

∫
R3

∫
R3

K1(x)K1(y)

|x− y|
u2
n(x)u2

n(y) dxdy = 0(4.6)

and

lim
n→∞

∫
R3

∫
R3

K1(x)K1(y)

|x− y|
un(x)v(x)u2

n(y) dxdy = 0, ∀ v ∈ E.(4.7)

Proof. It follows from the fact un ⇀ 0 in E that {‖un‖} is bounded, un → 0 in Lsloc(R3),

2 ≤ s < 6 and un(x) → 0 a.e. on R3. For any ε > 0, by (V2), there exists Rε > 0 such

that |V1(x)| ≤ ε for |x| ≥ Rε. Hence,∫
R3

|V1(x)|u2
n dx =

∫
BRε (0)

|V1(x)|u2
n dx+

∫
R3\BRε (0)

|V1(x)|u2
n dx

≤ sup
x∈R3

|V1(x)|
∫
BRε (0)

u2
n dx+ ε

∫
R3\BRε (0)

u2
n dx

≤ o(1) + ε ‖un‖22
≤ o(1) + C1ε.

(4.8)
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For any v ∈ E, it follows that

(4.9)

∫
R3

|V1(x)| |unv| dx ≤
[∫

R3

|V1(x)|u2
n dx

∫
R3

|V1(x)| v2 dx

]1/2

≤ o(1) + C2ε.

Since ε > 0 is arbitrary, then (4.8) and (4.9) imply that (4.3) holds. Similarly, by (F1′),

one can prove that (4.4) holds also. From (K0), (2.1) and (2.4), we have∫
R3

|K1(x)|φun(x)u2
n dx =

∫
R3

∫
R3

|K1(x)|K(y)

|x− y|
u2
n(x)u2

n(y) dxdy

≤ K∞
∫
R3

∫
R3

|K1(x)|u2
n(x)u2

n(y)

|x− y|
dxdy

≤ C1K∞

[∫
R3

|K1(x)|6/5 |un(x)|12/5 dx

]5/6

‖un‖212/5 ,

(4.10)

where C1 = 8 3
√

2/3 3
√
π, and for any v ∈ E∫

R3

|K1(x)φun(x)unv| dx =

∫
R3

∫
R3

|K1(x)|K(y)

|x− y|
|un(x)v(x)|u2

n(y) dxdy

≤ K∞
∫
R3

∫
R3

|K1(x)un(x)v(x)|u2
n(y)

|x− y|
dxdy

≤ C1K∞

[∫
R3

|K1(x)un(x)v(x)|6/5 dx

]5/6

‖un‖212/5

≤ C1K∞

[∫
R3

|K1(x)un(x)|12/5 dx

]5/12

‖v‖12/5 ‖un‖
2
12/5 .

(4.11)

Since lim|x|→∞ |K1(x)| = 0, similar to the proof of (4.8), it follows from (4.10) and (4.11)

that (4.5) holds. Similarly, by (2.4), we have

(4.12)

∫
R3

∫
R3

|K1(x)K1(y)|
|x− y|

u2
n(x)u2

n(y) dxdy ≤ C1

[∫
R3

|K1(x)|6/5 |un(x)|12/5 dx

]5/3

and for any v ∈ E∫
R3

∫
R3

|K1(x)K1(y)|
|x− y|

|un(x)v(x)|u2
n(y) dxdy

≤ C1

[∫
R3

|K1(x)un(x)v(x)|6/5 dx

]5/6 [∫
R3

|K1(x)|6/5 |un(x)|12/5 dx

]5/6

≤ C1

[∫
R3

|K1(x)un(x)|12/5 dx

]5/12 [∫
R3

|K1(x)|6/5 |un(x)|12/5 dx

]5/6

‖v‖12/5 .

(4.13)

Since lim|x|→∞ |K1(x)| = 0, similar to the proof of (4.8), it follows from (4.12) and (4.13)

that (4.6) and (4.7) hold.

Remark 4.2. If the functions V1(x), K1(x) and tf1(x, t) are sign-changing, the conclusions

in Lemma 4.1 still hold.
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Proof of Theorem 1.4. Lemma 2.5 implies the existence of a sequence {un} ⊂ E satisfying

(2.19), then

Φ(un)→ c∗,
〈
Φ′(un), un

〉
→ 0.

By Lemma 2.6, {un} is bounded in E. Passing to a subsequence, we have un ⇀ u in E

and un(x)→ u(x) a.e. on R3. There are two possible cases: (i) u = 0; (ii) u 6= 0.

Case (i): u = 0. Then un ⇀ 0 in E, and so un → 0 in Lsloc(R3), 2 ≤ s < 6 and

un(x)→ 0 a.e. on R3. Note that

(4.14) ‖u‖2 =

∫
R3

(
|∇u|2 + V0(x)u2

)
dx+

∫
R3

V1(x)u2 dx, u ∈ E,

Φ0(u) = Φ(u)− 1

2

∫
R3

V1(x)u2 dx− 1

2

∫
R3

K1(x)φu(x)u2 dx

+
1

4

∫
R3

∫
R3

K1(x)K1(y)

|x− y|
u2(x)u2(y) dxdy +

∫
R3

F1(x, u) dx

(4.15)

and 〈
Φ′0(u), v

〉
=
〈
Φ′(u), v

〉
−
∫
R3

V1(x)uv dx− 2

∫
R3

K1(x)φu(x)uv dx

+

∫
R3

∫
R3

K1(x)K1(y)

|x− y|
u(x)v(x)u2(y) dxdy +

∫
R3

f1(x, u)v dx.

(4.16)

From (2.19), (4.3)–(4.7), (4.15) and (4.16), one has

(4.17) Φ0(un)→ c∗,
∥∥Φ′0(un)

∥∥ (1 + ‖un‖)→ 0.

Similar to the proof of (3.4), we may prove that there exists kn ∈ Z3, going if necessary

to a subsequence, such that ∫
B2(kn)

|un|2 dx >
δ

2
> 0.

Let us define vn(x) = un(x+ kn) so that

(4.18)

∫
B2(0)

|vn|2 dx >
δ

2
.

Since V0(x), K0(x) and f0(x, u) are periodic on x, we have

(4.19) Φ0(vn)→ c∗ ∈ (0, c],
∥∥Φ′0(vn)

∥∥ (1 + ‖vn‖)→ 0.

Passing to a subsequence, we have vn ⇀ v in E, vn → v in Lsloc(R3), 2 ≤ s < 6 and

vn(x)→ v(x) a.e. on R3. Thus, (4.18) implies that v 6= 0. For every φ ∈ C∞0 (R3), we have〈
Φ′0(v), φ

〉
= lim

n→∞

〈
Φ′0(vn), φ

〉
= 0.
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Hence Φ′0(v) = 0. For any x ∈ R3, t ≥ 0, τ 6= 0, (1.9) yields

1− t4

4
τf0(x, τ) + F0(x, tτ)− F0(x, τ) +

V0(x)

4
(1− t2)2τ2

=

∫ 1

t

[
f0(x, τ)

τ3
− f0(x, sτ)

(sτ)3
+ V0(x)

(1− s2)

(sτ)2

]
s3τ4 ds ≥ 0.

(4.20)

Observe that (4.20) with t = 0 yields

(4.21)
1

4
f0(x, τ)τ − F0(x, τ) +

V0(x)

4
τ2 ≥ 0, ∀x ∈ R3, τ ∈ R,

then it follows from (F1′), (4.21) and Fatou’s lemma that

c ≥ c∗ = lim
n→∞

[
Φ0(vn)− 1

4

〈
Φ′0(vn), vn

〉]
= lim

n→∞

{
1

4
‖vn‖2D1,2 +

∫
R3

[
1

4
f0(x, vn)vn − F0(x, vn) +

V0(x)

4
v2
n

]
dx

}
≥ 1

4
lim inf
n→∞

‖vn‖2D1,2 + lim inf
n→∞

∫
R3

[
1

4
f0(x, vn)vn − F0(x, vn) +

V0(x)

4
v2
n

]
dx

≥ 1

4

∫
R3

(
|∇v|2 + V0(x)v2

)
dx+

∫
R3

[
1

4
f0(x, v)v − F0(x, v)

]
dx

= Φ0(v)− 1

4

〈
Φ′0(v), v

〉
= Φ0(v).

This shows that Φ0(v) ≤ c. Since v 6= 0, it follows from Lemma 2.3 that there exists

t0 = t(v) > 0 such that t0v ∈ N , and so Φ(t0v) ≥ c. Now, we prove that Φ(t0v) = c.

Arguing by indirectly, we assume that Φ(t0v) > c. Then from (4.1), (4.2), (4.20), (V2),

(K0), (K2) and (F1′), we have

c ≥ Φ0(v) = Φ0(t0v) +
1− t40

4

〈
Φ′0(v), v

〉
+

(1− t20)2

4

∫
R3

|∇v|2 dx

+

∫
R3

[
1− t40

4
f0(x, v)v + F0(x, t0v)− F0(x, v) +

V0(x)

4
(1− t20)2v2

]
dx

≥ Φ0(t0v) = Φ(t0v)− t20
2

∫
R3

V1(x)v2 dx− t40
2

∫
R3

K1(x)φv(x)v2 dx

+
t40
4

∫
R3

∫
R3

K1(x)K1(y)

|x− y|
v2(x)v2(y) dxdy +

∫
R3

F1(x, t0v) dx

≥ Φ(t0v)− t20
2

∫
R3

V1(x)v2 dx− t40
2

∫
R3

K1(x)φv(x)v2 dx+

∫
R3

F1(x, t0v) dx

≥ Φ(t0v) > c.

This contradiction shows that Φ(t0v) = c.
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Let u0 = t0v. Then u0 ∈ N and Φ(u0) = c. In view of Lemma 2.7, Φ′(u0) = 0. This

shows that u0 ∈ E is a solution for (SP) with Φ(u0) = infN Φ > 0.

Case (ii): u 6= 0. By the same fashion as the last part of the proof of Theorem 1.3, we

can prove that Φ′(u) = 0 and Φ(u) = c = infN Φ. This shows that u ∈ E is a solution for

System (SP) with Φ(u) = infN Φ > 0.
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