
Topological Methods in Nonlinear Analysis
Volume 54, No. 1, 2019, 383–406

DOI: 10.12775/TMNA.2019.056

c© 2019 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University in Toruń

NONLOCAL SCHRÖDINGER EQUATIONS

FOR INTEGRO-DIFFERENTIAL OPERATORS

WITH MEASURABLE KERNELS

Ronaldo C. Duarte — Marco A.S. Souto

Abstract. In this paper we investigate the existence of positive solutions

for the problem

−LKu + V (x)u = f(u)

in RN , where −LK is an integro-differential operator with measurable ker-

nel K. Under apropriate hypotheses, we prove by variational methods that
this equation has a nonnegative solution.

1. Introduction

In this paper we consider the class of integro-differential Schrödinger equa-

tions

(P) −LKu+ V (x)u = f(u) in RN ,

where −LK is an integro-differential operator, given by

−LKu(x) = 2 lim
ε→0+

∫
|x−y|>ε

(u(y)− u(x))K(x− y) dy

and K satisfies general properties. This study leads both to nonlocal and to non-

linear difficulties. For example, we cannot benefit from the s-harmonic extension

of Caffarelli and Silvestre (see [11]) or commutator properties (see [29]).
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The study of nonlocal operators is important because it intervenes in a quan-

tity of applications and models. For example, we mention their use in phase tran-

sition models (see [1], [10]), image reconstruction problems (see [24]), obstacle

problem, optimization, finance, stratified materials, anomalous diffusion, crystal

dislocation, semipermeable membranes, flame propagation, conservation laws,

ultra-relativistic limits of quantum mechanics, quasi-geostrophic flows, multiple

scattering, minimal surfaces, materials science and Lévi process (see [9]).

This paper was motivated by [3]. In this paper the authors studied the

existence of positive solutions for the problem−∆u+ V (x)u = f(u) in RN ,
u ∈ D1,2(RN ),

where V and f are Hölder continuous functions, V is nonnegative and f has

a subcritical or critical growth. Our purpose is to study a similar problem when

the laplacian operator is replaced by the operator −LK . In this case, we have

difficulties because our operator is nonlocal and some methods used in [3] cannot

be used.

Several papers have studied the problem (P) when K(x) = CN,s|x|−N−2s,

where

CN,s =

(∫
RN

1− cos(ξ1)

|ξ|N+2s
dξ

)−1

,

that is, when −LK is the fractional laplacian operator (see [18]); we will mention

some of these papers. In [5], the author has proved the existence of positive

solutions of (P) when V is a constant small enough. Also, in [27], the problem

was studied when f is asymptotically linear and V is constant. In [37], the

authors have studied the problem (P) when V ∈ CN (RN ,R), V is positive and

lim
|x|→∞

V (|x|) ∈ (0,∞].

In [43], the authors have studied (P) when V and f are asymptotically periodic.

When V = 1, Felmer et al. have studied the existence, the regularity and

the qualitative properties of ground states solutions for problem (P) (see [22]).

In [40], the authors have shown the existence of solutions for (P) when V ∈
CN (RN ,R) and there exists r0 > 0 such that, for any M > 0,

meas({x ∈ Br0(y);V (x) ≤M})→ 0 as |y| → ∞.

In [29] the problem (P) was studied when V ∈ C1(RN ,R),

lim inf
|x|→∞

V (x) ≥ V∞,

where V∞ is constant, and f ∈ C1(RN ,R). By method of the Nehari manifold,

Secchi has showed that the problem (P) has a solution if V ≤ V∞, but V is

not identically equal to V∞, where V∞ is a constant. Also in [29], Secchi has



Nonlocal Schrödinger Equations 385

obtained the existence of ground state solutions of (P) for general s ∈ (0, 1)

when V (x) → ∞ as |x| → ∞. In [42], the authors obtain the existence of

a sequence of radial and non radial solutions for the problem (P) when V and f

are radial functions. Some other interesting studies by variational methods of

the problem (P) can be found in [4], [7], [12]–[14], [16], [21], [25], [26], [28], [30],

[34], [35], [38] and [41]. Many of them use strong tools that we cannot use here

in our problem, as the s-harmonic extension and commutator properties.

In the literature, interesting conditions on V have been studied. Motivated

by the above papers, especially by [3], we will assume hypotheses about f and V

analogous to the hypotheses assumed in [3]. We will assume that the potential V

satisfies:

(V1) inf
x∈RN

V (x) > 0.

(V2) V (x) ≤ V∞ for some constant V∞ > 0 and for all x ∈ B1(0) = {x ∈ RN :

|x| < 1}.
(V3) There are R > 0 and Λ > 0 such that V (x) ≥ Λ for all |x| ≥ R.

Also, we will assume that f ∈ C(R,R) is a function satisfying:

(f1) |f(s)| ≤ c0|s|p−1, for some constant c0 > 0 and p ∈ (2, 2∗s), where 2∗s =

2N/(N − 2s) and N > 2s.

(f2) There is θ > 2 such that θF (t) ≤ tf(t) for all t > 0, where

F (t) =

∫ t

0

f(s) ds.

(f3) f(t) > 0 for all t > 0 and f(t) = 0 for all t < 0.

The kernel K : RN → (0,∞) is a measurable function satisfying:

(K1) K(x) = K(−x) almost everywere in RN .

(K2) There are λ > 0 and s ∈ (0, 1) such that λ ≤ K(x)|x|N+2s almost

everywere in RN .

(K3) γK ∈ L1(RN ), where γ(x) = min{|x|2, 1}.

Note that, if K = CN,s|x|−(N+2s) then the operator −LK is the fractional

laplacian, (−∆)s.

Our main result is the Theorem 5.2. It states that if V satisfies (V1)–(V3)

and f satisfies (f1)–(f3), then there is Λ∗ = Λ∗(V∞, θ, p, c0, s) > 0 such that if

Λ > Λ∗, then the problem (P) has a nonnegative nontrivial solution.

Our paper is organized as follows. In Section 2 we will present some proper-

ties of the space in which we will study the problem (P). The functional associ-

ated with the problem (P) does not have the mountain pass geometry. Therefore,

inspired by the idea of [3], we define an auxiliary problem. We show in Proposi-

tion 3.7 that the functional associated with the auxiliary problem has the moun-

tain pass geometry and it satisfies the Palais–Smale condition. The argument
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used in [3] does not work well in our case because our operator is nonlocal. To

show Proposition 3.7, we need to prove some technical lemmas: Lemmas 3.2–3.6.

We emphasize that the techniques used in [3] could not be adapted for our case,

therefore we use a new technique. In Section 4 we will prove a general estimate

for weak solutions of

−LKu+ b(x)u = g(x, u),

where b ≥ 0, |g(x, t)| ≤ h(x)|t| and h ∈ Lq(RN ) with q > N/2s. We will show

that there is M = M(q, ‖h‖Lq(RN )) such that, the solution u satisfies

‖u‖L∞(RN ) ≤M‖u‖L2∗s (R
N ) .

This estimate will be obtained in Proposition 4.5. In [2], using the s-harmonic

extension of [11], the authors have showed the same estimate when −LK is

the fractional laplacian operator. In our case, we cannot use the s-harmonic

extension, because we don’t have a analogously version of this result for general

operators. The strategy of the proof is to define special functions through the

mean value theorem (see equations (4.1) and (4.2)). The Lemmas 4.3 and 4.4 are

technical lemmas and they show that there is a order between these two functions.

This order and other properties are fundamental in the proof of inequality (4.13),

consequently in the proof Proposition 4.5. To the best of our knowledge, we

emphasize that this general estimate obtained in Proposition 4.5 is new in the

literature. As an application of the estimate obtained in Section 4, we prove the

Theorem 5.2. This is a new result in the literature.

2. Preliminaries

Consider s ∈ (0, 1). We denote by Hs(RN ) the fractional Sobolev space,

defined as

Hs(RN ) :=

{
u ∈ L2(RN ) :

∫
RN

∫
RN

(u(x)− u(y))2

|x− y|N+2s
dx dy <∞

}
.

The space Hs(RN ) is a Hilbert space with the norm

‖u‖Hs(RN ) :=

(∫
RN
|u|2dx+

∫
RN

∫
RN

(u(x)− u(y))2

|x− y|N+2s
dx dy

)1/2

.

We define X as the linear space of functions u : RN → R in L2(RN ) such that

(x, y) 7→ (u(x)− u(y))
√
K(x− y)

is in L2(RN × RN ). The function

‖u‖X :=

(∫
RN

u2 dx+

∫
RN

∫
RN

(u(x)− u(y))2K(x− y) dx dy

)1/2
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defines a norm in X and (X, ‖ · ‖X) is a Hilbert space. By (K2), the space X is

continuously embedded in Hs(RN ). Therefore, X is continuously embedded in

Lp(RN ) for p ∈ [2, 2∗s], where 2∗s = 2N/(N − 2s). If Ω ⊂ RN , we define

X0(Ω) =
{
u ∈ X : u = 0 in Ωc

}
.

The space X0(Ω) is a Hilbert space with the norm

‖u‖X0(Ω) :=

(∫
Ω

u2 dx+

∫
Q

(u(x)− u(y))2K(x− y) dx dy

)1/2

,

where Q = (Ωc × Ωc)c (see Lemma 7 in [31]). It is continuously embedded in

Hs
0(RN ). For definition and properties of Hs

0(RN ) we indicate [18].

In the problem (P), we will consider the space E defined as

(2.1) E =

{
u ∈ X :

∫
RN

V (x)u2 dx <∞
}
.

The space E is a Hilbert space with the norm

‖u‖ :=

(∫
RN

∫
RN

(u(x)− u(y))2K(x− y) dx dy +

∫
RN

V (x)u2 dx

)1/2

.

Let A,B ⊂ RN be measurable and let u, v ∈ X. We will denote

[u, v]A×B :=

∫
A

∫
B

(u(x)− u(y))(v(x)− v(y))K(x− y) dx dy

and we will denote [u, v]RN×RN by [u, v]. If u, v ∈ C∞0 (RN ) then

(−LKu, v)L2(RN ) = [u, v].

Therefore, we say that u ∈ E is a solution for the problem (P) if

(2.2) [u, v] +

∫
RN

V (x)uv dx =

∫
RN

f(u)v dx for all v ∈ E.

The Euler–Lagrange functional associated with (P) is given by

I(u) =
1

2
‖u‖2 −

∫
RN

F (u) dx, where F (t) =

∫ t

0

f(s) ds.

From the hypotheses about f , we have F ∈ C1(E,R) and

(2.3) I ′(u)v = [u, v] +

∫
RN

V (x)uv dx−
∫
RN

f(u)v dx.

By equations (2.2) and (2.3), u is a solution for the problem (P) if and only if u

is a critical point of I.

We will denote by Br(y) = {x ∈ RN : |x − y| < r} and Bcr(y) = [Br(y)]c.

Define I0 : X0(B1(0)) −→ R by

I0(u) =:
1

2

∫
RN

∫
RN

(u(x)−u(y))2K(x−y) dx dy+
1

2

∫
RN

V∞u
2 dx−

∫
RN

F (u) dx,
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where V∞ is the constant of (V2). The functional I0 has the mountain pass

geometry. We will denote by d the mountain pass level associated with I0,

that is

(2.4) d = inf
γ∈Γ

max
t∈[0,1]

I0(γ(t)),

where

(2.5) Γ = {γ ∈ C([0, 1], X0(Ω)) : γ(0) = 0 and γ(1) = e},

with e have fixed and verifying I0(e) < 0. Note that d depends only on V∞, θ

and f .

3. An auxiliary problem

We will modify the problem (P). We will define an auxiliary problem, as

in [3]. But, as the operator −LK is nonlocal, we cannot use the same ideas of [3]

to prove that the functional associated with the auxiliary problem satisfies the

Palais–Smale condition. Therefore, we will use other techniques.

For k = 2θ/(θ − 2) we consider

f̃(x, t) :=


f(t) if kf(t) ≤ V (x)t,

V (x)

k
t if kf(t) > V (x)t,

and

(3.1) g(x, t) :=

f(t) if |x| ≤ R,
f̃(x, t) if |x| > R,

and define the auxiliary problem−LKu+ V (x)u = g(x, u) in RN ,
u ∈ E.

We have that, for all t ∈ R and x ∈ RN ,

(1) f̃(x, t) ≤ f(t);

(2) g(x, t) ≤ V (x)t/k, if |x| ≥ R;

(3) G(x, t) = F (t), if |x| ≤ R;

(4) G(x, t) ≤ V (x)t2/2k if |x| > R,

where

G(x, t) =

∫ t

0

g(x, s) ds.

The Euler–Lagrange functional associated with the auxiliary problem is given by

J(u) =
1

2
‖u‖2 −

∫
RN

G(x, u) dx.
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The functional J ∈ C1(E,R) and

J ′(u)v =

∫
RN

∫
RN

(u(x)− u(y))(v(x)− v(y))K(x− y) dx dy

+

∫
RN

V (x)uv dx−
∫
RN

g(x, u)v dx.

The functional J has the mountain pass geometry. Then, there is a sequence

{un}n∈N such that

(3.2) J ′(un)→ 0 and J(un)→ c,

where c > 0 is the mountain pass level associated with J , that is

(3.3) c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0 and γ(1) = e} and e is the function fixed

in (2.5). By definition

(3.4) c ≤ d

uniformly in R > 0 (see (2.4)).

Lemma 3.1. The sequence {un}n∈N is bounded in E.

Proof. By (f2),

J(u)− 1

θ
J ′(u)u =

(
θ − 2

4θ

)
‖u‖2 +

1

2k
‖u‖2 +

∫
RN

1

θ
g(x, u)u−G(x, u) dx

≥
(
θ − 2

4θ

)
‖u‖2 +

1

2k
‖u‖2 +

∫
|x|>R

1

θ
g(x, u)u− 1

2k

∫
|x|>R

V (x)u2 dx

≥
(

1

2k

)
‖u‖2.

Therefore

(3.5) |J(u)|+ |J ′(u)u| ≥
(
θ − 2

4θ

)
‖u‖2,

for all u ∈ E. This last inequality ensures that the sequence {un}n∈N is bounded

in E. �

The next results (Lemmas 3.2–3.6) are technical. We will use these lemmas

to prove that the functional J satisfies the Palais–Smale condition (Proposition

3.7).

Consider r > R, A = {x ∈ RN : r < ‖x‖ < 2r} and η : RN → R a function

such that η = 1 in Bc2r(0), η = 0 in Br(0), 0 ≤ η ≤ 1 and |∇η| < 2/r. Note that

(3.6) (Br(0)×Br(0))c = (Bcr(0)× RN ) ∪ (Br(0)×Bcr).
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We will decompose

(3.7) Bcr(0)× RN = (A× RN ) ∪ (Bc2r(0)×Br(0))

∪ (Bc2r(0)×A) ∪ (Bc2r(0)×Bc2r(0))

and

(3.8) Br(0)×Bcr(0) = (Br(0)×A) ∪ (Br(0)×Bc2r(0)).

Lemma 3.2. We have that∫
Br(0)

∫
Bc2r(0)

(un(x)− un(y))(η(x)un(x)− η(y)un(y))K(x− y) dx dy

+

∫
Bc2r(0)

∫
Br(0)

(un(x)− un(y))(η(x)un(x)− η(y)un(y))K(x− y) dx dy

≥ −
∫
Br(0)

∫
Bc2r(0)

un(y)2K(x− y) dx dy.

Proof.∫
Br(0)

∫
Bc2r(0)

(un(x)− un(y))(η(x)un(x)− η(y)un(y))K(x− y) dx dy

+

∫
Bc2r(0)

∫
Br(0)

(un(x)− un(y))(η(x)un(x)− η(y)un(y))K(x− y) dx dy

= 2

∫
Br(0)

∫
Bc2r(0)

(un(x)− un(y))un(x)K(x− y) dx dy

=

∫
Br(0)

∫
Bc2r(0)

(un(x)− un(y))2K(x− y) dx dy

+

∫
Br(0)

∫
Bc2r(0)

un(x)2 − un(y)2K(x− y) dx dy

≥ −
∫
Br(0)

∫
Bc2r(0)

un(y)2K(x− y) dx dy. �

Lemma 3.3. Let ε > 0. There is r0 > 1 that depends on ε, such that if r > r0

then ∫
Br(0)

∫
Bc2r(0)

un(y)2K(x− y) dx dy < ε, for all n ∈ N.

Proof. For each y ∈ Br(0), Br(y) ⊂ B2r(0). Then

(3.9)

∫
Bc2r(0)

K(x− y) dx ≤
∫
Bcr(y)

K(x− y) dx =

∫
Bcr(0)

K(z) dz.

By Lemma 3.1, there is L > 0 such that ‖un‖2L2(RN ) < L for all n ∈ N. By (K3),

there is r0 > 1 such that ∫
Bcr(0)

K(z) dz <
ε

L
,
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for all r > r0. Then, by (3.9),∫
Br(0)

∫
Bc2r(0)

un(y)2K(x− y) dx dy =

∫
Br(0)

un(y)2

∫
Bc2r(0)

K(x− y) dx dy

≤
∫
Br(0)

un(y)2

∫
Bcr(0)

K(z) dz dy =

∫
Bcr(0)

K(z) dz

∫
Br(0)

un(y)2 dy ≤ ε,

for all n ∈ N and r > r0. �

Lemma 3.4. There are constants K1 > 0 and K2 > 0 such that∫
A

∫
RN
|un(y)‖un(x)− un(y)‖η(x)− η(y)|K(x− y) dx dy

≤
(
K1

r
+K2

)
‖un‖L2(A)[un, un]1/2.

Proof. Note that∫
RN
|η(x)− η(y)|2K(x− y) dx =

∫
RN
|η(z + y)− η(y)|2K(z) dz

=

∫
B1(0)

|η(z + y)− η(y)|2K(z) dz +

∫
Bc1(0)

|η(z + y)− η(y)|2K(z) dz

≤ 4

r2

∫
B1(0)

|z|2K(z) dz + 4

∫
Bc1(0)

K(z) dz ≤ 4

r2
P1 + 4P2,

where

P1 =

∫
B1(0)

|z|2K(z) dz and P2 =

∫
Bc1(0)

K(z) dz.

Let K1 = 2
√
P1 and K2 = 2

√
P2. Then, by the Hölder inequality,

(3.10)

∫
A

∫
RN
|un(y)‖(un(x)− un(y))‖(η(x)− η(y))|K(x− y) dx dy

≤
(

2
√
P1

r
+ 2
√
P2

)∫
A

|un(y)|
(∫

RN
|(un(x)− un(y))|2K(x− y) dx

)1/2

dy

≤
(
K1

r
+K2

)
‖un‖L2(A)[un, un]1/2.�

Lemma 3.5. For the same constants K1 > 0 and K2 > 0 of Lemma 3.4, we

have∫
Br(0)

∫
A

|un(x)− un(y)‖η(x)un(x)− η(y)un(y)|K(x− y) dx dy

≤
(
K1

r
+K2

)
‖un‖L2(A)[un, un]1/2.
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Proof. Indeed,∫
Br(0)

∫
A

|un(x)− un(y)‖η(x)un(x)− η(y)un(y)|K(x− y) dx dy

=

∫
Br(0)

∫
A

|un(x)‖un(x)− un(y)‖η(x)|K(x− y) dx dy

=

∫
A

∫
Br(0)

|un(x)‖un(x)− un(y)‖η(x)− η(y)|K(x− y) dy dx

=

∫
A

∫
Br(0)

|un(y)‖un(y)− un(x)‖η(y)− η(x)|K(y − x) dx dy.

By (K1) and Lemma 3.4, we conclude the proof of this lemma. �

Lemma 3.6. We have that

−
∫
Bc2r(0)

∫
A

un(y)(un(x)− un(y))(η(x)− η(y))K(x− y) dx dy

≤
(
K1

r
+K2

)
‖un‖L2(A)[un, un]1/2.

Proof.

−
∫
Bc2r(0)

∫
A

un(y)(un(x)− un(y))(η(x)− η(y))K(x− y) dx dy

=

∫
Bc2r(0)

∫
A

(un(x)− un(y))2(η(x)− η(y))K(x− y) dx dy

−
∫
Bc2r(0)

∫
A

un(x)(un(x)− un(y))(η(x)− η(y))K(x− y) dx dy

=

∫
Bc2r(0)

∫
A

(un(x)− un(y))2(η(x)− 1)K(x− y) dx dy

−
∫
Bc2r(0)

∫
A

un(x)(un(x)− un(y))(η(x)− η(y))K(x− y) dx dy

≤ −
∫
Bc2r(0)

∫
A

un(x)(un(x)− un(y))(η(x)− η(y))K(x− y) dx dy

= −
∫
Bc2r(0)

∫
A

un(x)(un(y)− un(x))(η(y)− η(x))K(x− y) dx dy

≤
∫
Bc2r(0)

∫
A

|un(x)‖un(y)− un(x)‖η(y)− η(x)|K(x− y) dx dy

=

∫
A

∫
Bc2r(0)

|un(x)‖un(y)− un(x)‖η(y)− η(x)|K(y − x) dy dx

≤
(
K1

r
+K2

)
‖un‖L2(A)[un, un]1/2.

In the last inequality, we have used Lemma 3.4 and (K1). �
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The next proposition ensures the existence of a solution at the level c for the

auxiliary problem (see (3.3)). We will prove that the functional J satisfies the

Palais–Smale condition. We cannot proceed as in [3], because our operator is

nonlocal.

Proposition 3.7. Suppose that f and V satisfy (V1), (f1)–(f3). Then the

functional J satisfies the Palais–Smale condition.

Proof. By Lemma 3.1 the Palais–Smale sequence {un}n∈N is bounded in E.

We can suppose that {un}n∈N converges weakly in E to u ∈ E. By the properties

of K we have that ηun ∈ X and ‖ηun‖ ≤ ‖un‖ (see Lemma 5.1 in [18]). Then,

the sequence {ηun}n∈N is bounded in X. Therefore J ′(un)(ηun) = on(1), that is,

[un, ηun] +

∫
RN

V (x)u2
nη dx =

∫
RN

g(x, un)ηun dx+ on(1).

But, note that [un, ηun] = [un, ηun]Br(0)×Bcr(0)+[un,ηun]Bcr(0)×Br(0)
, because η = 0

in Br(0). By (3.6), (3.7) and (3.8) we have

[un, ηun]A×RN + [un, ηun]Bc2r(0)×A + [un, ηun]Bc2r(0)×Bc2r(0)

+ [un, ηun]Bc2r(0)×Br(0) + [un, ηun]Br(0)×Bc2r(0) + [un, ηun]Br(0)×A

+

∫
RN

V (x)u2
nη dx =

∫
RN

g(x, un)ηun dx+ on(1).

By Lemma 3.2 and [un, ηun]Bc2r(0)×Bc2r(0) = [un, un]Bc2r(0)×Bc2r(0) ≥ 0 (because

η = 1 in Bc2r(0)), we have

[un, ηun]A×RN + [un, ηun]Bc2r(0)×A +

∫
RN

V (x)u2
nη dx

≤
∫
RN

g(x, un)ηun dx+

∫
Br(0)

∫
Bc2r(0)

un(y)2K(x− y) dx dy

− [un, ηun]Br(0)×A + on(1).

If C and D are measurable subsets of RN and u ∈ E, then

[u, ηu]C×D =

∫
C

∫
D

(u(x)− u(y))(ηu(x)− ηu(y))K(x− y) dx dy

=

∫
C

∫
D

η(x)(u(x)− u(y))2K(x− y) dx dy

+

∫
C

∫
D

u(y)(u(x)− u(y))(η(x)− η(y))K(x− y) dx dy.

Thereby,∫
A

∫
RN

η(x)(un(x)− un(y))2K(x− y) dx dy+

+

∫
Bc2r(0)

∫
A

η(x)(un(x)− un(y))2K(x− y) dx dy +

∫
RN

V (x)u2
nη dx
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≤
∫
RN

g(x, un)ηundx+

∫
Br(0)

∫
Bc2r(0)

un(y)2K(x− y) dx dy − [un, ηun]Br(0)×A

−
∫
A

∫
RN

un(y)(un(x)− un(y))(η(x)− η(y))K(x− y) dx dy

−
∫
Bc2r(0)

∫
A

u(y)(un(x)− un(y))(η(x)− η(y))K(x− y) dx dy + on(1).

From Lemmas 3.4–3.6, we obtain constants K1,K2 > 0 such that∫
RN
V (x)u2

nη dx

≤
∫
A

∫
RN

η(x)(un(x)− un(y))2K(x− y) dx dy

+

∫
Bc2r(0)

∫
A

η(x)(un(x)− un(y))2K(x− y) dx dy +

∫
RN

V (x)u2
nη dx

≤
∫
RN

g(x, un)ηun dx+

∫
Br(0)

∫
Bc2r(0)

un(y)2K(x− y) dx dy

+

(
K1

r
+K2

)
‖un‖L2(A)[un, un]1/2 + on(1).

By (2), (f3) and r > R we have∫
RN

g(x, un)ηun dx ≤
1

k

∫
RN

ηV (x)u2
n dx.

Thereby,(
1− 1

k

)∫
RN

V (x)u2
nη dx ≤

∫
Br(0)

∫
Bc2r(0)

un(y)2K(x− y) dx dy

+

(
K1

r
+K2

)
‖un‖L2(A)[un, un]1/2 + on(1).

By Lemma 3.1, there is C1 > 0 such that ‖un‖ ≤ C1. Then, for some constant

C > 0

(3.11)

(
1− 1

k

)∫
|x|>2r

V (x)u2
n dx

≤
∫
Br(0)

∫
Bc2r(0)

un(y)2K(x, y) dx dy + C

(
1

r
+ 1

)
‖un‖L2(A) + on(1).

Let ε > 0. By Lemma 3.3, we can take r, large enough, such that

(3.12)

∫
|x|>2r

V (x)u2
n dx ≤

ε(k − 1)

3k
+ C

(
1

r
+ 1

)
‖un‖L2(A) + on(1),

for all n ∈ N. Also, we can assume that

(3.13) ‖u‖L2(A) <
ε(k − 1)

6C(1/r + 1)k
.
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By property (2) of g

g(x, un)un ≤
V (x)

k
u2
n,

for all x, with |x| > 2r > R. Therefore, by (3.11)

(3.14)

∫
|x|>2r

g(x, un)un dx ≤
ε

3
+ C

(
1

r
+ 1

)
k

k − 1
‖un‖L2(A) + on(1).

The space E is continuously embedded in Hs(RN ) and Hs(RN ) is compactly

embedded in Lp(A) for p ∈ [2, 2∗s). Hence E is compactly embedded in Lp(A) for

p ∈ [2, 2∗s). By the weak convergence of {un}n∈N, we obtain that ‖un‖A → ‖u‖A.

By (3.13), for n large enough,

‖un‖L2(A) <
ε(k − 1)

6C(1/r + 1)k
.

By (3.14) we can take n1 ∈ N such that if n > n1 then∫
|x|>2r

g(x, un)un dx ≤
5ε

6
.

Note that, we can suppose that r > 0 satisfies∫
|x|>2r

g(x, u)u dx ≤ ε

12
.

By the compact embedding of E in Lq(B2r(0)) for q ∈ [2, 2∗s), {un}n∈N converges

for u in Lq(B2r(0)) for q ∈ [2, 2∗s). By definition of g and the Lebesgue dominated

convergence theorem∫
|x|≤2r

g(x, un)un dx→
∫
|x|≤2r

g(x, u)u dx

Then, we take n0 ∈ N with n0 > n1 and such that if n > n0 then∣∣∣∣ ∫
|x|≤2r

g(x, un)un dx−
∫
|x|≤2r

g(x, u)u dx

∣∣∣∣ < ε

12
.

Thereby, for n > n0 we have∣∣∣∣ ∫
RN

g(x, un)un dx−
∫
RN

g(x, u)u dx

∣∣∣∣ < ε,

that is,

lim
n→∞

∫
RN

g(x, un)un dx =

∫
RN

g(x, u)u dx.

From J ′(un)un = on(1),

1

2
‖un‖2 =

∫
RN

g(x, un)un dx+ on(1).

Then
1

2
‖un‖2 →

∫
RN

g(x, u)u dx =
1

2
‖u‖2,
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because J ′(u)u = 0. We conclude that ‖un‖ → ‖u‖ and therefore, the weak

convergence of {un}n∈N to u ensure that {un}n∈N converges to u in E. �

Corollary 3.8. Suppose (V1), (f1)–(f3). Then, there is u ∈ X such that

J(u) = c and J ′(u) = 0. Moreover, u ≥ 0 almost everywere in RN .

Proof. By 3.2 and Proposition 3.7, there is u ∈ X such that J(u) = c and

J ′(u) = 0. Let A = {x ∈ RN : |x| > R} ∩ {x ∈ RN : u(x) < 0}. If x ∈ A, then

g(x, u(x)) = V (x)/ku(x) and if x ∈ Ac, then g(x, u) ≥ 0. We have

0 ≥ [u, u−] +

∫
Ac
V (x)uu− =

(
1

k
− 1

)∫
A

V (x)uu− +

∫
Ac
g(x, u)u− dx ≥ 0

where u−(x) = max{−u(x), 0}. Then [u, u−] = 0. This implies that u− = 0 (see

proof of Lemma 4.1 in [20]). �

As a consequence of inequalities 3.4 and 3.5 we have the following proposition.

Proposition 3.9. If V and f satisfies (V1), (V2), (f1)–(f3), then the solu-

tion u of the auxiliary problem satisfies ‖u‖2 ≤ 2kd uniformly in R > 0.

4. L∞ estimate for solution of auxiliary problem

In this section, we will prove a Brezis-Kato type estimate. We will prove

that, assuming some hypotheses, there is M > 0 such that the solution of the

problem

−LKv + b(x)v = g(x, v) in RN

satisfies ‖u‖L∞(RN ) ≤M‖u‖L2∗s (RN ) and M does not depend on ‖u‖ (see Propo-

sition 4.5). We emphasize that, to the best of our knowledge, this result is being

presented for the first time in the literature. In [2], the authors have showed this

result when the operator −LK is the fractional laplacian operator, that is, when

K(x) = CN,s|x|−N−2s. But, in our case, we cannot use the same technique used

in [2], because we do not have a version of the s-harmonic extension for general

integro-differential operators. Therefore, we present an another technique.

Remark 4.1. Let β > 1. Define the real functions

m(x) := (λ− 1)(xβ + x−β)− λ(xβ−1 + x1−β) + 2,

p(x) := (λ− 1)(xβ + x−β) + λ(xβ−1 + x1−β)− 2,

where λ := β2/(2β − 1). Then m(x) ≥ 0 and p(x) ≥ 0 for all x > 0. Indeed,

defining the function g(x) = xβ+1(β−1)m′(x)/β(λ−1) we have g(1) = g′(1) = 0

and g′′(x) > 0 for all x > 1. Then, m′(x) > 0 for all x > 1. From m(1) = 0 and

m(x) = m(x−1) for all x > 0, we conclude that m(x) ≥ 0 for all x > 0. From

p(1) = 0, p(x) = p(x−1) for all x 6= 0 and p′(x) > 0 for all x > 1, we conclude

that p(x) ≥ 0 for all x > 0.
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Let β > 1. Define

f(x) = x|x|2(β−1) and g(x) = x|x|β−1.

The functions f and g are continuous and differentiable for all x ∈ R. Consider

x, y ∈ R with x 6= y. By the mean value theorem, there are θ1(x, y), θ2(x, y) ∈ R
such that

(4.1) f ′(θ1(x, y)) =
f(x)− f(y)

x− y
and

(4.2) g′(θ2(x, y)) =
g(x)− g(y)

x− y
,

that is

(2β − 1)|θ1(x, y)|2(β−1) =
x|x|2(β−1) − y|y|2(β−1)

x− y
,(4.3)

β|θ2(x, y)|(β−1) =
x|x|(β−1) − y|y|(β−1)

x− y
.(4.4)

Implying that

|θ1(x, y)| =
(

1

2β − 1

x|x|2(β−1) − y|y|2(β−1)

x− y

)1/2(β−1)

,(4.5)

|θ2(x, y)| =
(

1

β

x|x|(β−1) − y|y|(β−1)

x− y

)1/(β−1)

.(4.6)

We will consider θ1(x, x) = θ2(x, x) = 0 for all x ∈ R.

Remark 4.2. Note that |θ1(x, y)| = |θ1(y, x)| and |θ2(x, y)| = |θ2(y, x)| for

all x, y ∈ R.

Lemma 4.3. With the same notation, if x 6= 0 then |θ1(x, 0)| ≥ |θ2(x, 0)|.

Proof. By (4.5) and (4.6), we have

|θ1(x, 0)| =
(

1

2β − 1

x|x|2(β−1)

x

)1/2(β−1)

=

(
1

2β − 1

)1/2(β−1)

|x|,

|θ2(x, 0)| =
(

1

β

x|x|β−1

x

)1/(β−1)

=

(
1

β

)1/(β−1)

|x|.

Thereby, |θ1(x, 0)| ≥ |θ2(x, 0)|. �

Lemma 4.4. If x, y ∈ R, then |θ1(x, y)| ≥ |θ2(x, y)|.

Proof. If x = 0 or y = 0 then the inequality was proved by Lemma 4.3 and

Remark 4.2. The case x = y is trivial. We can suppose that x 6= y, x 6= 0 and

y 6= 0. By (4.5) and (4.6) we have that |θ1(x, y)| ≥ |θ2(x, y)| if and only if(
1

2β − 1

x|x|2(β−1) − y|y|2(β−1)

x− y

)1/2(β−1)

≥
(

1

β

x|x|β−1 − y|y|β−1

x− y

)1/(β−1)

.
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This last inequality is true if and only if

1

2β − 1

x|x|2(β−1) − y|y|2(β−1)

x− y
≥ 1

β2

(
x|x|β−1 − y|y|β−1

x− y

)2

.

This last inequality occurs if and only if

λ(x− y)(x|x|2(β−1) − y|y|2(β−1)) ≥ (x|x|β−1 − y|y|β−1)2,

that is

λ(|x|2β − xy|y|2(β−1) − yx|x|2(β−1) + |y|2β) ≥ |x|2β − 2xy|x|β−1|y|β−1 + |y|2β .

But, if x 6= 0 and y 6= 0, then the last inequality is equivalent to

(4.7) λ

[(
|x|
|y|

)β
−
(
xy
|y|β−2

|x|β

)
−
(
xy|x|β−2

|y|β

)
+

(
|y|
|x|

)β]
≥
(
|x|
|y|

)β
− 2

x

|x|
y

|y|
+

(
|y|
|x|

)β
.

We will prove that (4.7) is true. If x · y > 0, then

λ

[(
|x|
|y|

)β
−
(
xy
|y|β−2

|x|β

)
−
(
xy|x|β−2

|y|β

)
+

(
|y|
|x|

)β]
−
(
|x|
|y|

)β
+ 2

x

|x|
y

|y|
−
(
|y|
|x|

)β
=λ

[(
|x|
|y|

)β
−
(
|y|
|x|

)β−1

−
(
|x|
|y|

)β−1

+

(
|y|
|x|

)β]
−
(
|x|
|y|

)β
+ 2−

(
|y|
|x|

)β
= (λ− 1)

[(
|x|
|y|

)β
+

(
|x|
|y|

)−β]
− λ
[(
|x|
|y|

)β−1

+

(
|x|
|y|

)−β+1]
+ 2

=m

(
|x|
|y|

)
.

If x · y < 0, then

λ

[(
|x|
|y|

)β
−
(
xy
|y|β−2

|x|β

)
−
(
xy|x|β−2

|y|β

)
+

(
|y|
|x|

)β]
−
(
|x|
|y|

)β
+ 2

x

|x|
y

|y|
−
(
|y|
|x|

)β
=λ

[(
|x|
|y|

)β
+

(
|y|
|x|

)β−1

+

(
|x|
|y|

)β−1

+

(
|y|
|x|

)β]
−
(
|x|
|y|

)β
− 2−

(
|y|
|x|

)β
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= (λ− 1)

[(
|x|
|y|

)β
+

(
|x|
|y|

)−β]
+ λ

[(
|x|
|y|

)β−1

+

(
|x|
|y|

)−β+1]
− 2

= p

(
|x|
|y|

)
.

By Remark 4.1, we have that m(|x|/|y|) ≥ 0 and p(|x|/|y|) ≥ 0. This proves the

inequality (4.7) and Lemma 4.4. �

Our main result of this section will establish an important estimate involving

the L∞(RN ) norm of the solution u of the auxiliary problem. It states that:

Proposition 4.5. Let h ∈ Lq(RN ) with q > N/2s, and v ∈ E ⊂ X be

a weak solution of

−LKv + b(x)v = g(x, v) in RN ,

where g is a continuous functions satisfying |g(x, s)| ≤ h(x)|s| for s ≥ 0, b is

a positive function in RN and E is definded as in (2.1). Then, there is a constant

M = M(q, ‖h‖Lq(RN )) such that

‖v‖L∞(RN ) ≤M‖v‖L2∗s (RN ).

Proof. Let β > 1. For any n ∈ N we define An = {x ∈ RN ; |v(x)|β−1 ≤ n}
and Bn := Acn. Consider

fn(t) :=

t|t|2(β−1) if |t|β−1 ≤ n,
n2t if |t|β−1 > n,

and gn(t) :=

t|t|(β−1) if |t|β−1 ≤ n,
nt if |t|β−1 > n.

Note that fn and gn are continuous functions and they are differentiable at all

points with the exception on n1/(β−1) and −n1/(β−1) and their derivatives are

limited. Then fn and gn are Lipschitz continuous. Therefore, setting

vn := fn ◦ v and wn := gn ◦ v

we have that vn, wn ∈ E. Note that

[v, vn] =

∫
An

∫
An

(vn(x)− vn(y))(v(x)− v(y)K(x− y) dx dy

+

∫
Bn

∫
Bn

(vn(x)− vn(y))(v(x)− v(y)K(x− y) dx dy + 2[v, vn]An×Bn .

By (4.1), if x, y ∈ An then

vn(x)− vn(y) = f ′n(θ1(x, y))(v(x)− v(y)),

where θ1(x, y) = θ1(v(x), v(y)). Therefore

[v, vn] =

∫
An

∫
An

(2β − 1)|θ1(x, y)|2(β−1)(v(x)− v(y))2K(x− y) dx dy(4.8)

+ n2

∫
Bn

∫
Bn

(v(x)− v(y))2K(x− y) dx dy + 2[v, vn]An×Bn .
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Analogously, by (4.2)

[wn, wn] =

∫
An

∫
An

β2|θ2(x, y)|2(β−1)(v(x)− v(y))2K(x− y) dx dy

+ n2

∫
Bn

∫
Bn

(v(x)− v(y))2K(x− y) dx dy + 2[wn, wn]An×Bn ,

where θ2(x, y) = θ2(v(x), v(y)). By Lemma 4.4,

[wn, wn] ≤
∫
An

∫
An

β2|θ1(x, y)|2(β−1)(v(x)− v(y))2K(x− y) dx dy

+ n2

∫
Bn

∫
Bn

(v(x)− v(y))2K(x− y) dx dy + 2[wn, wn]An×Bn .

This implies that

(4.9) [wn, wn] +

∫
RN

b(x)w2
n dx− [v, vn]−

∫
RN

b(x)vvn dx

≤ (β − 1)2

∫
An

∫
An

|θ1(x, y)|2(β−1)(v(x)− v(y))2K(x− y) dx dy

+ 2[wn, wn]An×Bn − 2[v, vn]An×Bn .

By (4.8), we have

(4.10) [v, vn] +

∫
RN

b(x)vvn dx− 2[v, vn]An×Bn

≥ (2β − 1)

∫
An

∫
An

|θ1(x, y)|2(β−1)(v(x)− v(y))2K(x− y) dx dy,

because b(x)vvn = b(x)w2
n ≥ 0. Replacing (4.10) in (4.9) we obtain

[wn, wn] +

∫
RN

b(x)w2
n dx− [v, vn]−

∫
RN

b(x)vvn dx

≤ (β − 1)2

2β − 1

(
[v, vn] +

∫
RN

b(x)vvn dx

)
+ 2[wn, wn]An×Bn +

(
− 2− 2(β − 1)2

2β − 1

)
[v, vn]An×Bn ,

that is

[wn, wn] +

∫
RN

b(x)w2
n dx

≤
(

(β − 1)2

2β − 1
+ 1

)(
[v, vn] +

∫
RN

b(x)vvn dx

)
+ 2[wn, wn]An×Bn +

(
− 2− 2(β − 1)2

2β − 1

)
[v, vn]An×Bn

=
β2

2β − 1

(
[v, vn] +

∫
RN

bvvn dx

)



Nonlocal Schrödinger Equations 401

+ 2[wn, wn]An×Bn +

(
− 2− 2(β − 1)2

2β − 1

)
[v, vn]An×Bn

≤β
∫
RN

g(x, v)vn dx

+ 2[wn, wn]An×Bn +

(
− 2− 2(β − 1)2

2β − 1

)
[v, vn]An×Bn .

In short,

(4.11) [wn, wn] +

∫
RN

b(x)w2
n dx ≤ β

∫
RN

g(x, v)vn dx+ 2[wn, wn]An×Bn

+

(
− 2− 2(β − 1)2

2β − 1

)
[v, vn]An×Bn .

But, if n ∈ N and

C = 2 +
2(β − 1)2

2β − 1
,

then a simple calculation shows that the function

r(s, t) = 2(ns− t|t|β−1)2 − C(s− t)(n2s− t|t|2(β−1)),

satisfies

(4.12) r(s, t) ≤ 0 for all |s| > n1/(β−1) and |t| ≤ n1/(β−1).

Taking s = v(x) and t = v(y) for x ∈ Bn and y ∈ An and replacing in (4.12) we

obtain

2(wn(x)− wn(y))2 − C(v(x)− v(y))(vn(x)− vn(y)) ≤ 0.

Hence

2[wn, wn]An×Bn +

(
− 2− 2(β − 1)2

2β − 1

)
[v, vn]An×Bn ≤ 0.

By (4.11),

(4.13) [wn, wn] +

∫
RN

b(x)w2
n dx ≤ β

∫
RN

g(x, v)vn dx.

Let S > 0 be the best constant verifying ‖u‖2
L2∗s (RN )

≤ S[u, u]2, for all u ∈
Hs(RN ) (see theorem 6.5 in [18]), that is

(4.14) S = sup
u∈Hs(RN )

‖u‖2
L2∗s (RN )

[u, u]2
.
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The critical inequality (theorem 6.5 in [18]) ensures the existence of S. By (4.13)(∫
An

|wn|2
∗
s dx

)2/2∗s

≤
(∫

RN
|wn|2

∗
sdx

)2/2∗s

≤ S[wn, wn]2 ≤ S‖wn‖2 ≤ Sβ
∫
RN

g(x, v(x))vn dx

≤ Sβ
∫
RN

h(x)w2
n dx ≤ Sβ‖h‖Lq(RN )‖wn‖2L2q/(q−1)(RN ).

But, we have that |wn(x)| ≤ |v(x)|β for all x ∈ Bn and |wn(x)| = |v(x)|β for all

x ∈ An. Thereby,(∫
An

|v|β2∗s dx

)2/2∗s

≤ Sβ‖h‖Lq(RN )

(∫
RN
|v|2qβ/(q−1) dx

)(q−1)/q

.

By the monotone convergence theorem,

(4.15) ‖v‖L2∗sβ(RN ) ≤ (βS‖h‖Lq(RN ))
1/2β‖v‖L2βq1 (RN )

where q1 = q/(q − 1). Define η := 2∗s/(2q1), and note that η > 1. When β = η

we have that 2βq1 = 2∗s. Then, by (4.15)

(4.16) ‖v‖L2∗sη(RN ) ≤ (ηS‖h‖Lq(RN ))
1/2η‖v‖L2∗s (RN ).

Taking β = η2 in (4.15) we obtain

(4.17) ‖v‖
L2∗sη

2
(RN )

≤ η1/η2(S‖h‖Lq(RN ))
1/2η2‖v‖L2∗sη(RN ).

By (4.16) and (4.17) we have

‖v‖
L2∗sη

2
(RN )

≤ η1/η2+1/2η(S‖h‖Lq(RN ))
1/2η2+1/2η‖v‖L2∗s (RN ).

Inductively, we can prove that

‖v‖L2∗sη
m

(RN )

≤ η1/2η+1/η2+...+m/2ηm(S‖h‖Lq(RN ))
1/2η+1/2η2+...+1/2ηm‖v‖L2∗s (RN )

for all m ∈ N. But,
∞∑
m=1

m

2ηm
=

η

2(η − 1)2
and

∞∑
m=1

1

2ηm
=

1

2(η − 1)
.

Thereby, for all m > 0,

‖v‖L2∗sη
m

(RN ) ≤ η
η/2(η−1)2(S‖h‖Lq(RN ))

1/2(η−1)‖v‖L2∗s (RN ).

Recalling that ‖v‖L∞(RN ) = lim
n→∞

‖v‖Lp(RN ) and that η > 1 we have that

‖v‖L∞(RN ) ≤M‖v‖L2∗s (R
N )

for M = ηη/2(η−1)2(S‖h‖Lq(RN ))
1/2(η−1) and η = N(q − 1)/(q(N − 2s)).

We conclude the proof of Proposition 4.5 noting that M depends only on q

and ‖h‖Lq(RN ). �
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5. Solution for Problem (P)

In this section, we prove the main result (Theorem 5.2). By Corollary 3.8,

there is u ∈ E such that J(u) = c and J ′(u) = 0. We have the following estimate

for ‖u‖L∞(RN ).

Lemma 5.1. The solution u of the auxiliary problem satisfies

‖u‖L∞(RN ) ≤M(2Skd)1/2,

where d and S are defined respectively in (2.4) and (4.14), k = 2θ/(θ − 2), and

θ is defined in (f2).

Proof. Consider the functions

H(x, t) =


f(t) if |x| < R or f(t) ≤ V (x)

k
t,

0 if |x| ≥ R and f(t) >
V (x)

k
t,

and

b(x) =


V (x) if |x| < R and f(u) ≤ V (x)

k
u,(

1− 1

k

)
V (x) if |x| ≥ R and f(u) >

V (x)
ku.

Note that the function u is solution of−LKu+ b(x)u = H(x, u) in RN ,
u ∈ E.

By (f1), |H(x, t)| ≤ c0|t|p−1 for p ∈ (2, 2∗s). Thereby, |H(x, u)| ≤ h(x)|u|, where

h(x) = c0|u|p−2 . Note that h ∈ L2∗s/(p−2)(RN ) and

‖h‖Lq(RN ) ≤ C(2kSd)(p−2)/2∗s ,

where q = 2∗s/(p− 2). The number p satisfies

p < 2∗s = 2 +
2s

N
2∗s, then q =

2∗s
p− 2

>
N

2s
.

By Proposition 4.5 and sobolev embedding

‖u‖L∞(RN ) ≤M‖u‖L2∗s (RN ) ≤MS1/2‖u‖,

where M = M(q, ‖h‖Lq(RN )). By Proposition 3.9, we have

(5.1) ‖u‖L∞(RN ) ≤M(2kSd)1/2.

This concludes the proof. �

Theorem 5.2. Suppose that V satisfies conditions (V1)–(V3) and that f

satisfies (f1)–(f3). There is Λ∗ = Λ∗(V∞, θ, p, c0, S) > 0 such that if Λ > Λ∗

in (V3), then the problem (P) has a nonnegative nontrivial solution.
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Proof. Let u be a weak solution of the auxiliary problem. Let |x| ≥ R. If

u(x) = 0 then by denfition f(u(x)) = g(x, u(x)). If u(x) > 0 then

f(u(x))

u(x)
≤ c0|u|p−2 ≤ c0‖u‖p−2

L∞(RN )

=
c0‖u‖p−2

L∞(RN )

Λ
Λ ≤ kp/2c0M

p−2(2Sd)(p−2)/2

Λ

V (x)

k
.

Define Λ∗ = kp/2c0M
p−2(2Sd)(p−2)/2. If Λ > Λ∗ then

f(u(x))

u(x)
≤ V (x)

k
.

By definition of g we have g(x, u(x)) = f(u(x)). Then g(x, u(x)) = f(u(x)) for

all x ∈ RN . Therefore, u is a nonnegative and nontrivial solution of (P). �
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[10] X. Cabre and X. Solà-Morales, Layer solutions in a half-space for boundary reactions,

Comm. Pure Appl. Math. 58 (2005), 1678–1732.

[11] L. Caffarelli and L. Silvestre, An extension problem related to the fractional laplacian,

Comm. Partial Differential Equations 32 (2007), 1245–1260.

[12] X. Chang, Ground states of some fractional Schrödinger equations on RN , Proc. Edinb.

Math. Soc. (2) 58 (2015), 305–321.

[13] X. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equa-

tions, J. Math. Phys. 54 (2013), 061504.

[14] C. Chen, Infinitely many solutions for fractional Schrödinger equations in RN , Electron.

J. Differential Equations 88 (2016), 1–15.

[15] M. Cheng, Bound state for the fractional Schrödinger equation with unbounded potential,

J. Math. Phys. 53 (2012), 043507.



Nonlocal Schrödinger Equations 405

[16] P. d’Avenia, M. Squassina and M. Zenari, Fractional logarithmic Schrödinger equa-

tions, Math. Methods Appl. Sci. 38 (2015), 5207–5216.

[17] A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional p-minimizers,

Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2015), 1279–1299.
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