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Abstract. In the paper the existence, uniqueness and the multiplicity

of solutions for a quasilinear elliptic problems driven by the Φ-Laplacian
operator is established. Here we consider the non-reflexive case taking into

account the Orlicz and Orlicz–Sobolev framework. The non-reflexive case

occurs when the N -function Φ̃ does not verify the ∆2-condition. In order
to prove our main results we employ variational methods, regularity results

and truncation arguments.

1. Introduction

In this work we consider the existence and uniqueness of solutions for quasi-

linear elliptic problems given by

(1.1)

−∆Φu = f(x) in Ω,

u = 0 on ∂Ω.
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Furthermore, we shall consider the existence and multiplicity of solutions for the

following quasilinear elliptic problem

(1.2)

−∆Φu = g(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 2, is a bounded domain with smooth boundary. The

function Φ is an even N -function defined by

Φ(t) =

∫ t

0

sφ(s) ds, t ∈ R.

Later on, we shall consider some assumptions on φ, f and g. It is important to

recall that Φ satisfies the so called ∆2-condition whenever

(1.3) Φ(2t) ≤ CΦ(t), t ≥ 0,

holds true for some C > 0, in short, we write Φ ∈ ∆2.

Quasilinear elliptic problems driven by the Φ-Laplacian operator have been

widely considered in the last years. Here we refer the reader to [6], [8], [13]–

[20], [23], [24], [28]. Most of them considered the Orlicz and Orlicz–Sobolev

framework taking into account that Φ and Φ̃ verify the so called ∆2-condition.

Under these conditions the Orlicz and Orlicz–Sobolev spaces are separable and

reflexive Banach spaces, see [27]. Hence we can use the weak convergence in order

to guarantee that problems (1.1) and (1.2) admits at least one weak solution by

applying variational methods.

The main novel in this work is to consider quasilinear elliptic problem driven

by the Φ-Laplacian operator where the ∆2-condition is not satisfied for Φ̃, that

is, the conjugate function defined by

Φ̃(t) = max
s≥0
{ts− Φ(s)}, t ≥ 0,

does not verifies the ∆2-condition. The main difficulty in this work arises from

the fact that W 1,Φ
0 (Ω) is not reflexive anymore. In order to overcome this dif-

ficulty we consider a sequence of quasilinear elliptic problems modeled in an

appropriate reflexive Orlicz–Sobolev space obtaining a sequence of solutions uε
for each ε > 0. Then we take the limit as ε → 0 getting a weak solution u for

the quasilinear elliptic problems (1.1) and (1.2).

The approach here is purely variational using an energy functional associated

to the elliptic problems (1.1) or (1.2). In our setting we consider an auxiliary

problem in order to recover some compactness for our energy functional which

is crucial in variational methods.

Now we shall give the hypotheses for the functions φ, f and g. We assume

that φ : R→ R is C1 and satisfies the following hypotheses:

(φ1) (i) tφ(t)→ 0 as t→ 0, (ii) tφ(t)→∞ as t→∞;
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(φ2) tφ(t) is strictly increasing in (0,∞);

(φ3) there exist `,m ∈ [1, N) such that

`− 1 = inf
t>0

(tφ(t))′

φ(t)
≤ (tφ(t))′

φ(t)
≤ m− 1, t > 0;

(φ4) a := inf
t>0

tm

Φ(t)
> 0.

Remark 1.1. Taking into account hypothesis (φ3) we have that t 7→ tm/Φ(t)

is a strictly increasing function. As a consequence we mention that

inf
t>0

tm

Φ(t)
= lim
t→0+

tm

Φ(t)
.

For the non-homogeneous function f : Ω→ R we assume that

(1.4) f ∈ LN (Ω).

For the function g : Ω×R→ R we suppose that g ∈ C0 and g(x, 0) = 0 for each

x ∈ Ω. Furthermore, we suppose also the following assumptions:

(g1) there exist a constant C > 0 and a N -function

Ψ(t) =

∫ t

0

ψ(s) ds

with ψ : [0,∞)→ R continuous and satisfying

(ψ1) 1 < m < `Ψ := inf
t>0

tψ(t)

Ψ(t)
≤ sup

t>0

tψ(t)

Ψ(t)
=: mΨ < 1∗ :=

N

N − 1
;

such that |g(x, t)| ≤ C(1 + ψ(t)),

(g2) there is an N -function

Γ(t) =

∫ t

0

γ(s) ds

with γ : [0,∞)→ R continuous and satisfying

(γ1) N < `Γ := inf
t>0

tγ(t)

Γ(t)
≤ sup

t>0

tγ(t)

Γ(t)
=: mΓ <∞,

such that

Γ

(
G(x, t)

|t|`

)
≤ CG(x, t), x ∈ Ω, |t| ≥ R,

where C, R are positive constants,

G(x, t) :=

∫ t

0

g(x, s) ds and G(x, t) := tg(x, t)−mG(x, t),

for x ∈ Ω, t ∈ R.
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In order to state our main result we consider the number λ1 > 0 associated

with ∆Φ given by

λ1 = inf
u∈W 1,Φ

0 (Ω)

{∫
Ω

Φ(|∇u|) dx
/∫

Ω

Φ(|u|) dx, u 6= 0

}
.

It is important to emphasize that λ1 is positive which can be proved, taking into

account hypothesis (φ3), thanks to the Poincaré inequality, (see e.g. [8], [18]).

We consider some additional hypotheses:

(g3) lim
t→∞

g(x, t)

|t|m−1
=∞,

(g4) lim sup
t→0

g(x, t)

|t|φ(t)
= λ < λ1,

Due to the nature of the operator ∆Φu = div(φ(|∇u|)∇u) we need to con-

sider the Orlicz–Sobolev framework. It is important to remember that the Φ-

Laplacian operator is not homogeneous. This is a serious difficulty in order to

use variational methods. In order to overcome this difficulty we shall consider

some specific estimates in Orlicz and Orlicz–Sobolev spaces.

Definition 1.2. Let Φ,Ψ be two N -functions. We say that Φ and Ψ are

equivalent, in short Φ ∼= Ψ, when there exist c1, c2 > 0 in such way that

c1Ψ(t) ≤ Φ(t) ≤ c2Ψ(t) for each t ≥ t0 and for some t0 ≥ 0.

Our first main result can be stated in the following form

Theorem 1.3. Assume (φ1)–(φ4) and (1.4). Then there exists an unique

solution for the elliptic problem (1.1), that is, there exists an unique function

u ∈W 1,Φ
0 (Ω) in such way that

(1.5)

∫
Ω

φ(|∇u|)∇u∇v dx =

∫
Ω

fv dx, v ∈W 1,Φ
0 (Ω).

Moreover, assuming that ` > 1 the solution belongs to L∞(Ω) whenever the

function Φ ∼= |t|r for some r > 1.

We point out that the function

φ(t) =
log(1 + |t|)
|t|

, t ∈ R\{0}

satisfies the hypotheses (φ1)–(φ4). In this case the operator in problem (1.1)

has logarithmic growth with respect to the gradient which can be written in the

following form

(1.6)

−div

(
log(1 + |∇u|)
|∇u|

∇u
)

= f(x) in Ω,

u = 0 on ∂Ω.



Quasilinear Elliptic Problems on Non-Reflexive Orlicz–Sobolev Spaces 591

Similarly, we also consider the following quasilinear elliptic problem

(1.7)

−div

(
log(1 + |∇u|)
|∇u|

∇u+
1

1 + |∇u|
∇u
)

= f(x) in Ω,

u = 0 on ∂Ω.

Here we observe that

φ(t) =
log(1 + |t|)
|t|

+
1

1 + |t|
and Φ(t) := t log(1 + t).

It is important to emphasize that problem (1.7) was not treated in the literature.

The main difficult occurs due the fact that ` = 1, m = 2, a > 0. More generally,

fixing α > 0, β ≥ −1, we define

Φ(t) = (β − 1)t− β log(1 + t) + (1 + t)[log(1 + tα)]1/α, t > 0.

For this N -function ` = 1, m = 2 which provide a new example for our setting.

For the case β = 0 and α = 1 we recover the quasilinear elliptic problem (1.6),

while if β = 1 and α = 1 we obtain the problem (1.7). Here we point out the

examples listed just above give us concrete cases where the N -function Φ is in

such way that Φ̃ does not verity the well known ∆2 condition due the fact that

` = 1, m = 2, see [27]. As a consequence the N-function Φ: R→ R given by

Φ(t) =

∫ t

0

log(1 + s) ds, s > 0

is in such way that W 1,Φ
0 (Ω) is not reflexive. The problem (1.6) have been studied

by many authors during the last years, see Boccardo et al. [3], Esposito et al.

[12], Passarelli [10], Fuchs [13], [14], Zhang et al. [29] and references therein.

For further results on Orlicz and Orlicz–Sobolev framework we refer the reader

to [1], [15], [16], [18], [19], [23]. The main feature in this work is to find a

weak solution for the problem (1.1) in the non-reflexive case using a sequence

of approximating problems where in each term of this sequence the associated

Orlicz–Sobolev space is reflexive. As a consequence, taking the limit we obtain

at least one solution for the non-reflexive which is obtained by a careful analysis

on continuous and compact embeddings for Orlicz–Sobolev spaces. Thanks to

this approach we shall prove that the elliptic problem (1.2) admits existence and

multiplicity of solutions for the non-reflexive case.

For the next result we shall consider the nonlinear elliptic problem (1.2) under

some superlinear conditions at infinity. The main feature here is to consider non-

reflexive problems without the well known Ambrosetti–Rabinowitz condition at

infinity. Namely, the Ambrosetti–Rabinowitz condition, for the function g, in

short (AR) condition, says that

(AR) 0 < θG(x, t) ≤ tg(x, t), for x ∈ Ω and |t| ≥ R



592 E.D. Silva — M.L.M. Carvalho — K. Silva — J.V. Gonçalves

holds true for some θ > m and R > 0. As a consequence the (AR) condition

implies that

(1.8) G(x, t) ≥ c1|t|m − c2, x ∈ Ω, t ∈ R

holds for some c1, c2 > 0. Nevertheless, there are superlinear functions in such

way that (1.8) is not satisfied. For example, we mention that

g(x, t) = |t|m−2t ln(1 + |t|)

does not verity the superlinear condition given in (1.8) for each m ∈ (1, N),

which implies also that it does not verify the (AR) condition. It is worthwhile to

mention that the (AR) condition implies some compactness properties such as

the Palais–Smale condition which is crucial in variational methods. Since (AR)

condition is not available in our setting we need to consider some compactness

condition such as Cerami condition. This famous condition was first introduced

by Cerami [4]. Latter on, we shall give a precise definition for the Cerami

condition.

For our next result we shall consider hypotheses (g1)–(g4) proving that the

associated functional for the problem (1.2) satisfies the well known Cerami con-

dition which is sufficient in variational procedures.

Our main second result is the following:

Theorem 1.4. Assume (φ1), (φ2), (φ4),

(φ3)′ 1 ≤ ` ≤ φ(t)t2

Φ(t)
≤ m, t > 0,

and (g1)–(g4). Then problem (1.2) at least one solution u ∈ W 1,Φ
0 (Ω), that is,

there exists a function u ∈W 1,Φ
0 (Ω) in such way that

(1.9)

∫
Ω

φ(|∇u|)∇u∇v dx =

∫
Ω

g(x, u)v dx, v ∈W 1,Φ
0 (Ω).

Assuming (φ3) instead of (φ3)′, problem (1.2) admits at least two weak solutions

u1, u2 ∈ W 1,Φ
0 (Ω)/{0} satisfying u1 ≥ 0 and u2 ≤ 0 in Ω. Furthermore, as-

suming also that ` > 1, then solutions u1, u2 described just above, are strictly

positive which belongs to C1,α for some α ∈ (0, 1).

The paper is organized as follows: Section 2 is devoted to an overview on

Orlicz and Orlicz–Sobolev framework considering the elliptic problem (1.1) for

the reflexive case. In Section 3 we give some existence results for the problem

(1.1) in the non-reflexive case. Section 4 is devoted to regularity results to the

elliptic problem (1.1) and (1.2). In Section 5 we give the proofs of our main

results.
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2. Orlicz and Orlicz–Sobolev spaces

The reader is referred to [1], [11], [25], [27] regarding Orlicz–Sobolev spaces.

The usual norm on LΦ(Ω) is (Luxemburg norm)

‖u‖Φ = inf

{
λ > 0

∣∣∣∣ ∫
Ω

Φ

(
u(x)

λ

)
dx ≤ 1

}
,

the Orlicz–Sobolev norm of W 1,Φ(Ω) is

‖u‖1,Φ = ‖u‖Φ +

N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥

Φ

.

Since our N -function Φ verifies the ∆2-condition we observe that W 1,Φ
0 (Ω) is

given by the closure of C∞0 (Ω) with respect to the usual norm of W 1,Φ(Ω), see

[18], [19], [25].

Recall that Φ̃(t) = max
s≥0
{ts−Φ(s)}, t ≥ 0. It turns out that when Φ and Φ̃ are

N -functions satisfying the ∆2-condition then LΦ(Ω) and W 1,Φ(Ω) are separable,

reflexive, Banach spaces, see [27]. However we shall consider the case when the

function Φ̃ does not verify the ∆2-condition.

Remark 2.1. It is well known that (φ3) implies (φ3)′. Furthermore, assum-

ing 1 < ` ≤ m < N , we obtain Φ, Φ̃ ∈ ∆2. Conversely, assuming that Φ, Φ̃ ∈ ∆2

then 1 < ` ≤ m <∞.

By the Poincaré inequality, (see e.g. [18]),∫
Ω

Φ(u) dx ≤
∫

Ω

Φ(2d|∇u|) dx

where d = diam(Ω). It follows also that ‖u‖Φ ≤ 2d‖∇u‖Φ for u ∈ W 1,Φ
0 (Ω). As

a consequence, ‖u‖ := ‖∇u‖Φ defines a norm in W 1,Φ
0 (Ω), equivalent to ‖ · ‖1,Φ.

Here was used the fact that Φ satisfies the ∆2-condition. Let Φ∗ be the inverse

of the function

t ∈ (0,∞) 7→
∫ t

0

Φ−1(s)

s(N+1)/N
ds

which extends to R by Φ∗(t) = Φ∗(−t) for t ≤ 0. We say that a N -function Ψ

grows essentially more slowly than Φ∗ and we write Ψ� Φ∗, if

lim
t→∞

Ψ(λt)

Φ∗(t)
= 0, for all λ > 0.

The embeddingW 1,Φ
0 (Ω)

cpt
↪→ LΨ(Ω), if Ψ� Φ∗, will be used in this paper (cf. [1]).

In particular, as Φ� Φ∗ (cf. [19, Lemma 4.14]), we obtain W 1,Φ
0 (Ω)

cpt
↪→ LΦ(Ω).

Furthermore, we mention also that W 1,Φ
0 (Ω)

cont
↪→ LΦ∗(Ω). It is worthwhile to

mention that under hypotheses (φ1)–(φ2) and (φ3) (cf. [7, Lemma D.2]) the

continuous embedding Lm(Ω)
cont
↪→ LΦ(Ω)

cont
↪→ L`(Ω) holds.
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Now we refer the reader to [15], [16] for some elementary results on Orlicz

and Orlicz–Sobolev spaces.

Proposition 2.2. Assume that φ satisfies (φ1)–(φ3). Set

ζ0(t) = min{t`, tm}, ζ1(t) = max{t`, tm}, t ≥ 0.

Then Φ satisfies:

ζ0(t)Φ(ρ) ≤ Φ(ρt) ≤ ζ1(t)Φ(ρ), ρ, t > 0,

ζ0(‖u‖Φ) ≤
∫

Ω

Φ(u) dx ≤ ζ1(‖u‖Φ), u ∈ LΦ(Ω).

Proposition 2.3. Assume that φ satisfies (φ1)–(φ3). Set

ζ2(t) = min{t`
∗
, tm

∗
}, ζ3(t) = max{t`

∗
, tm

∗
}, t ≥ 0,

where 1 < `,m < N and m∗ = mN/(N −m), `∗ = `N/(N − `). Then

`∗ ≤ tΦ′∗(t)

Φ∗(t)
≤ m∗, t > 0,

ζ2(t)Φ∗(ρ) ≤ Φ∗(ρt) ≤ ζ3(t)Φ∗(ρ), ρ, t > 0,

ζ2(‖u‖Φ∗) ≤
∫

Ω

Φ∗(u) dx ≤ ζ3(‖u‖Φ∗), u ∈ LΦ∗(Ω).

In order to conclude the present section we prove the following:

Theorem 2.4 (The reflexive case). Suppose (φ1)–(φ2), (φ3)′ and ` > 1.

Then problem (1.1) admits exactly one solution u ∈W 1,Φ
0 (Ω).

In order to prove Theorem 2.4 we need some preliminaries results:

Proposition 2.5. Let φ : (0,∞) → (0,∞) be a fixed N -function satisfying

hypotheses (φ1) and (φ2). Then

(φ(|x|)x− φ(|y|)y, x− y) ≥ 0, for all x, y ∈ Rn,

(φ(|x|)x− φ(|y|)y, x− y) > 0, for all x, y ∈ Rn, x 6= y.

Proof. We will split the proof into three parts. In the first part we choose

x, y ∈ RN in such way that |x| = |y|. In this case we easily see that

(φ(|x|)x− φ(|y|)y, x− y) = φ(|x|)|x− y|2 ≥ 0, x, y ∈ RN , |x| = |y|.

This estimate proves the proposition in the first part. In the second part we

shall consider x, y ∈ RN in such that |x| < |y|. Thanks to hypothesis (φ2) we

mention that

(φ(|x|)x− φ(|y|)y, x− y) ≥ φ(|x|)|x|(|x| − |y|) + φ(|y|)|y|(|y| − |x|)(2.1)

= (φ(|x|)|x| − φ(|y|)|y|)(|x| − |y|) > 0.
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This ends the proof in the second case. In the last part we shall consider x, y ∈
RN in such way that |x| > |y|. Using the same ideas discussed just above we

conclude one more time that

(φ(|x|)x− φ(|y|)y, x− y) ≥ φ(|x|)|x|(|x| − |y|) + φ(|y|)|y|(|y| − |x|)(2.2)

= (φ(|x|)|x| − φ(|y|)|y|)(|x| − |y|) > 0. �

The next result shows that the Φ-Laplacian is also strictly monotonic.

Proposition 2.6. Suppose (φ1)–(φ2). Then we have that∫
Ω

(φ(|∇u|)∇u− φ(|∇v|)∇v)(∇u−∇v) dx > 0, u, v ∈W 1,Φ
0 (Ω), u 6= v.

Proof. Let u, v ∈W 1,Φ
0 (Ω) be fixed functions in such way that u 6= v. Using

Proposition 2.5 we deduce that

(φ(|∇u|)∇u− φ(|∇v|)∇v)(∇u−∇v) ≥ 0 a.e. in Ω.

Using the fact that u 6= v there exits Ω0 ⊂ Ω with positive Lebesgue measure

such that

(φ(|∇u|)∇u− φ(|∇v|)∇v)(∇u−∇v) > 0 a.e. in Ω0.

As a consequence we obtain∫
Ω0

(φ(|∇u|)∇u− φ(|∇v|)∇v)(∇u−∇v) dx > 0.

The last estimate implies that∫
Ω

(φ(|∇u|)∇u− φ(|∇v|)∇v)(∇u−∇v) dx > 0. �

Now we apply Proposition 2.6 to prove that problem (1.1) has at most one

solution.

Proposition 2.7. Suppose (φ1)–(φ2). Then the problem (1.1) admits at

most one solution in W 1,Φ
0 (Ω).

As a consequence, the uniqueness stated in Theorem 2.4 is proved. For the

existence we refer the reader to Fukagai et al. [15], [16] for ` > 1 and hence the

proof of Theorem 2.4 is completed.

3. Problem (1.1) for the non-reflexive case

In this section we prove some useful results in order to ensure existence of

solutions for problem (1.1) in the non-reflexive case. The first result in this
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direction is to consider a sequence of approximating quasilinear elliptic problems

driven by the Φ-Laplacian operator given by

(3.1)

−∆Φεu = f(x) in Ω,

u = 0 on ∂Ω,

where f ∈ LN (Ω) and Φε(t) := Φ(t) + εtm/m, t ∈ R, ε > 0. It is important to

remember that v ∈W 1,Φε
0 (Ω) is a weak solution for the problem (3.1) whenever

(3.2) ε

∫
Ω

|∇v|m−2∇v∇w dx+

∫
Ω

φ(|∇v|)∇v∇w dx =

∫
Ω

fw dx

holds true for each w ∈ W 1,Φε
0 (Ω). We list now some useful properties of the

functions Φε:

Lemma 3.1. Suppose (φ1)–(φ4). Then the function Φε satisfies the following

properties:

(a) Φε → Φ as ε→ 0;

(b) 1 < `ε ≤
Φ′ε(t)t

Φε(t)
≤ m, t > 0, ε > 0;

(c) `ε → 1 as ε→ 0;

(d) Φε is equivalent to the N -function tm for each ε > 0.

Proof. First of all, we mention that Φ and t 7→ εtm/m are N -functions.

Hence Φε is also a N -function. The proof for the limit in (a) is obvious.

Now we prove the item (b). Taking into account (φ3) we have that

(3.3) 1 ≤ φ(t)t2

Φ(t)
≤ m, t > 0.

As a consequence, we infer that

Φ′ε(t)t

Φε(t)
=
εtm + φ(t)t2

Φ(t) +
ε

m
tm

=

ε
tm

Φ(t)
+
φ(t)t2

Φ(t)

1 +
ε

m

tm

Φ(t)

≤
ε
tm

Φ(t)
+m

1 +
ε

m

tm

Φ(t)

= m.

On the other hand, using one more time (3.3), we also have that

(3.4)
Φ′ε(t)t

Φε(t)
=

ε
tm

Φ(t)
+
φ(t)t2

Φ(t)

1 +
ε

m

tm

Φ(t)

≥
ε
tm

Φ(t)
+ 1

1 +
ε

m

tm

Φ(t)

= h

(
tm

Φ(t)

)
,

where we define h(s) := (εs+ 1)/(εs/m+1). It is easy to see that h is increasing.

Furthermore, we observe that

d

dt

(
tm

Φ(t)

)
=
tm−1

Φ(t)

(
m− φ(t)t2

Φ(t)

)
≥ 0.
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As a consequence we obtain t 7→ tm/Φ(t) is nondecreasing. Hence the function

t 7→ h(tm/Φ(t)) is also nondecreasing. As a consequence, using the estimate

(3.4), we observe that

Φ′ε(t)t

Φε(t)
≥ lim
t→0

h

(
tm

Φ(t)

)
=

εa+ 1
ε

m
a+ 1

= 1 +
(m− 1)εa

εa+m
=: `ε > 1.

Here we have used the fact that Φ is a N -function satisfying m > 1. According

to the last estimate we see that lim
ε→0+

`ε = 1. This ends the proof for the item

(c). Moreover, using Proposition 2.2, we infer that

ε

m
tm ≤ Φε(t) ≤

(
Φ(1) +

ε

m

)
tm, t ≥ 1.

So that the proof of item (d) is now achieved. These facts finish the proof of this

proposition. �

In what follows we shall consider the approximating elliptic problem (3.1)

that admits exactly one solution uε for each ε > 0. In fact, due to the inequality

`ε > 1, we can apply the Theorem 2.4. Now we provide some a priori estimates

to the family uε.

Proposition 3.2. Suppose (φ1)–(φ3) where ` = 1. Let ε > 0 be fixed. Then

the sequence (uε) belongs to L∞(Ω), i.e. there exists Cε > 0 such that ‖uε‖ ≤ Cε.
Furthermore (uε) is bounded in W 1,Φ

0 (Ω) and W 1,1
0 (Ω).

Proof. Thanks to Lemma 3.1 (d) we infer that Φε ≈ tm. Taking q = N >

N/m the Theorem 4.1 ensures that any solution for the problem (3.1) is bounded,

that is, the unique solution for the quasilinear elliptic problem (3.1) (uε) is in

L∞(Ω) for each ε > 0. In other words, we know that uε ∈ W 1,Φ
0 (Ω) ∩ L∞(Ω)

for each ε > 0. Now, using the results discussed in Section 2 for Orlicz and

Orlicz–Sobolev spaces, we mention that the following embedding are continuous

W 1,m
0 (Ω) ↪→W 1,Φε

0 (Ω) ↪→W 1,`ε
0 (Ω) and W 1,Φε

0 (Ω) ↪→W 1,1
0 (Ω), see [1], [7].

On the other hand, we observe that Φ(t), εtm/m ≤ Φε(t), t ≥ 0. As a con-

sequence LΦε(Ω) ↪→ LΦ(Ω) and LΦε(Ω) ↪→ Lm(Ω). Furthermore, we infer that

W 1,Φε
0 (Ω) ↪→ W 1,Φ

0 (Ω) and W 1,Φε
0 (Ω) ↪→ W 1,m

0 (Ω). As a consequence the last

embedding says also that W 1,Φε(Ω) = W 1,m
0 (Ω). In particular, we obtain that

uε ∈W 1,m
0 (Ω) for each ε > 0.

Now we shall prove that uε is bounded in W 1,Φ
0 (Ω). Putting uε as testing

function in (3.2) we easily see that

ε

∫
Ω

|∇uε|m dx+

∫
Ω

φ(|∇uε|)|∇uε|2 dx =

∫
Ω

fuε dx.

Using the Hölder inequality we also see that

ε

∫
Ω

|∇uε|m dx+

∫
Ω

φ(|∇uε|)|∇uε|2 dx ≤ ‖f‖N‖uε‖1? .
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Taking into account the embedding W 1,1
0 (Ω) ↪→ L1?(Ω) there exists S = S(N,Ω)

> 0 in such way that

‖v‖1? ≤ S‖v‖W 1,1
0 (Ω), v ∈W 1,1

0 (Ω).

As a consequence the last embedding and hypothesis (φ3) imply that∫
Ω

Φ(|∇uε|) dx ≤
∫

Ω

φ(|∇uε|)|∇uε|2 dx(3.5)

≤ mε
∫

Ω

|∇uε|m dx+

∫
Ω

φ(|∇uε|)|∇uε|2 dx

≤ ‖f‖N‖uε‖1? ≤ S‖f‖N‖uε‖W 1,1
0 (Ω).

Let K > 0 be fixed. Using the last estimate and hypothesis (φ2) it follows that

‖uε‖W 1,1
0 (Ω) =

∫
|∇uε|≤K

|∇uε| dx+

∫
|∇uε|>K

|∇uε| dx

≤ K|Ω|+ 1

Kφ(K)

∫
|∇uε|>K

φ(|∇uε|)|∇uε|2 dx.

Combining these estimates we obtain

(3.6) ‖uε‖W 1,1
0 (Ω) ≤ K|Ω|+

S‖f‖N
Kφ(K)

‖uε‖W 1,1
0 (Ω).

Now due to the fact that lim
K→∞

Kφ(K) = ∞ there exists K0 > 0 such that

S‖f‖N/(Kφ(K)) < 1 for any K ≥ K0. In particular, using inequality (3.6), we

infer that

‖uε‖W 1,1
0 (Ω) ≤

K|Ω|

1− S‖f‖N
Kφ(K)

.

Furthermore, taking into account (3.5) and the estimate just above, we conclude

that ∫
Ω

Φ(|∇uε|) dx ≤
S‖f‖NK|Ω|

1− S‖f‖N
Kφ(K)

.

Now we define

R = max

{
S‖f‖NK|Ω|

1− S‖f‖N/(Kφ(K))
,

K|Ω|
1− S‖f‖N/(Kφ(K))

}
.

As a consequence we have that

(3.7)

∫
Ω

Φ(|∇uε|) dx ≤ R,
∫

Ω

φ(|∇uε|)|∇uε|2 dx ≤ R,
∫

Ω

|∇uε| dx ≤ R.

Accordingly to Lemma 2.2 it follows that

min
{
‖uε‖W 1,Φ

0 (Ω), ‖uε‖
m
W 1,Φ

0 (Ω)

}
≤
∫

Ω

Φ(|∇uε|) dx ≤ R.

Hence the sequence (uε) is now bounded in W 1,Φ
0 (Ω) and W 1,1

0 (Ω). �
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Now we prove that the Φ-Laplacian operator is of (S)+ type, see [5]. This

is a powerful tool in order to restore some compactness required in variational

methods.

Proposition 3.3. Suppose (φ1), (φ2), (φ3)′. Let (un) ∈ W 1,Φ
0 (Ω) be a se-

quence satisfying

(a) un
∗
⇀ u in W 1,Φ

0 (Ω);

(b) lim sup
n→∞

〈−∆Φun, un − u〉 ≤ 0.

Then we obtain that un → u in W 1,Φ
0 (Ω).

Proof. The proof is similar to the proof of [9, Proposition 3.5] replacing the

weak convergence un ⇀ u by the weak star convergence un
∗
⇀ u. For the reader

convenience we give here a sketch of the proof. Here we emphasize one more

time that W 1,Φ̃
0 (Ω) is not reflexive anymore. However, the Orlicz–Sobolev space

W 1,Φ̃
0 (Ω) is isomorphic to a closed set in the weak star topology. More precisely,

W 1,Φ̃
0 (Ω) ⊆

N+1∏
j=1

LΦ̃(Ω) '

(
N+1∏
j=1

EΦ̃

)?
where EΦ̃ is a separable space. Under these conditions the proof following the

same ideas discussed in [9, Proposition 3.5]. �

For the next result we borrow some ideas discussed by Boccardo et al. [3].

The main idea is to find at least one solution u for the problem (1.1) using some

fine estimates on the gradient of u.

Proposition 3.4. Suppose (φ1)–(φ4) where ` = 1. Then the problem (1.1)

admits at least one solution u ∈W 1,Φ
0 (Ω).

Proof. Let uε ∈ W 1,Φε
0 (Ω) be the unique solution for the auxiliary elliptic

problem (3.1). Accordingly to Proposition 3.2 we know that uε is bounded

in W 1,Φ
0 (Ω) and W 1,1

0 (Ω). As a consequence uε
∗
⇀ u in the weak star topology

in W 1,Φ
0 (Ω). Indeed, the Orlicz–Sobolev space W 1,Φ

0 (Ω) is isomorphic to a closed

set in the weak star topology. More precisely, as was mentioned before we observe

that

W 1,Φ
0 (Ω) ⊆

N+1∏
j=1

LΦ(Ω) '

(
N+1∏
j=1

EΦ

)?
where EΦ is a separable space. For further results on weak star topologies we

refer the reader to Gossez [18], [19].

Now, using the weak star convergence of uε, we observe that∫
Ω

|∇u||∇uε|φ(|∇uε|) dx ≤ C
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holds true for some C > 0. In fact, using Young’s inequality and the ∆2 condition

for Φ, we have that

|∇u||∇uε|φ(|∇uε|) ≤ Φ(|∇u|) + Φ̃(|∇uε|φ(|∇uε|))

≤ Φ(|∇u|) + Φ(2|∇uε|) ≤ Φ(|∇u|) + 2mΦ(|∇uε|).

Hence the last estimate together with (3.7) imply that∫
Ω

|∇u||∇uε|φ(|∇uε|) dx ≤
∫

Ω

[Φ(|∇u|) + 2mΦ(|∇uε|)] dx ≤ R+ 2mR.

Now we claim that u is a weak solution to the elliptic problem (1.1). Note also

that u is not in general a testing function for the auxiliary elliptic problem (3.1).

In this way, we shall consider a density argument in order to prove the claim

just above. More specifically, we know that C∞0 (Ω) is dense in W 1,1
0 (Ω) and

W 1,Φ
0 (Ω). As a result there exists a sequence (Uk) in C∞0 (Ω) in such way that

(3.8) ‖u− Uk‖W 1,1
0 (Ω), ‖u− Uk‖W 1,Φ

0 (Ω) ≤
1

k
.

Using uε − Uk as testing function in the problem (3.1) we mention that

(3.9) ε〈−∆muε, uε − Uk〉+ 〈−∆Φεuε, uε − Uk〉 =

∫
Ω

f(uε − Uk) dx.

The last identity is equivalently to

−ε
∫

Ω

|∇uε|m−2∇uε∇Uk dx+

∫
Ω

φ(|∇uε|)∇uε∇(uε−Uk) dx ≤
∫

Ω

f(uε−Uk) dx.

The last inequality can be written in the following form

− ε
∫

Ω

|∇uε|m−2∇uε∇Ukdx+

∫
Ω

φ(|∇uε|)∇uε∇(uε − u) dx

+

∫
Ω

φ(|∇uε|)∇uε∇(u− Uk) ≤
∫

Ω

f(uε − u) dx+

∫
Ω

f(u− Uk) dx.

Moreover, we mention that φ(|∇u|)|∇u||∇(uε − u)| ∈ L1(Ω).

At this moment we claim that∣∣∣∣∫
Ω

|∇uε|m−2∇uε∇Uk dx
∣∣∣∣ ≤ C

holds for some C > 0 independent on ε > 0. Indeed, the continuous embedding

W 1,Φε(Ω) ↪→W 1,m
0 (Ω) provide a positive number C > 0 in such way that

‖v‖W 1,m
0 (Ω) ≤ C‖v‖W 1,Φε

0 (Ω), v ∈W 1,Φε
0 (Ω).

Taking v = uε in the previous estimate we obtain

‖uε‖W 1,m
0 (Ω) ≤ C‖uε‖W 1,Φ

0 (Ω) ≤ C.
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In other words, we have shown that (uε) is bounded in W 1,m
0 (Ω) for any ε > 0.

Hence, using the Hölder inequality and the estimate just above, we deduce∣∣∣∣∫
Ω

|∇uε|m−2∇uε∇Uk dx
∣∣∣∣ ≤ ‖|∇uε|m−1‖m/m−1‖Uk‖W 1,m

0 (Ω)

≤ ‖uε‖m−1

W 1,m
0 (Ω)

‖Uk‖W 1,m
0 (Ω) ≤ C‖Uk‖W 1,m

0 (Ω).

It follows tha,t if we take the limit in the last inequality, we see that

(3.10) lim
ε→0

ε

∫
Ω

|∇uε|m−2∇uε∇Uk dx = 0.

On the other hand, due to the weak star convergence, we also see that

(3.11) lim
ε→0

∫
Ω

f(uε − u) dx = 0.

Now, using one more time the Hölder inequality, we observe that

(3.12) lim
k→∞

∫
Ω

f(u− Uk) dx = 0.

In fact, using Orlicz–Sobolev embedding and (3.8), we easily see that∣∣∣∣∫
Ω

f(u− Uk) dx

∣∣∣∣ ≤ ‖f‖N‖u− Uk‖1? ≤ C‖f‖N‖u− Uk‖ ≤ C‖f‖N
k

.

as k →∞. Furthermore, we claim also that

lim
k→∞

∫
Ω

φ(|∇uε|)∇uε∇(u− Uk) dx = 0.

Indeed, from the Hölder inequality we have that

(3.13)

∣∣∣∣∫
Ω

φ(|∇uε|)∇uε∇(u− Uk) dx

∣∣∣∣
≤ 2‖∇(u− Uk)‖Φ‖φ(|∇uε|)|∇uε|‖Φ̃ ≤

2

k
‖φ(|∇uε|)|∇uε|‖Φ̃.

On the other hand, due to the ∆2 condition for Φ and estimation (3.7), we get∫
Ω

Φ̃(φ(|∇uε|)|∇uε|) ≤
∫

Ω

Φ(2|∇uε|) dx ≤ 2m
∫

Ω

Φ(|∇uε|) ≤ 2mR.

Now, using one more time that Φ is convex, we deduce that

‖φ(|∇uε|)|∇uε|‖Φ̃
∫

Ω

Φ̃

(
φ(|∇uε|)|∇uε|
‖φ(|∇uε|)|∇uε|‖Φ̃

)
≤
∫

Ω

Φ̃(φ(|∇uε||∇uε|) dx ≤ 2mR

holds true whenever ‖φ(|∇uε|)|∇uε|‖Φ̃ ≥ 1. Hence the last estimate shows that

‖φ(|∇uε|)|∇uε|‖Φ̃ ≤ max(1, 2mR).

Now, taking into account (3.13), we obtain that

lim
k→∞

∫
Ω

φ(|∇uε|)∇uε∇(u− Uk) dx = 0.
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At this moment, using (3.10)–(3.12) and taking the limits as ε→ 0 and k →∞
in the inequality (3.9), we get

lim sup
ε→0

∫
Ω

φ(|∇uε|)∇uε∇(uε − u)dx = 0

Summing up, due to the (S+) condition, see Proposition 3.3, for the Φ-Laplacian

operator, we have that uε → u as ε → 0 in W 1,Φ
0 (Ω). It follows from Boccardo

and Murat [2] that ∇uε → ∇u almost everywhere in Ω. Since uε → u we

infer that

lim
ε→0

∫
Ω

Φ(|∇(uε − u)|) dx→ 0.

Thanks to the Dominated Convergence Theorem Φ(|∇(uε − u)|) ≤ h almost

everywhere in Ω for some function h ∈ L1(Ω). The last estimate says that

|∇(uε − u)| ≤ Φ−1(h) a.e. in Ω.

As a consequence

|∇uε| ≤ |∇(uε − u)|+ |∇u| ≤ Φ−1(h) + |∇u|.

In particular, using one more time Young’s inequality and ∆2 condition for Φ,

we have that

φ(|∇uε|)|∇uε||∇v| ≤ Φ(|∇v|) + Φ̃(φ(|∇uε|)|∇uε|)

≤ Φ(|∇v|) + Φ(2|∇uε|) ≤ Φ(|∇v|) + 2mΦ(|∇uε|).

Now, using the last estimate and due to the convexity of Φ, we obtain

φ(|∇uε|)|∇uε||∇v| ≤ Φ(|∇v|) + 2mΦ(|∇u|+ Φ−1(h))

≤ Φ(|∇v|) + 22m[Φ(|∇u|) + h].

As a consequence the Lebesgue convergence theorem implies that

lim
ε→0

∫
Ω

φ(|∇uε|)∇uε∇v dx =

∫
Ω

φ(|∇u|)∇u∇v dx, v ∈W 1,Φ
0 (Ω).

Putting all estimates together and taking the limit as ε→ 0 in the equation

ε〈−∆muε, v〉+

∫
Ω

φ((|∇uε|)∇uε∇v dx =

∫
Ω

fv dx, v ∈W 1,Φ
0 (Ω),

we conclude that∫
Ω

φ(|∇u|)∇u∇v dx =

∫
Ω

fv dx, v ∈W 1,Φ
0 (Ω)

In conclusion, u ∈W 1,Φ
0 (Ω) is a weak solution for the problem (1.1). �

Proposition 3.5. Suppose (φ1)–(φ4) where ` = 1. Then the problem (1.1)

admits exactly one solution u ∈W 1,Φ
0 (Ω).
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Proof. The proof follows using the same ideas discussed in the proof of

Proposition 2.7. The main point here is to ensure that the Φ-Laplacian opera-

tor is strictly monotonic. As a consequence problem (1.1) admits at most one

solution u ∈ W 1,Φ
0 (Ω). Besides that, using Proposition 3.4, there exists at least

one solution u ∈ W 1,Φ
0 (Ω) for the problem (1.1). These facts imply that prob-

lem (1.1) admits exactly one weak solution for the non-reflexive case. We omit

the details. �

In what follows we shall consider the elliptic problem (1.2) assuming that g

is superlinear. One more time we study the auxiliary elliptic problem

(3.14)

−∆Φεu = g(x, u) in Ω,

u = 0 on ∂Ω,

where ε > 0 and Φε(t) = εtm/m + Φ(t), t ≥ 0. Here is important to recover

the definition for weak solution u ∈ W 1,Φε
0 (Ω) to the problem (3.14) which is

given by ∫
Ω

φε(|∇u|)∇u∇w dx =

∫
Ω

g(x, u)w dx, w ∈W 1,Φε
0 (Ω).

Recall that weak solutions for (3.14) are precisely the critical point for the func-

tional J : W 1,Φε
0 (Ω)→ R given by

J(u) =

∫
Ω

Φε(|∇u|) dx−
∫

Ω

G(x, u) dx

where G(x, t) =
∫ t

0
g(x, s) ds, t ∈ R, x ∈ Ω. As a consequence finding weak

solutions to the problem (1.2) is equivalent to find critical points for J . Using the

approximating problem (3.14) we observe that J satifies the Cerami condition for

each ε > 0, see Carvalho et al. [5]. In addition, using hypotheses (φ1)–(φ3) and

(g1)–(g4), the functional J possesses the mountain pass geometry, see Carvalho

et al. [5]. In this way, we shall consider the following existence result

Proposition 3.6. Suppose (φ1)–(φ3) where ` = 1. Assume also that (g1)–

(g4) holds. Then the problem (3.14) admits at least one weak solution in uε ∈
W 1,Φε

0 (Ω) for each ε > 0. Furthermore, using regularity results, we also mention

that uε is in C1,αε(Ω), for some αε > 0.

Proof. First of all, we recall that W 1,Φε
0 (Ω) is a reflexive Banach space due

the fact that `ε > 1 for each ε > 0. Here the Lemma 3.1 was used. As a con-

sequence, using the Mountain Pass Theorem, we know that the problem (1.2)

admits at least one solution uε ∈ W 1,Φε
0 (Ω) ∩ C1,αε(Ω) for each ε > 0, see

Carvalho et al. [5]. We omit the details. �

Proposition 3.7. Suppose (φ1)–(φ4) where ` = 1. Assume also that (g1)–

(g4) holds. Then the problem (1.2) admits at least one weak solution u∈W 1,Φ
0 (Ω).
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The proof is similar to that discussed in the proof of Proposition 3.4. We

omit it here.

Let X be a Banach space endowed with the norm ‖ ·‖. Consider a functional

J : X → R of C1 class. Recall that a sequence (un) ∈ X is said to be a Cerami

sequence at the level c ∈ R, in short (Ce)c sequence, whenever J(un) → c and

(1 + ‖un‖)‖J ′(un)‖ → 0 as n → ∞. The functional J satisfies the Cerami

condition at the level c ∈ R, in short (Ce)c condition, whenever any Cerami

condition at the level c possesses a convergent subsequence. When J satisfies

the Cerami condition at any level c ∈ R we say purely that J satisfies the Cerami

condition, in short, we write (Ce) condition.

At this moment we shall truncate the function g in the following ways

g+(x, t) =

g(x, t) for t ≥ 0, x ∈ Ω,

0 for t < 0, x ∈ Ω,

and

g−(x, t) =

g(x, t) for t ≤ 0, x ∈ Ω,

0 for t > 0, x ∈ Ω.

At the same time we define the functionals J± : W 1,Φε
0 (Ω)→ R given by

J±(u) =

∫
Ω

Φε(|∇u|) dx−
∫

Ω

G±(x, u) dx

where G±(x, t) =
∫ t

0
g±(x, s) ds, t ∈ R, x ∈ Ω. It is not hard to verify that J±

admits the mountain pass geometry.

Proposition 3.8. Suppose (φ1)–(φ4) and ` = 1 holds true. Assume also

that (g1)–(g4) holds. Then the problem (1.2) admits at least two nontrivial weak

solutions u1, u2 ∈W 1,Φ
0 (Ω).

Proof. The proof follows from the Mountain Pass Theorems for the func-

tionals J±. Once again we observe that J± satisfies the Cerami condition for

each ε > 0, see Carvalho et al. [5]. Here was used the fact that `ε > 1. In

this way we obtain two sequences u+
ε , u

−
ε ∈ W

1,Φε
0 (Ω) of critical points for J+

and J−, respectively.

At this stage we claim that there exists r0 > 0 in such way that J±(u±ε ) ≥ r0

where r0 does not depend on ε > 0. In fact, using (ψ1) and (g4), given 0 < η < λ1

there exist C, δ > 0 such that

G±(x, t) < (λ1 − η)Φ(t) + CΨ(t), t ∈ R.

Hence, taking into account the Poincaré inequality and using the estimate Φε(t)≥
Φ(t), t ∈ R, W 1,Φ

0 (Ω) ↪→ LΨ(Ω), it follows that

J±(u) ≥
∫

Ω

Φε(|∇u|) dx− (λ1 − η)

∫
Ω

Φ(u) dx− C
∫

Ω

Ψ(u) dx
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≥ η

λ1

∫
Ω

Φ(|∇u|) dx− C
∫

Ω

Ψ(u) dx

≥ η

λ1
min{‖u‖, ‖u‖m} − C max{‖u‖`Ψ , ‖u‖mΨ}

= ‖u‖m
(
η

λ1
− C‖u‖`Ψ−m

)
holds true for each ‖u‖ ≤ 1.

Now using the same ideas discussed in the proof of Proposition 3.4 we point

out that u+
ε
∗
⇀ u1 and u−ε

∗
⇀ u2 in the weak star topology. Furthermore, the

functional J± is weak star lower semicontinuous. Now, applying Proposition 3.3,

we deduce that u+
n → u1 and u−n → u2 in W 1,Φ

0 (Ω). Hence, taking the negative

part of u1 as testing function, we obtain that u1 ≥ 0 in Ω. Similarly, we also

obtain u2 ≤ 0 in Ω. As a consequence u1, u2 are nontrivial critical points to

the functional J which give us weak nontrivial solutions to the elliptic prob-

lem (1.2). �

4. Regularity results for some quasilinear elliptic problems

In this section we prove a regularity result for the problem (1.1). More

precisely, we shall prove that each weak solution for the quasilinear elliptic prob-

lem (1.1) remains bounded whenever f ∈ Lq(Ω) for some q > N/m. This result

is well known for the Laplacian and p-Laplacian operator. To the best of our

knowledge this regularity result is new in the Orlicz and Orlicz–Sobolev frame-

work. This can be done by using the Moser iteration. More precisely, using the

Moser’s method we shall prove the following regularity result:

Theorem 4.1. Let Φ: R → R be a N -function satisfying the ∆2-condition.

Assume also that there exist positive constants C1, C2 such that

(4.1) C1 ≤
Φ(t)

tm
≤ C2 for all t > 0.

Suppose that f ∈ Lq(Ω) where q > N/m and u is a weak solution for the prob-

lem (1.1). Then we obtain that u ∈ L∞(Ω).

Proof. For R > 0, define ΩR = {x ∈ Ω : dist(x, ∂Ω) > R}. For 0 < R2 <

R1, let ϕ = ηm(umαs u−kmα+1) where α is a parameter to be chosen conveniently

later. Define also u = max{u, k} for k > 0, us = min{u, s} and η ∈ C1
0 (Ω) which

satisfies η = 1 in ΩR1
, η = 0 in Ω \ΩR2

, η ≥ 0 and |∇η| ≤ C/(R1−R2) for some

constant C > 0. Note that ϕ ∈W 1,Φ
0 (Ω) and

∇ϕ = ηm
[
mαumα−1

s u∇us + umαs ∇u
]

+mηm−1
(
umαs u− kmα+1

)
∇η.

At this stage, we substitute the function ϕ in the equation (1.1) proving that

(4.2) mα

∫
ηmumα−1

s uφ(|∇u|)∇u∇us +

∫
ηmumαs φ(|∇u|)∇u∇u
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+m

∫
ηm−1

(
umαs u− kmα+1

)
φ(|∇u|)∇u∇η =

∫
fηm

(
umαs u− kαm+1

)
.

Notice that for u ≤ k we obtain that ∇u,∇us = 0 and (umαs u− kmα+1) = 0. It

follows from (4.2) that

(4.3) mα

∫
ηm umα−1

s uφ(|∇us|)|∇us|2 +

∫
ηmumαs φ(|∇u|)|∇u|2

+m

∫
ηm−1

(
umαs u− kmα+1

)
φ(|∇u|)∇u∇η =

∫
fηm

(
umαs u− kαm+1

)
.

Note also that
(
umαs u− kmα+1

)
≤ umαs u. The last assertion implies that

mηm−1
(
umαs u− kmα+1)φ(|∇u|)∇u∇η ≤ mηm−1 umαs uφ(|∇u|)|∇u||∇η|.

It follows from Young’s inequality that

(4.4) mηm−1
(
umαs u− kmα+1

)
φ(|∇u|)∇u∇η

≤ m(Φ̃(εηm−1φ(|∇u||∇u|)) + Φ(u|∇η|/ε))umαs .

Furthermore, taking into account the ∆2-condition for the function Φ, we see

that

Φ(u|∇η|/ε) ≤ max{(|∇η|/ε)`, (|∇η|/ε)m}Φ(u) = g1(x, ε)Φ(u)

where g1(x, ε) = max
{

(|∇η|/ε)`, (|∇η|/ε)m
}

. Again, applying the ∆2-condition

for the function Φ, we see also that

Φ̃(εηm−1φ(|∇u||∇u|)) ≤ max
{

(εηm−1)`
′
, (εηm−1)m

′}
Φ̃(|∇u||∇u|)

= g2(x, ε)Φ̃(φ(|∇u|)|∇u|),

where g2(x, ε) = max
{

(εηm−1)`
′
, (εηm−1)m

′}
. Now, we observe that Φ̃(φ(t)t) ≤

CΦ(t) ≤ Cφ(t)t2, t ≥ 0 holds true for some constant C > 0.

It follows from the last inequalities and (4.4) that

m

∫
ηm−1

(
umαs u− kmα+1

)
φ(|∇u|)∇u∇η(4.5)

≤
∫
mΦ̃

(
εηm−1φ(|∇u|)|∇u|

)
+

∫
mΦ(u|∇η|/ε)umαs

≤
∫
Cm

[
g2(x, ε)φ(|∇u|)|∇u|2 + g1(x, ε)φ(u)u2

]
umαs .

Now, we use (4.3) together with the last estimate showing that

(4.6) mα

∫
ηm umα−1

s uφ(|∇us|)|∇us|2

+

∫ (
ηm − Cmg2(x, ε)

)
umαs φ(|∇u|)|∇u|2

≤
∫
Cmg1(x, ε)φ(u)u2 umαs +

∫
|f |ηmumαs u.
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Note that, for each ε > 0 small enough, g2(x, ε) = εm
′
η(m−1)m′ = εm

′
ηm implies

that ηm−Cmg2(x, ε) = ηm−Cmεm′ηm = ηm
(
1−Cmεm′

)
. Thus we can choose

a small ε in such a way that ηm − Cmg2(x, ε) > 0. Hence, by fixing such ε and

using the fact that us ≤ u, |∇us| ≤ |∇u|, it follows from (4.6) that

(4.7)
(
mα+ 1− Cmεm

′) ∫
ηm umαs φ(|∇us|)|∇us|2

≤
∫
Cmg1(x, ε)φ(u)u2 umαs +

∫
|f |ηm umαs u.

Now, we shall study the term with the f function in (4.7). We begin by noting

that u ≥ k implies that um−1 ≥ km−1 whence u ≤ um/km−1. Therefore, by

using the Hölder inequality, Young inequality and interpolation inequalities we

obtain that∫
|f |ηm umαs u ≤ ‖f‖q‖ηmumαs u‖q′ ≤

‖f‖q
km−1

∥∥ηm umαs u
∥∥
q′

(4.8)

≤ ‖f‖q
km−1

‖ηuαs u‖m(1−N/mq)
m ‖ηuαs u‖

mN/mq
m?

≤ ‖f‖q
km−1δmq/(mq−N)

∫
ηrumαs um +

‖f‖qδmq/N

km−1
‖η uαs u‖mm? ,

where δ > 0 will be chosen later and m? denotes the Sobolev critical exponent

mN/(N −m).

It follows from (4.7) and (4.8) that

(4.9)
(
mα+ 1− Cmεm

′) ∫
ηm umαs φ(|∇us|)|∇us|2

≤
∫
Cmg1(x, ε)φ(u)u2 umαs +

‖f‖q
km−1δmq/(mq−N)

∫
ηmumαs um

+
‖f‖qδmq/N

km−1
‖ηuαs u‖mm? .

In order to apply our argument, noticing that∣∣∇(ηuα+1
s

)∣∣m ≤ C(um(α+1)
s |∇η|m + ηm umαs |∇us|m

)
and by using (4.1) and the fact that Φ satisfies the ∆2-condition, we infer that

(4.10)

∫ ∣∣∇(ηuα+1
s

)∣∣m ≤ C ∫ (um(α+1)
s |∇η|m + ηm umαs φ(|∇us|)|∇us|2

)
.

Now, using the Sobolev embedding, (4.9) and (4.10), we ensure the following

inequality∥∥ηuα+1
s

∥∥m
m?
≤C

∫
um(α+1)
s |∇η|m(4.11)

+
C

mα+ 1− Cmεm′
∫
mg1(x, ε)φ(u)u2 umαs
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+
C

mα+ 1− Cmεm′
(

‖f‖q
km−1δmq/(mq−N)

∫
ηm umαs um

+
‖f‖qδmq/N

km−1

∥∥η uαs u∥∥mm?).
Furthermore, by letting s → ∞ and using the monotone convergence theorem,

we conclude from (4.11) that

(4.12)
∥∥ηuα+1

∥∥m
m?
− C

mα+ 1− Cmεm′
‖f‖qδmq/N

km−1
‖η uα+1‖mm?

≤ C
∫
um(α+1)|∇η|m +

C

mα+ 1− Cmεm′
(∫

mg1(x, ε)um(α+1)

+
‖f‖q

km−1δmq/(mq−N)

∫
ηm um(α+1)

)
.

In this way, we choose

δ =

(
(mα+ 1− Cmεm′)km−1

2C‖f‖q

)N/mq
.

Hence, using this δ > 0 in (4.12) we get∥∥η uα+1
∥∥m
m?
≤C

∫
um(α+1)|∇η|m(4.13)

+
C

mα+ 1− Cmεm′
∫
mg1(x, ε)um(α+1)

+ C

(
‖f‖q

(mα+ 1−Cmεm′)km−1

)N/(mq−N)∫
ηm um(α+1).

Now, we define

G(R1, R2) =

(
1

R1 −R2

)`
+

(
1

R1 −R2

)m
.

Hence we obtain from (4.13) and the definition of η and g1 that∥∥ηuα+1
∥∥m
m?
≤ C

(R1 −R2)m

∫
ΩR2

um(α+1)(4.14)

+
CG(R1, R2)

mα+ 1− Cmεm′
∫

ΩR2

um(α+1)

+ C

(
‖f‖q

(mα+ 1− Cmεm′)km−1

)N/(mq−N)∫
ΩR2

um(α+1).

Since η = 1 in ΩR1
and (4.14) we easily see that

(4.15)
∥∥uα+1

∥∥
Lm? (ΩR1

)

≤ C
[

1

R1 −R2
+

(
G(R1, R2)

mα+ 1− Cmεm′
)1/m]∥∥uα+1

∥∥
Lm(ΩR2

)
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+ C

(
‖f‖q

(mα+ 1− Cmεm′)km−1

)N/m(mq−N)∥∥uα+1
∥∥
Lm(ΩR2

)
.

Let χ = N/(N −m) be a fixed function. It follows from (4.15) that

(4.16) ‖u‖Lmχ(α+1)(ΩR1
) ≤ C1/(α+1)

[
1

(R1 −R2)
+

(
G(R1, R2)

mα+ 1− Cmεm′
)1/m

+

(
‖f‖q

(mα+ 1− Cmεm′)km−1

)N/m(mq−N)]1/(α+1)

‖u‖Lm(α+1)(ΩR2
).

In this way, for n ∈ {0, 1, . . .}, define α+ 1 = χn and Rn = R2 + (R1 −R2)/2n.

It is not hard to verify that (4.16) implies

‖u‖Lmχn+1 (ΩRn+1
)(4.17)

≤ C1/χn
[

1

Rn −Rn+1
+

(
G(Rn, Rn+1)

m(χn − 1) + 1− Cmεm′
)1/m

+

(
‖f‖q

(m(χn − 1) + 1− Cmεm′)km−1

)N/m(mq−N)]1/χn

‖u‖Lmχn (ΩRn ).

Here we emphasize that Rn −Rn+1 = (R1 −R2)/2n+1 goes to zero as n goes to

infinity. Therefore there exists a positive constant C > 0 (independent of n) in

such way that

G(Rn, Rn+1)1/m ≤ C

(Rn −Rn+1)
.

As a consequence, applying (4.17) and the last inequality, we obtain

(4.18) ‖u‖Lmχn+1 (ΩRn+1
)

≤ C1/χn
[

2n+1

R1 −R2
+

(
2n+1

R1 −R2

1

m(χn − 1) + 1− Cmεm′
)1/m

+

(
‖f‖q

(m(χn − 1) + 1− Cmεm′)km−1

)N/m(mq−N)]1/χn

‖u‖Lmχn (ΩRn ).

From now on, by choosing n = 0, 1, . . ., we obtain that ‖u‖Lmχn (ΩRn ) is finite

for every n. Moreover, using the fact that χ > 1, there exists n0, which depend

upon χ, such that (
1

m(χn − 1) + 1− Cmεm′
)1/mχn

≤ 1

and (
1

m(χn − 1) + 1− Cmεm′
)N/m(mq−N)χn

≤ 1, for all n ≥ n0.

As a consequence, we mention that

(4.19) ‖u‖Lmχn+1 (ΩRn+1
) ≤ C

1/χnσ‖u‖Lmχn (ΩRn ),
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holds for any n ≥ n0 where

σ =

[
2n+1

R1 −R2
+

(
2n+1

R1 −R2

)1/m

+

(
‖f‖q
km−1

)β]1/χn

and β = N/m(mq −N). Now, we can also assume that for n ≥ n0 proving that(
2n+1

R1 −R2

)1/m

≤ 2n+1

R1 −R2
and 1 ≤ 2n+1

R1 −R2
.

Therefore, using (4.19), we observe that

‖u‖Lmχn+1 (ΩRn+1
) ≤

[
C

R1 −R2

(
1 +

‖f‖βq
kβ(m−1)

)]1/χn

2(n+1)/χn‖u‖Lmχn (ΩRn )

holds for all n ≥ n0. Hence the last assertion implies that (after an argument of

iteration)

‖u‖Lmχn+1 (ΩRn+1
) ≤

n∏
i=n0

[
C

R1 −R2

(
1+

‖f‖βq
kβ(m−1)

)]1/χi

2(i+1)/χi‖u‖Lmχn0 (ΩRn0
).

holds true for n ≥ n0. Now, doing n→∞ we infer that

(4.20) ‖u‖L∞(ΩR1
) ≤

[
C

R1 −R2

(
1 +

‖f‖βq
kβ(m−1)

)]1/(1−χ)

‖u‖Lmχn0 (ΩRn0
).

As a consequence, the estimate (4.20) implies that u+ ∈ L∞(ΩR1
). Using the

same ideas discussed just above we also obtain that u− ∈ L∞(ΩR1
). In order

to extend the result the estimate for the boundary, for small s > 0, we define

Us = {x ∈ RN \ Ω : dist(x, ∂Ω) < s}. Here we define also Ωs = Ω ∪ Us. Let

ũ, f̃ : Ωs → R be extensions by zero of u, f , respectively. Note that ũ is a solution

of the problem (1.1) with f̃ in the place of f and Ωs in the place of Ω. Now we

apply the same argument as before in order to conclude that u ∈ L∞(Ω). �

5. The proof our main theorems

In this section we prove our main theorems using the Orlicz–Sobolev frame-

work discussed in previous sections.

Proof of Theorem 1.3. First of all, using Proposition 3.5 we know that

problem (1.1) admits exactly one solution u ∈ W 1,Φ
0 (Ω). According to Theo-

rem 4.1 we mention that u is in L∞(Ω) whenever Φ is equivalent to the function

t→ |t|r, r ∈ (1,∞) and ` > 1. �

Proof of Theorem 1.4. Initially, using hypothesis (φ3) and Proposi-

tion 3.7, we obtain at least one weak solution u ∈W 1,Φ
0 (Ω). Furthermore, using

(φ3) instead of (φ3)′, we obtain two weak solutions u1, u2 ∈ W 1,Φ
0 (Ω) in such

way J(u1), J(u2) > 0, see Proposition 3.8. Hence, taking the negative part of u1

as testing function, we deduce that u1 ≥ 0. At the same time, using the positive

part of u2, we observe that u2 ≤ 0. Now, we know also that u1, u2 ∈ L∞(Ω)
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whenever ` > 1, see [28]. So that regularity results on quasilinear elliptic prob-

lems imply that u1, u2 ∈ C1,α(Ω) for some α ∈ (0, 1), see Lieberman [21], [22]

whenever ` > 1. Furthermore, the solutions u1 > 0 and u2 < 0 in Ω thanks to

the Maximum Principle for quasilinear elliptic equations, see [26]. �
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