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A GLOBAL MULTIPLICITY RESULT

FOR A VERY SINGULAR CRITICAL NONLOCAL EQUATION

Jacques Giacomoni — Tuhina Mukherjee — Konijeti Sreenadh

Abstract. In this article we show the global multiplicity result for the

following nonlocal singular problem

(Pλ) (−∆)su = u−q + λu2∗s−1, u > 0 in Ω, u = 0 in Rn \ Ω,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, n > 2s,

s ∈ (0, 1), λ > 0, q > 0 satisfies q(2s− 1) < (2s+ 1) and 2∗s = 2n/(n− 2s).

Employing the variational method, we show the existence of at least two
distinct weak positive solutions for (Pλ) in X0 when λ ∈ (0,Λ) and no

solution when λ > Λ, where Λ > 0 is appropriately chosen. We also

prove a result of independent interest that any weak solution to (Pλ) is
in Cα(Rn) with α = α(s, q) ∈ (0, 1). The asymptotic behaviour of weak

solutions reveals that this result is sharp.

1. Introduction

In this article we prove the existence, multiplicity and Hölder regularity of

weak solutions to the following fractional critical and singular elliptic equation

(Pλ) (−∆)su = u−q + λu2∗s−1, u > 0 in Ω, u = 0 in Rn \ Ω,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, n > 2s, s ∈ (0, 1),

λ > 0, q > 0 satisfies q(2s− 1) < (2s+ 1) and 2∗s = 2n/(n− 2s). The fractional
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Laplace operator denoted by (−∆)s is defined as

(−∆)su(x) = 2Cns P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy

where P.V. denotes the Cauchy principal value,

Cns = π−n/2 22s−1s
Γ[(n+ 2s)/2]

Γ(1− s)
,

and Γ is the Gamma function. The fractional power of Laplacian is the infinite-

simal generator of Lévy stable diffusion process and arise in anomalous diffusion

in plasma, population dynamics, geophysical fluid dynamics, flames propagation,

chemical reactions in liquids and American options in finance, see [3] for instance.

The theory of fractional Laplacian and elliptic equations involving it as the

principal part has been evolved immensely in recent years. There is a vast

literature available on it, however without giving an exhaustive list we cite [7],

[10], [14], [16], [19], [21], [22] for motivation to readers.

Nowadays, researchers are inspecting on various forms of singular nonlocal

equations. We cite [11], [8], [9] as some contemporary woks related to it. The

fractional elliptic equations with singular and critical nonlinearities was first

studied by Barrios et al. in [5]. The authors considered the problem

(−∆)su = λ
f(x)

uγ
+Mup, u > 0 in Ω, u = 0 in Rn \ Ω,

where n > 2s, M ≥ 0, 0 < s < 1, γ > 0, λ > 0, 1 < p < 2∗s − 1 and

f ∈ Lm(Ω), m ≥ 1 is a nonnegative function. Here, authors studied the existence

of distributional solutions using the uniform estimates of {un} which are solutions

of the regularized problems with singular term u−γ replaced by (u + 1/n)−γ .

Motivated by their results, Sreenadh and Mukherjee in [15] studied the singular

problem

(−∆)su = λa(x)u−q + u2∗s−1, u > 0 in Ω, u = 0 in Rn \ Ω,

where λ > 0, 0 < q ≤ 1 and θ ≤ a(x) ∈ L∞(Ω), for some θ > 0. They showed

that although the energy functional corresponding to this problem fails to be

Fréchet differentiable, making use of its Gâteaux differentiability the Nehari

manifold technique can still be benefitted to obtain existence of at least two

solutions over a certain range of λ. The significance of q being less than 1 is

the Gâteaux differentiability of the functional corresponding to the problem.

Consider now the case q > 1. Let

X
def
=

{
u

∣∣∣∣ u : Rn → R is measurable,

u|Ω ∈ L2(Ω) and
(u(x)− u(y))

|x− y|n/2+s
∈ L2(Q)

}
,
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where Q
def
= R2n \ (CΩ× CΩ) and CΩ := Rn \ Ω endowed with the norm

‖u‖X
def
= ‖u‖L2(Ω) + [u]X ,

where

[u]X =

(∫
Q

|u(x)− u(y)|2

|x− y|n+2s
dx dy

)1/2

.

Let J : X0 → R be the functional defined by

J(u)
def
=

Cns
2
‖u‖2X0

− 1

1− q

∫
Ω

|u|1−q dx− λ

2∗s

∫
Ω

|u|2
∗
s dx

for any u in the Hilbert space X0
def
= {u∈X : u = 0 almost everywhere in Rn\Ω}

equipped with the inner product

〈u, v〉 def
=

∫
Q

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dx dy.

J may not be defined on the whole space nor it is even continuous on D(I) ≡ {u ∈
X0 : I(u) < ∞} and the approach used for q < 1 can not be extended. Besides

this, one has that the interior of D(I) = ∅ because of the singular term. But we

notice that if we enforce the condition q > 1 satisfies q(2s− 1) < (2s+ 1), then

we can prove that D(I) is non empty and Gâteaux differentiable on a suitable

convex cone of X0.

The existence of weak solutions to (Pλ) when λ ∈ (0,Λ) and no solution

when λ > Λ has been already obtained by Giacomoni et al. in [12]. But here the

multiplicity of solutions has been achieved in L1
loc(Ω) only, by using non smooth

critical point theory, so the questions of existence of solutions in the energy space

and of Hölder regularity were still pending. This article is bringing answers to

these two issues. For that, we followed the approach of [13] but we notify that

the adversity and novelty of this article lies in extending Haitao’s technique in

a nonlocal framework. The regularity of weak solution of the purely singular

problem

(−∆)su = u−q, u > 0 in Ω, u = 0 in Rn \ Ω

plays a vital role in our study. This has been obtained by Adimurthi, Giacomoni

and Santra in [1] in recent times. In the present paper we extend the Hölder

regularity results proved in [1, Theorem 1.4] in our framework of weak solutions

(see Definition 1.1 below) rather than the more restricted classical solutions

framework (defined in [1]). It requires additional L∞-estimates and the use of

the weak comparison principle.

Our paper has been organized as follows. Section 2 contains some preliminary

results used in the subsequent sections. Sections 3 and 4 contain the proof of

existence of first and second weak solution to (Pλ) respectively (Theorem 1.2).

The proof of the Hölder regularity result (Theorem 1.3) is given in Section 4
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based on a priori estimates proved in Proposition 4.1. Now we state the main

results proved in the paper. First we define the notion of weak solutions.

Definition 1.1. A function u ∈ X0 is said to be a weak solution of (Pλ) if

there exists a mK > 0 such that u > mK in every compact subset K of Ω, and

for all φ ∈ X0 it satisfies

Cns

∫
Q

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2s
dx dy =

∫
Ω

(u−q + u2∗s−1)φdx.

Given any φ ∈ C0(Ω) such that φ > 0 in Ω we define

Cφ(Ω)
def
= {u ∈ C0(Ω)| exists c ≥ 0 such that |u(x)| ≤ cφ(x), for all x ∈ Ω}

with the usual norm ‖u/φ‖L∞(Ω) and the associated positive cone. We define

the following open convex subset of Cφ(Ω) as

C+
φ (Ω)

def
=

{
u ∈ Cφ(Ω)

∣∣∣∣ inf
x∈Ω

u(x)

φ(x)
> 0

}
.

In particular, C+
φ contains all those functions u ∈ C0(Ω) with k1φ ≤ u ≤ k2φ

in Ω for some k1, k2 > 0. Let φ1,s be the first positive normalized eigenfunc-

tion (‖φ1,s‖L∞(Ω) = 1) of (−∆)s in X0. We recall that φ1,s ∈ Cs(RN ) and

φ1,s ∈ C+
δs(Ω) where δ(x) = dist(x, ∂Ω) (see for instance Proposition 1.1 and

Theorem 1.2 in [17]). We then define the barrier function φq as follows:

(1.1) φq
def
=


φ1,s if 0 < q < 1,

φ1,s

(
ln

(
2

φ1,s

))1/(q+1)

if q = 1,

φ
2/(q+1)
1,s if q > 1.

We prove the following as the main results:

Theorem 1.2. There exists Λ > 0 such that

(a) (Pλ) admits at least two solutions in X0 ∩ C+
φq

(Ω) for every λ ∈ (0,Λ);

(b) (Pλ) admits no solution for λ > Λ;

(c) (PΛ) admits at least one positive solution uΛ ∈ X0 ∩ C+
φq

(Ω).

Theorem 1.3. Let λ ∈ (0,Λ], q > 0 satisfy q(2s− 1) < (2s+ 1) and u ∈ X0

be any positive weak solution of (Pλ). Then

(a) u ∈ Cs(Rn) when 0 < q < 1;

(b) u ∈ Cs−ε(Rn) for any small enough ε > 0 when q = 1;

(c) u ∈ C2s/(q+1)(Rn) when q > 1.

Remark 1.4. Here, the Hölder regularity for the weak solutions of (Pλ)

obtained is optimal because of the behavior of the solution near ∂Ω since we

showed that any weak solution of (Pλ) lies in C+
φq

(Ω).
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Remark 1.5. It follows from Theorem 1.3 that the extremal solution (when

λ = Λ), in case of critical growth nonlinearities is a classical solution which

extends the results in [1] where in this regard only subcritical nonlinearities are

considered.

2. Preliminaries

We start by some preliminary results. The energy functional corresponding

to (Pλ) is given by Iλ : X0 → R defined as

Iλ(u)
def
=


Cns ‖u‖2X0

2
− 1

1− q

∫
Ω

|u|1−q dx− 1

2∗s

∫
Ω

|u|2
∗
s dx if q 6= 1,

Cns ‖u‖2X0

2
−
∫

Ω

ln |u| dx− 1

2∗s

∫
Ω

|u|2
∗
s dx if q = 1.

Let q > 0 satisfies q(2s − 1) < (2s + 1). Then for any ϕ ∈ X0 and u ∈ C+
φq

(Ω),

by Hardy’s inequality (see [23, Lemma 3.2.6.1, p. 259]) we obtain

(2.1)

∫
Ω

u−qϕ ≤
(∫

Ω

dx

(δ(x))2s(q−1)/(q+1)

)1/2(
ϕ2

(δ(x))2s

)1/2

< K‖ϕ‖ < +∞

where K > 0 is a constant. If we define D(I) = {u ∈ X0 : Iλ(u) < ∞}, then in

virtue of (2.1) we get that D(I) 6= ∅. This gives an importance of the inequality

q(2s − 1) < (2s + 1). From the proof of [1, Theorem 1.2], we know that if

0 < q < 1 and u ∈ X0 satisfies u ≥ cδs, then Iλ is Gâteaux differentiable at u.

In the proposition below, we show the same property of Iλ when q ≥ 1 satisfies

q(2s− 1) < (2s+ 1).

Proposition 2.1. If M = {u ∈ X0 : u1 ≤ u ≤ u2} where u1 ∈ C+
φq

(Ω) and

u2 ∈ X0, then Iλ is Gâteaux differentiable at u in the direction (v − u) where

v, u ∈M .

Proof. We need to show that

lim
t→0

Iλ(u+ t(v − u))− Iλ(u)

t

= Cns

∫
Q

(v(x)− v(y))((v − u)(x)− (v − u)(y))

|x− y|n+2s
dx dy

−
∫

Ω

u−q(v − u) dx− λ
∫

Ω

u2∗s−1(v − u) dx.

It is enough to show this for the singular term; for the rest two terms, the proof

is standard. For any t ∈ (0, 1), u+ t(v − u) ∈M since M is convex. Consider

F (u) =
1

1− q

∫
Ω

u1−q dx.



350 J. Giacomoni — T. Mukherjee — K. Sreenadh

Using Mean Value Theorem we get

F (u+ t(v − u))− F (u)

t
=

1

t(1− q)

∫
Ω

(
(u+ t(v − u))1−q − u1−q)(x) dx

=

∫
Ω

(u+ tθ(v − u))−q(x)(v − u)(x) dx

for some θ ∈ (0, 1). Since (u+ tθ(v − u)) ∈M and (2.1), we have∫
Ω

(u+ tθ(v − u))−q(v − u) dx ≤
∫

Ω

u−q1 (v − u) dx < +∞.

So, using the Lebesgue Dominated Convergence theorem, we pass to the limit

t→ 0 and get

lim
t→0

F (u+ t(v − u))− F (u)

t
=

∫
Ω

u−q(v − u) dx. �

Let L(u) := (−∆)su− u−q. Then L forms a monotone operator. So we have

the following comparison principle:

Lemma 2.2. Let u1, u2 ∈ X0 ∩ C+
φq

(Ω) are weak solutions to

L(u1) = g1 in Ω, L(u2) = g2 in Ω,

with g1, g2 ∈ L2(Ω) such that g1 ≤ g2 almost everywhere in Ω. Then u1 ≤ u2

almost everywhere in Ω. Moreover, if g ∈ L∞(Ω), then the problem

L(u) = g in Ω, u = 0 in Rn \ Ω,

has a unique solution in X0.

3. Existence result

Let us define Λ := sup{λ > 0 : (Pλ) has a weak solution }. Also let w ∈
C0(Ω) solves the purely singular problem

(−∆)sw = w−q, w > 0 in Ω, w = 0 in Rn \ Ω.

Then [1, Theorems 1.2 and 1.4] give us that w is unique, w ∈ X0 ∩ C+
φq

(Ω) and

w ∈ Csq (Rn), where

sq
def
=


s if q < 1,

s− ε for any ε > 0 if q = 1,
2s

q + 1
if 1 < q and q(2s− 1) < 2s+ 1.

For the sake of clarity we basically focus on the case 1 ≤ q and q(2s− 1) <

(2s+ 1). Indeed, when q ∈ (0, 1), the case follows easily along the same line. In

this context, the next result is an important lemma for Λ.

Lemma 3.1. It holds 0 < Λ < +∞.
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Proof. First we prove that Λ < +∞. Using φ1,s as the test function in (Pλ)

we get

(3.1)

∫
Ω

(u−qφ1,s + λu2∗s−1φ1,s) dx =

∫
Rn
φ1,s(−∆)su dx

=

∫
Rn
u(−∆)sφ1,s dx = λ1,s

∫
Ω

uφ1,s dx.

If we choose a λ > 0 which satisfies t−q + λt2
∗
s−1 > 2λ1,st for all t > 0, then we

get a contradiction to (3.1). Therefore Λ < +∞. Now to prove Λ > 0 we need

sub- and supersolution for (Pλ). It is easy to see that uλ = w forms a subsolution

of (Pλ) and uλ = uλ + Mz for λ > 0 small enough and for a M = M(λ) > 0

forms a supersolution of (Pλ), where 0 < z ∈ X0 solves (−∆)sz = 1 in Ω. Now

we define the closed convex subset Mλ of X0 as

Mλ := {u ∈ X0 : uλ ≤ u ≤ uλ}.

Consider the iterative scheme (k ≥ 1):

(Pλ,k) (Pλ,k)

(−∆)suk − u−qk = λu
2∗s−1
k−1 , uk > 0 in Ω,

uk = 0 inRn \ Ω,

with u0 = uλ. The existence of {uk} in X0 ∩Mλ ∩ C+
φq

(Ω) can be proved by

considering the approximated problem corresponding to (Pλ,k), for instance we

refer [6, Proposition 2.3]. From Lemma 2.2, it follows that {uk} is increasing

and uk ∈Mλ for all k. Let lim
k↑∞

uk = uλ. Then testing (Pλ,k) by uk we get

‖uk‖2 ≤ 2

∫
Ω

uλ
2 dx+ λ

∫
Ω

uλ
2∗s dx+

∫
Ω

uλuλ
−q ≤ Kλ

where Kλ > 0 is a constant depending on λ. So, up to a subsequence, uk ⇀ uλ
in X0. Finally, using the Lebesgue dominated convergence Theorem, we pass

through the limit in (Pλ,k) to obtain uλ solves (Pλ) weakly and obviously, uλ ∈
Mλ. This proves that Λ > 0. �

In the next result, we prove the existence of a weak solution for (Pλ) whenever

λ ∈ (0,Λ). In the proof, we use a minimization on a conical shell argument

similar as in [2, Lemma 4.1] and in [6, Proposition 3.5]. But here we take

advantage of the existence of a strict positive subsolution to control the singular

nonlinearity.

Proposition 3.2. For each λ ∈ (0,Λ), (Pλ) admits a weak solution w

in C+
φq

(Ω).

Proof. The proof goes along the line of Perron’s method adapted over

a nonlocal framework (see [13, Lemma 2.2]). Let λ ∈ (0,Λ) and λ′ ∈ (λ,Λ).

Then it is easy to see that uλ′ , a weak solution of (Pλ′), forms a supersolution
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for (Pλ). Such a λ′ exists because of the definition of Λ and Lemma 3.1. Let uλ
be the same function as defined in Lemma 3.1 and consider the closed convex

subset Wλ of X0 as Wλ = {u ∈ X0 : uλ ≤ u ≤ uλ′}. Then, for each u ∈ Wλ,

because of fractional Sobolev embedding Iλ satisfies

Iλ(u) ≥


Cns ‖u‖2

2
− C

2∗s
‖u‖2

∗
s if q > 1,

Cns ‖u‖2

2
− C

2∗s
‖u‖2

∗
s − C(λ′) if q ≤ 1,

where C(λ′) is a positive constant depending solely on λ′. Then Iλ is bounded

from below and coercive over Wλ. If {uk} ⊂ Wλ be such that uk ⇀ u0 in X0

as k → ∞, then since for each k, uk ≥ uλ for q > 1 and uk ≤ uλ′ for q ∈ (0, 1],∫
Ω
u1−q
k dx ≤

∫
Ω
uλ

1−q dx, we can use Lebesgue dominated convergence theorem

to get that ∫
Ω

u1−q
k dx→

∫
Ω

u1−q
0 dx as k →∞.

Hence from weak lower semicontinuity of norms, it follows that Iλ is weakly lower

semicontinuous over Wλ. Moreover, Wλ is weakly sequentially closed subset

of X0. Therefore there exists a w ∈Wλ such that

(3.2) inf
u∈Wλ

Iλ(u) = Iλ(w).

Claim. w is a weak solution of (Pλ).

Let ϕ ∈ X0 and ε > 0; we define

vε = min{uλ′ ,max{uλ, w + εϕ}} = w + εϕ− ϕε + ϕε

where ϕε = max{0, w+εϕ−uλ′} and ϕε = max{0, uλ−w−εϕ}. By construction

vε ∈Wλ and ϕε, ϕε ∈ X0 ∩L∞(Ω). Since w+ t(vε−w) ∈Wλ for each t ∈ (0, 1),

using (3.2) and Proposition 2.1 we get that

0 ≤ lim
t→0+

Iλ(w + t(vε − w))− Iλ(w)

t

=

∫
Q

(vε − w)(−∆)sw dx−
∫

Ω

w−q(vε − w) dx−
∫

Ω

w2∗s−1(vε − w) dx.

This gives

(3.3)

∫
Rn
ϕ(−∆)sw dx−

∫
Ω

(w−q + λw2∗s−1)ϕdx ≥ 1

ε
(Eε − Eε),

where

Eε =

∫
Rn
ϕε(−∆)sw dx−

∫
Ω

(w−q + λw2∗s−1)ϕε dx

=

∫
Rn
ϕε(−∆)s(w − uλ′) dx+

∫
Rn
ϕε(−∆)suλ′ dx−

∫
Ω

(w−q + λw2∗s−1)ϕε dx
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and

Eε =

∫
Rn
ϕε(−∆)sw dx−

∫
Ω

(w−q + λw2∗s−1)ϕε dx

=

∫
Rn
ϕε(−∆)s(w − uλ) dx+

∫
Rn
ϕε(−∆)suλ dx−

∫
Ω

(w−q + λw2∗s−1)ϕε dx.

We define

Ωε = {x ∈ Ω : (w + εϕ)(x) ≥ uλ′ > w(x)}

so that L(Ωε)→ 0 as ε→ 0+ and also

CΩε:= Ω \ Ωε ⊂ {x ∈ Ω : (w + εϕ)(x) < uλ′(x)},

which implies that L(Ωε × CΩε)→ 0 as ε→ 0+.

Now we consider the term∫
Rn
ϕε(−∆)s(w − uλ′) dx

=

∫
Q

((w − uλ′)(x)− (w − uλ′)(y))(ϕε(x)− ϕε(y)

)
|x− y|n+2s dx dy

=

∫
Ωε

∫
Ωε

|(w − uλ′)(x)− (w − uλ′)(y)|2

|x− y|n+2s
dx dy

+ ε

∫
Ωε

∫
Ωε

((w − uλ′)(x)− (w − uλ′)(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dx dy

+ 2

∫
Ωε

∫
CΩε

(w − uλ′)2(x)

|x− y|n+2s
dx dy + 2ε

∫
Ωε

∫
CΩε

(w − uλ′)(x)ϕ(x)

|x− y|n+2s
dx dy

− 2

∫
Ωε

∫
CΩε

(w − uλ′)(x)(w − uλ′)(y)

|x− y|n+2s
dx dy

+ 2ε

∫
Ωε

∫
CΩε

(w − uλ′)(y)ϕ(x)

|x− y|n+2s
dx dy

+ 2

∫
Ωε

∫
CΩ

(w − uλ′)2(x)

|x− y|n+2s
dx dy + 2ε

∫
Ωε

∫
CΩ

(w − uλ′)(x)ϕ(x)

|x− y|n+2s
dx dy

≥ ε
∫

Ωε

∫
Ωε

((w − uλ′)(x)− (w − uλ′)(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dx dy

+ 2ε

∫
Ωε

∫
CΩε

(w − uλ′)(x)ϕ(x)

|x− y|n+2s
dx dy − 2ε2

∫
Ωε

∫
CΩε

ϕ(x)ϕ(y)

|x− y|n+2s
dx dy

+ 2ε

∫
Ωε

∫
CΩε

(w − uλ′)(y)ϕ(x)

|x− y|n+2s
dx dy + 2ε

∫
Ωε

∫
CΩ

(w − uλ′)(x)ϕ(x)

|x− y|n+2s
dx dy,

where, in order to obtain the last inequality, we use the fact that if (x, y) ∈
Ωε × CΩε, then

(w − uλ′)(x)(w − uλ′)(y) ≤ ε2ϕ(x)ϕ(y).
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Therefore we get

1

ε

∫
Rn
ϕε(−∆)s(w − uλ′) dx ≥ o(1) as ε→ 0+.

Moreover, using the fact that uλ′ is a supersolution of (Pλ), the other terms of

Eε/ε can be estimated as

1

ε

∫
Rn
ϕε(−∆)suλ′ dx−

1

ε

∫
Ω

(
w−q + λw2∗s−1

)
ϕε dx

≥ 1

ε

∫
Ωε

(
u−qλ′ − w

−q)ϕε dx+
1

ε

∫
Ωε

(
u

2∗s−1
λ′ − w2∗s−1

)
ϕε dx

≥ −
∫

Ωε

∣∣u−qλ′ − w−q∣∣ |ϕ| dx = o(1)

as ε → 0+. Altogether we get Eε/ε ≥ o(1) as ε → 0+ and similarly we obtain

Eε/ε ≤ o(1) as ε→ 0+. Hence (3.3) gives that for all ϕ ∈ X0∫
Rn
ϕ(−∆)sw dx−

∫
Ω

(
w−q + λw2∗s−1

)
ϕdx ≥ o(1) as ε→ 0+

but since ϕ was arbitrary, this implies that w is a weak solution of (Pλ). �

We now prove a special property of w, the weak solution of (Pλ) obtained

in Proposition 3.2 following the proof in [6, Proposition 3.5]. We also refer [2,

Proposition 5.2] where similar ideas were already used.

Lemma 3.3. Let λ ∈ (0,Λ) and w denotes the weak solution of (Pλ) obtained

in Proposition 3.2. Then w forms a local minimum of the functional Iλ.

Proof. We argue by contradiction, so suppose w is not a local minimum

of Iλ. Then there exists a sequence {uk} ⊂ X0 satisfying

(3.4) ‖uk − w‖ → 0 as k →∞ and Iλ(uk) < Iλ(w).

We define u = uλ and u = uλ′ as sub- and supersolution of (Pλ) as defined in

the proof of Proposition 3.2. Also we define

vk = max{u,min{uk, u}} =


u ifuk < u,

uk ifu ≤ uk ≤ u,
u ifuk > u,

and wk = (uk − u)−, wk = (uk − u)+. Correspondingly, we define the sets

Sk = Supp(wk) and Sk = Supp(wk).

Then uk = vk − wk + wk and vk ∈ Wλ where Wλ has been defined in Proposi-

tion 3.2. The main idea of the proof is to establish that the measures of Sk and
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Sk tend to 0 as k →∞ which together with vk ∈Wλ force Iλ(uk) to be beyond

Iλ(w). First, we have that∫
Ω

(u+
k )1−q dx =

∫
Sk

(u+
k )1−q dx+

∫
Sk

(u+
k )1−q dx+

∫
u≤vk≤u

(vk)1−q dx

=

∫
Sk

(
(u+
k )1−q − u1−q) dx+

∫
Sk

(
(u+
k )1−q − u1−q) dx+

∫
Ω

(vk)1−q dx

and∫
Ω

(u+
k )2∗s dx =

∫
Sk

(u+
k )2∗s dx+

∫
Sk

(u+
k )2∗s dx+

∫
u≤vk≤u

(vk)2∗s dx

=

∫
Sk

(
(u+
k )2∗s − u2∗s

)
dx+

∫
Sk

(
(u+
k )2∗s − u2∗s

)
dx+

∫
Ω

(vk)2∗s dx.

Then we can express Iλ(uk) as

Iλ(uk) = Iλ(vk) +
J0

2
(3.5)

− 1

1− q

(∫
Sk

(
(u+
k )1−q − u1−q) dx+

∫
Sk

(
(u+
k )1−q − u1−q) dx

)
− λ

2∗s

(∫
Sk

(
(u+
k )2∗s − u2∗s

)
dx+

∫
Sk

(
(u+
k )2∗s − u2∗s

)
dx

)
where J0 = Cns

(
‖uk‖2 − ‖vk‖2

)
. While denoting Sk = {x ∈ Ω : u ≤ vk ≤ u} and

hk(x, y) = (uk(x)− uk(y))2 − (vk(x)− vk(y))2, we get

J0 =

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dx dy +

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dx dy

+ 2

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dx dy + 2

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dx dy

+ 2

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dx dy.

Since uk = wk + u and vk = u in Sk and uk = u− wk and vk = u in Sk we get

that∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dx dy =

∫
Sk

∫
Sk

(wk(x)− wk(y))2

|x− y|n+2s
dx dy

− 2

∫
Sk

∫
Sk

(wk(x)− wk(y))(u(x)− u(y))

|x− y|n+2s
dx dy

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dx dy =

∫
Sk

∫
Sk

(wk(x)− wk(y))2

|x− y|n+2s
dx dy

+ 2

∫
Sk

∫
Sk

(wk(x)− wk(y))(u(x)− u(y))

|x− y|n+2s
dx dy.
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Also similarly we obtain∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dx dy =

∫
Sk

∫
Sk

(wk(x) + wk(y))2

|x− y|n+2s
dx dy

− 2

∫
Sk

∫
Sk

(wk(x) + wk(y))(u(x)− u(y))

|x− y|n+2s
dx dy,

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dx dy =

∫
Sk

∫
Sk

wk
2(x)

|x− y|n+2s
dx dy

− 2

∫
Sk

∫
Sk

wk(x)(u(x)− uk(y))

|x− y|n+2s
dx dy,

∫
Sk

∫
Sk

hk(x, y)

|x− y|n+2s
dx dy =

∫
Sk

∫
Sk

wk
2(x)

|x− y|n+2s
dx dy

+ 2

∫
Sk

∫
Sk

wk(x)(u(x)− uk(y))

|x− y|n+2s
dx dy.

Since CSk = Sk ∪ Sk, CSk = Sk ∪ Sk and

‖wk‖2 =

∫
Sk

∫
Sk

(wk(x)− wk(y))2

|x− y|n+2s
dx dy + 2

∫
Sk

∫
CSk

wk
2(x)

|x− y|n+2s
dx dy

‖wk‖2 =

∫
Sk

∫
Sk

(wk(x)− wk(y))2

|x− y|n+2s
dx dy + 2

∫
Sk

∫
CSk

wk
2(x)

|x− y|n+2s
dx dy,

using all above estimates, we can express J0 as

J0 =Cns (‖wk‖2 + ‖wk‖2) + 2

(∫
Sk

∫
Sk

(wk(x) + wk(y))2

|x− y|n+2s
dx dy

−
∫
Sk

∫
Sk

wk
2(x)

|x− y|n+2s
−
∫
Sk

∫
Sk

wk
2(x)

|x− y|n+2s
dx dy

)
− 2

∫
Sk

∫
Sk

(wk(x)− wk(y))(u(x)− u(y))

|x− y|n+2s
dx dy

+ 2

∫
Sk

∫
Sk

(wk(x)− wk(y))(u(x)− u(y))

|x− y|n+2s
dx dy

− 4

∫
Sk

∫
Sk

(wk(x) + wk(y))(u(x)− u(y))

|x− y|n+2s
dx dy

− 4

∫
Sk

∫
Sk

wk(x)(u(x)− uk(y))

|x− y|n+2s
dx dy

+ 4

∫
Sk

∫
Sk

wk(x)(u(x)− uk(y))

|x− y|n+2s
dx dy.
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Now we notice that, if (x, y) ∈ Sk × Sk, then (u(x)− uk(y)) ≤ (u(x)− u(y)); if

(x, y) ∈ Sk × Sk, then (u(x)− uk(y)) ≥ (u(x)− u(y)) and∫
Sk

∫
Sk

(wk(x) + wk(y))2

|x− y|n+2s
dx dy −

∫
Sk

∫
Sk

wk
2(x)

|x− y|n+2s
dx dy

−
∫
Sk

∫
Sk

wk
2(x)

|x− y|n+2s
dx dy = 2

∫
Sk

∫
Sk

wk(x)wk(y)

|x− y|n+2s
dx dy.

Also, using change of variables, we have∫
Sk

∫
Sk

(wk(x) + wk(y))(u(x)− u(y))

|x− y|n+2s
dx dy

=

∫
Sk

∫
Sk

wk(x)(u(x)− u(y))

|x− y|n+2s
dx dy −

∫
Sk

∫
Sk

wk(x)(u(x)− u(y))

|x− y|n+2s
dx dy.

Therefore altogether we obtain

J0 ≥Cns (‖wk‖2 + ‖wk‖2) + 4

∫
Sk

∫
Sk

wk(x)wk(y)

|x− y|n+2s
dx dy + 2

∫
Rn
wk(−∆)su dx

− 2

∫
Rn
wk(−∆)su dx− 4

∫
Sk

∫
Sk

wk(x)(u(x)− u(y))

|x− y|n+2s
dx dy

+ 4

∫
Sk

∫
Sk

wk(x)(u(x)− u(y))

|x− y|n+2s
dx dy

− 4

∫
Sk

∫
Sk

(wk(x) + wk(y))(u(x)− u(y))

|x− y|n+2s
dx dy

≥Cns
(
‖wk‖2 + ‖wk‖2

)
+ 2

∫
Rn
wk(−∆)su dx− 2

∫
Rn
wk(−∆)su dx

where we used the fact that if (x, y) ∈ Sk × Sk, then wk(x)wk(y) ≥ 0. Now, re-

calling that u and u forms sub- and supersolution of (Pλ), respectively, inserting

the above inequality in (3.5) we obtain

Iλ(uk) ≥ Iλ(vk) +
Cns ‖wk‖2

2
+
Cns ‖wk‖2

2

+

∫
Sk

(
u1−q − (u+ wk)1−q

1− q
+ u−qwk

)
dx

+

∫
Sk

(
u1−q − (u− wk)1−q

1− q
− u−qwk

)
dx

+ λ

∫
Sk

(
u2∗s − (u+ wk)2∗s

2∗s
+ u2∗s−1wk

)
dx

+ λ

∫
Sk

(
u2∗s − (u− wk)2∗s

2∗s
− u2∗s−1wk

)
dx.
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Now, from Mean Value Theorem it follows that there exists θ ∈ (0, 1) (where θ

may change its value for different function below) such that

Iλ(uk) ≥ Iλ(vk) +
Cns ‖wk‖2

2
+
Cns ‖wk‖2

2
(3.6)

−
∫
Sk

((u+ θwk)−q − u−q)wk dx

−
∫
Sk

(u−q − (u+ θwk)−q)wk dx

− λ
∫
Sk

(
(u+ θwk)2∗s−1 − u2∗s−1

)
wk dx

− λ
∫
Sk

(
u2∗s−1 − (u+ θwk)2∗s−1

)
wk dx

≥ Iλ(vk) +
Cns ‖wk‖2

2
+ λ

∫
Sk

(
(u+ θwk)2∗s−1 − u2∗s−1

)
wk dx

− λ
∫
Sk

(
u2∗s−1 − (u+ θwk)2∗s−1

)
wk dx.

Now, since 2∗s > 2, there exists constant C > 0 such that (3.6) reduces to

Iλ(uk) ≥ Iλ(vk) +
Cns ‖wk‖2

2
+
Cns ‖wk‖2

2
(3.7)

− C
∫
Sk

(u2∗s−2 − wk2∗s−2)wk
2 dx

− C
∫
Sk

(u2∗s−2 − wk2∗s−2)wk
2 dx

≥ Iλ(vk) +
Cns ‖wk‖2

2
+
Cns ‖wk‖2

2

− C
(∫

Sk

|u|2
∗
s

)(2∗s−2)/2∗s

‖wk‖2 − C
(∫

Sk

|u|2
∗
s

)(2∗s−2)/2∗s

‖wk‖2.

Claim. lim
k→∞

|Sk| = 0 and lim
k→∞

|Sk| = 0.

Let α > 0 and define

Ak = {x∈Ω : uk ≥ u and u > w + α}, Âk = {x∈Ω : uk ≤ u and u < w − α},

Bk = {x∈Ω : uk ≥ u and u ≤ w + α}, B̂k = {x∈Ω : uk ≤ u and u ≥ w − α}.

Since

0 = L({x ∈ Ω : u < w}) = L
( ∞⋂
j=1

{x ∈ Ω : u < w + 1/j}
)

so there exists j0 ≥ 1 large enough and α < 1/j0 such that L({x ∈ Ω : u

< w + α}) ≤ ε/2. This implies that L(Bk) ≤ ε/2 and similarly, we obtain
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L(B̂k) ≤ ε/2. From (3.4) we already have |uk − w|2 → 0 as k → ∞. So, for

k ≥ k0 large enough, we get that

α2 ε

2
≥
∫

Ω

|uk − w|2 dx ≥
∫
Ak

|uk − w|2 dx ≥ α2L(Ak)

which implies that L(Ak) ≤ ε/2 for k ≥ k0. Similarly, we obtain L(Âk) ≤ ε/2

for k ≥ k0. Now, since Sk ⊂ Ak ∩Bk and Sk ⊂ Âk ∩ B̂k, we get that L(Sk) ≤ ε
and L(Sk) ≤ ε for k ≥ k0. This proves the claim. Thus(∫

Sk

|u|2
∗
s

)(2∗s−2)/2∗s

≤ o(1) and

(∫
Sk

|u|2
∗
s

)(2∗s−2)/2∗s

≤ o(1)

which imposing in (3.7) gives that, for large enough k,

Iλ(uk)≥Iλ(vk) ≥ Iλ(w),

which is a contradiction to (3.4). Therefore w must be a local minimum of Iλ
over X0. �

Theorem 3.4. There exists a positive weak solution to (PΛ).

Proof. Let λm ↑ Λ as m → ∞ and {uλm} be a sequence of positive weak

solutions to (Pλm), such that uλm forms the local minimum of Iλm as seen in

Lemma 3.3. Since we consider the minimal solutions, we get um ≤ um+1 for

each m. Then it is easy to see that Iλm < 0 in the case 0 < q < 1, whereas

there exists a constant K independent of m such that Iλm ≤ K for all m when

q > 1 but q(2s − 1) < (2s + 1). This implies that {uλm} is uniformly bounded

in X0. Therefore, up to a subsequence, there exists uΛ ∈ X0 such that uλm ⇀ uΛ

weakly and pointwise almost everywhere in X0 as m→∞. Also, by construction

uλm ≥ uλ1 as defined in Lemma 3.1. Therefore, uΛ is a positive weak solution

of (PΛ). �

4. Multiplicity result

We have already obtained the first solution for (Pλ) in the previous section

when λ ∈ (0,Λ) in X0-topology. We fix λ ∈ (0,Λ) and let w denotes the first

weak solution of (Pλ) obtained in Proposition 3.2. In this section, we prove

the existence of second solution of (Pλ) using the machinery of Mountain Pass

Lemma and with the help of Ekeland variational principle. Precisely, we extend

the approach used in [13] to the non local setting and for q ≥ 1. This can be

done by using the asymptotic boundary behavior of w ∈ C+
φq

(Ω) and the Hardy’s

inequality to control the singular nonlinearity in the cone T defined as:

T
def
= {x ∈ X0 : u ≥ w almost everywhere in Ω}

and, since w forms a local minimizer of Iλ, we get that Iλ(u) ≥ Iλ(w) whenever

‖u−w‖ ≤ σ0, for some constant σ0 > 0. Then one of the following cases holds:
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(ZA) (Zero Altitude) inf{Iλ(u) | u ∈ T, ‖u − w‖ = σ} = Iλ(w) for all σ

in (0, σ0).

(MP) (Mountain Pass) There exists a σ1 ∈ (0, σ0) such that inf{Iλ(u) | u ∈ T,
‖u− w‖ = σ1} > Iλ(w).

Before investigating the two distinguished cases (ZA) and (MP), we prove the

following regularity result for weak solutions to (Pλ):

Proposition 4.1. Any weak solution to (Pλ) for λ ∈ (0,Λ] belongs to

L∞(Ω) ∩ C+
φq

(Ω).

Proof. Let u ∈ X0 denotes a weak solution to (Pλ). We know that uλ ∈
X0 ∩ C+

φq
(Ω) (defined in Lemma 3.1) forms a subsolution to (Pλ) satisfying

(−∆)suλ = uλ
−q in Ω. We first have:

Claim. uλ ≤ u almost everywhere in Ω.

Let us prove the above claim. Suppose it is not true. First it is easy to see

that for any v ∈ X0 it holds

(v(x)− v(y))(v+(x)− v−(y)) ≥ |v+(x)− v+(y)|2, for any x, y ∈ Rn.

Therefore, using (uλ − u)+ as the test function in (−∆)s(uλ − u) ≤ uλ−q − u−q

in Ω we get

0 ≤ Cns
∫
Q

|(uλ − u)+(x)− (uλ − u)+(y)|2

|x− y|n+2s
dx dy

≤ Cns
∫
Q

((uλ − u)+(x)− (uλ − u)+(y))((uλ − u)(x)− (uλ − u)(y))

|x− y|n+2s
dx dy

≤
∫

Ω

(uλ
−q − u−q)(uλ − u)+ dx ≤ 0.

Hence it must be that meas{x ∈ Ω : uλ(x) ≥ u(x)} = 0 which gives a con-

tradiction. Therefore uλ ≤ u almost everywhere in Ω. Let us now prove that

u ∈ L∞(Ω). We follow the approach in [4, Proposition 2.2]. By virtue of the

above claim and Hardy’s inequality, we know that∫
Ω

u−qφdx <∞ for any φ ∈ X0.

We aim to show that (u−1)+ belongs to L∞(Ω) which will imply that u ∈ L∞(Ω).

If f(t) = (t−1)+ for t ∈ R and ψ(t) ∈ C∞(R) is a convex and increasing function

such that ψ′(t) ≤ 1 when t ∈ [0, 1] and ψ′(t) = 1 when t ≥ 1, then we can define

ψε(t) = εψ(t/ε)

so that ψε → f uniformly as ε → 0. Also, since ψε is smooth, by regularity

results and the uniform convergence of ψε to f we get that

(−∆)sψε(u)→ (−∆)s(u− 1)+ as ε→ 0.
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Moreover, because ψε is convex and differentiable, we know that

(−∆)sψε(u) ≤ ψ′ε(u)(−∆)su ≤ χ{u>1}(−∆)su

where χ{u>1} denotes the characteristic function over the set {x ∈ Ω : u(x) > 1}.
Then, passing on the limits ε→ 0 in above equation, we obtain

(−∆)s(u−1)+ ≤ χ{u>1}(−∆)su ≤ χ{u>1}(u
−q+λu2∗s−1) ≤ C(1+((u−1)+)2∗s−1)

for some constant C > 0. Therefore using [4, Proposition 2.2], we conclude that

(u − 1)+ ∈ L∞(Ω). Finally, we show that u ∈ C+
φq

(Ω). Let zλ be the unique

solution (refer to [1, Theorem 1.1] with δ = q and β = 0) to

(−∆)szλ = zλ
−q + λc, u > 0 in Ω, u = 0 in Rn \ Ω,

with c = ‖u‖2
∗
s−1
∞ . Similarly we can prove that u ≤ zλ. Therefore ,using local reg-

ularity results in [17, Propositions 2.2 and 2.3] derived from [20, Propositions 2.8

and 2.9], u ∈ C+
φq

(Ω). �

Lemma 4.2. Let (ZA) holds; then for any σ ∈ (0, σ0) there exists a solution

v ∈ C+
φ (Ω) to (Pλ) such that 0 < w < v in Ω and ‖v − w‖ = σ.

Proof. We follow the proof of Lemma 2.6 of [13] in a nonlocal framework.

We fix σ ∈ (0, σ0) and r > 0 such that σ − r > 0 and σ + r < σ0. Let us define

the set

W = {u ∈ T | 0 < σ − r ≤ ‖u− w‖ ≤ σ + r}
which is closed in X0 and, by (ZA), inf

u∈W
Iλ(u) = Iλ(w). So, using Ekeland

variational principle, for any minimizing sequence {uk} ⊂ X0 satisfying ‖uk‖ = σ

and Iλ(uk) ≤ Iλ(w) + 1/k, we get another sequence {vk} ⊂W such that

(4.1)


Iλ(vk) ≤ Iλ(uk) ≤ Iλ(w) +

1

k
, ‖uk − vk‖ ≤

1

k
,

Iλ(vk) ≤ Iλ(z) +
1

k
‖z − vk‖ for all z ∈W.

We can choose ε > 0 small enough so that vk + ε(z − vk) ∈ W for z ∈ T . So

from (4.1) we obtain

Iλ(vk + ε(z − vk))− Iλ(vk)

ε
≥ −1

k
‖z − vk‖.

Letting ε→ 0+ and using the fact that vk ≥ w for each k, for z ∈ T we get

(4.2)

∫
Rn

(−∆)svk(z − vk)−
∫

Ω

v−qk (z − vk) dx

− λ
∫

Ω

v
2∗s−1
k (z − vk) dx ≥ −1

k
‖z − vk‖.

Now, since {vk} forms a bounded sequence in X0, we get that there exists a v

in X0 such that, up to a subsequence, vk ⇀ v weakly in X0 and pointwise

almost everywhere in Ω as k → ∞. Since vk ≥ w for each k, we get v ≥ w
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almost everywhere in Ω. In what follows, we will prove that v is a weak solution

of (Pλ). For φ ∈ X0 and ε > 0, we set φk,ε = (vk + εφ−w)− ∈ X0 which implies

that (vk + εφ+ φk,ε) ∈ T . Putting z = vk + εφ+ φk,ε in (4.2) we get

(4.3) Cns

∫
Q

(vk(x)− vk(y))((εφ+ φk,ε)(x)− (εφ+ φk,ε)(y))

|x− y|n+2s
dx dy

−
∫

Ω

v−qk (εφ+ φk,ε) dx− λ
∫

Ω

v
2∗s−1
k (εφ+ φk,ε) dx ≥

−1

k
‖(εφ+ φk,ε)‖.

We define the sets

Ωk,ε = Suppφk,ε, Ωε = Suppφε and Ω0 = {x ∈ Ω : v(x) = w(x)}.

Then we get that L(Ωε \Ω0)→ 0 as ε→ 0 and L(Ωk,ε \Ωε) +L(Ωε \Ωk,ε)→ 0

as k →∞. Also, since |φk,ε| ≤ w+ε|φ|, using Lebesgue Dominated Convergence

Theorem we get φk,ε → φε = (v+εφ−w)− in Lm(Ω) for all m ∈ [1, 2∗s]. Moreover

φk,ε ⇀ φε weakly in X0 and pointwise almost everywhere in Ω as k →∞. Now

we estimate the following integral∫
Q

(vk(x)− vk(y))(φk,ε(x)− φk,ε(y))

|x− y|n+2s
dx dy(4.4)

=

∫
Q

(vk(x)− vk(y))(φε(x)− φε(y))

|x− y|n+2s
dx dy

+

∫
Q

(vk(x)− vk(y))((φk,ε − φε)(x)− (φk,ε − φε)(y))

|x− y|n+2s
dx dy := I1 + I2.

We show that I2 ≤ ok(1) for which we split the integrals and estimate them

separately. Let Hk = Ωk,ε ∩ Ωε and Gk = Ωk,ε \ Ωε ∪ Ωε \ Ωk,ε. Then∫
Ω

∫
CΩ

(vk(x)− vk(y))((φk,ε − φε)(x)− (φk,ε − φε)(y))

|x− y|n+2s
(4.5)

≤
∫
Hk

∫
CΩ

v(x)(v − vk)(x)

|x− y|n+2s
+

∫
Gk

∫
CΩ

vk(x)(φk,ε − φε)(x)

|x− y|n+2s

≤
∫
Hk

∫
CΩ

v(x)(v − vk)(x)

|x− y|n+2s
+

∫
Gk

∫
CΩ

vk(x)φk,ε(x)

|x− y|n+2s

=

∫
Hk

∫
CΩ

v(x)(v − vk)(x)

|x− y|n+2s
+ ok(1)

using the fact that L(Ωk,ε \ Ωε) + L(Ωε \ Ωk,ε) → 0 as k → ∞ and Lebesgue

Dominated Convergence Theorem. Similarly∫
Ω

∫
Ω

(vk(x)− vk(y))((φk,ε − φε)(x)− (φk,ε − φε)(y))

|x− y|n+2s
(4.6)

≤
∫
Hk

∫
Hk

(v(x)− v(y))((v − vk)(x)− (v − vk)(y))

|x− y|n+2s

+ 2

∫
Hk

∫
Gk

(vk(x)− vk(y))((φk,ε − φε)(x)− (φk,ε − φε)(y))

|x− y|n+2s
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+

∫
Gk

∫
Gk

(vk(x)− vk(y))((φk,ε − φε)(x)− (φk,ε − φε)(y))

|x− y|n+2s

≤
∫
Hk

∫
Hk

(v(x)− v(y))((v − vk)(x)− (v − vk)(y))

|x− y|n+2s
+ ok(1)

using again the Lebesgue Dominated Convergence Theorem with the fact that

vk − v → 0 and φk,ε − φε → 0 pointwise as k → ∞. Combining (4.5) and (4.6)

we obtain that

I2 ≤
∫
Hk

∫
Hk∪CΩ

(v(x)− v(y))((v − vk)(x)− (v − vk)(y))

|x− y|n+2s
+ ok(1) = ok(1).

Therefore, using this in (4.4), we obtain

∫
Q

(vk(x)− vk(y))(φk,ε(x)− φk,ε(y))

|x− y|n+2s
dx dy

≤
∫
Q

(vk(x)− vk(y))(φε(x)− φε(y))

|x− y|n+2s
dx dy + ok(1).

Moreover, we have that |v−qk (εφ + φk,ε)| ≤ w−q(w + 2εφ) ∈ L1(Ω) using the

Hardy’s inequality. Thus using Lebesgue Dominated Convergence Theorem and

passing on the limits k →∞ in (4.3) we get

0 ≤ Cns
∫
Q

(vk(x)− vk(y))((εφ+ φε)(x)− (εφ+ φε)(y))

|x− y|n+2s
dx dy

−
∫

Ω

(v−q + λv2∗s−1)(εφ+ φε) dx.

Using the fact that w is a weak solution of (Pλ) and v ≥ w, the above inequality

implies that

Cns

∫
Q

(v(x)− v(y))(φ(x)− φ(y))

|x− y|n+2s
dx dy −

∫
Ω

v−qφdx− λ
∫

Ω

v2∗s−1φdx

≥ − 1

ε

(
Cns

∫
Q

(v(x)− v(y))(φε(x)− φε(y))

|x− y|n+2s
dx dy

−
∫

Ω

v−qφε dx− λ
∫

Ω

v2∗s−1φε dx

)
≥ 1

ε

(
Cns

∫
Q

((w − v)(x)− (w − v)(y))(φε(x)− φε(y))

|x− y|n+2s
dx dy

+

∫
Ω

(v−q − w−q)φε dx
)

≥Cns
∫

Ωε

∫
Ωε

((v − w)(x)− (v − w)(y))(φ(x)− φ(y))

|x− y|n+2s
dx dy
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+ 2Cns

∫
Ωε

∫
{w≤v+εφ}

((v − w)(x)− (v − w)(y))φ(x)

|x− y|n+2s
dx dy

+ 2Cns

∫
Ωε

∫
CΩ

(v − w)(x)φ(x)

|x− y|n+2s
dx dy +

∫
Ωε

(v−q − w−q)φdx = o(1)

as ε→ 0+, using the fact that |Ωε \ Ω0| → 0 as ε→ 0+. From this, we get that

Cns

∫
Q

(v(x)− v(y))(φ(x)− φ(y))

|x− y|n+2s
dx dy −

∫
Ω

v−qφdx− λ
∫

Ω

v2∗s−1φdx = 0

for all φ ∈ X0.

Claim. The sequence vk → v strongly in X0 as k →∞.

From the Brezis–Lieb Lemma we have

‖vk‖2 − ‖vk − v‖2 = ‖v‖2 + o(1),∫
Ω

|vk|2
∗
s dx−

∫
Ω

|vk − v|2
∗
s dx =

∫
Ω

|v|2
∗
s dx+ o(1).

Since vk, v ≥ w almost everywhere in Ω, we get∫
Ω

|vk|1−q dx−
∫

Ω

|v|1−q dx =

∫
Ω

(vk + θv)−q(vk − v) dx, for , θ ∈ [0, 1].

We know that (vk + θv)−q(vk − v) → 0 pointwise almost everywhere in Ω and

vk, v ≥ w ∈ C+
φ (Ω). Therefor,e for any E ⊂ Ω, we have

(4.7)

∫
Ω

(vk + θv)−q(vk − v) dx ≤ C‖δ(1−q)s/(1+q)(x)‖L2(E)‖vk − v‖,

using Hardy’s inequality. Since q(2s− 1) < (2s+ 1), for any ε > 0, there exists

a ρ > 0 such that
∥∥δ(1−q)s/(1+q)(x)

∥∥
L2(E)

< ε whenever L(E) < ρ. Hence

from (4.7) and Vitali’s convergence theorem we obtain∫
Ω

(vk + θv)−q(vk − v) dx→ 0 as k →∞

that is ∫
Ω

|vk|1−q dx→
∫

Ω

|v|1−q dx as k →∞.

Taking v as the testing function in (4.2), we deduce

(4.8) Cns ‖vk − v‖2 ≤ λ‖vk − v‖
2∗s
L2∗s (Ω)

+ ok(1).

In the other hand, taking z = 2vk in (4.2), we infer

(4.9) Cns ‖vk‖2 −
∫

Ω

v1−q
k dx− λ‖vk‖

2∗s
L2∗s (Ω)

≥ ok(1).

Since v is a weak solution, we have that

(4.10) Cns ‖v‖2 −
∫

Ω

v1−q dx− λ‖v‖2
∗
s

L2∗s (Ω)
= 0.
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From (4.9) and (4.10),

(4.11) Cns ‖vk − v‖2 ≥ λ‖vk − v‖
2∗s
L2∗s (Ω)

+ ok(1).

From (4.8) and (4.11), we have that

(4.12) Cns ‖vk − v‖2 = λ‖vk − v‖
2∗s
L2∗s (Ω)

+ ok(1).

Without loss of generality, we can assume that Iλ(w) ≤ Iλ(v). Then, we easily

get

Iλ(vk)− Iλ(v) ≤ Iλ(w)− Iλ(v) + ok(1) ≤ ok(1)

from which it follows that

(4.13)
Cns
2
‖vk − v‖2 −

λ

2∗s
‖vk − v‖

2∗s
L2∗s (Ω)

≤ ok(1).

From (4.12) and (4.13), we infer that vk → v strongly in X0. This proves

the claim. Since vk ∈ W we conclude that v ∈ W and v 6≡ w. Next we

prove that w < v in Ω. For that, we first observe that from Proposition 4.1

w, v ∈ L∞(Ω) ∩ C+
φq

(Ω). Now suppose that there exists x0 ∈ Ω such that

v(x0) = w(x0). Then, since v ≥ w, v, w ∈ C(Rn) and v 6≡ w, we get

0 > Cns

∫
Rn

(v − w)(x0)− (v − w)(y)

|x0 − y|n+2s

= v−q(x0) + λv2∗s−1(x0)− (w−q(x0) + λw2∗s−1(x0)) = 0

from which we get a contradiction. Therefore v > w in Ω. �

We define

Ss = inf
u∈X0\{0}

∫
Q

|u(x)− u(y)|2

|x− y|n+2s
dx dy(∫

Ω

|u|2
∗
s dx

)2/2∗s

as the best constant for the embedding X0 ↪→ L2∗s (Ω). Consider the family of

minimizers {Uε} of Ss (refer [18]) defined as

Uε(x) = ε−(n−2s)/2u∗
(
x

ε

)
, x ∈ Rn

where u∗(x) = u
(
x/S

1/2s
s

)
, u(x) = ũ(x)/|u|2∗s and ũ(x) = α

(
β2 + |x|2

)−(n−2s)/2

with α ∈ R\{0} and β > 0 are fixed constants. Then, for each ε > 0, Uε satisfies

(−∆)su = |u|2
∗
s−2u in Rn.

Let ν > 0 be such that B4ν ⊂ Ω and let ζ ∈ C∞c (Rn) be such that 0 ≤ ζ ≤ 1 in

Rn, ζ ≡ 0 in Rn\B2ν and ζ ≡ 1 in Bν . For each ε > 0 and x ∈ Rn, we define

Φε(x) := ζ(x)Uε(x). From [12, Lemma 4.13], we have the following lemma.

Lemma 4.3. sup{Iλ(u+ tΦε) : t ≥ 0} < Iλ(u) + s(Cns Ss)
n/2s/nλ(n−2s)/2s,

for any sufficiently small ε > 0.
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Now we prove the existence of second solution if (MP) holds.

Lemma 4.4. Let (MP) holds; then there exists a v ∈ X0 ∩ C+
φ (Ω), verifying

w < v in Ω, which solves (Pλ) weakly.

Proof. From Lemma 4.3, it follows that there exists ε > 0 and R0 ≥ 1 such

that

(a) Iλ(w +RUε) < Iλ(w) for ε ∈ (0, ε0) and R ≥ R0.

(b) Iλ(w + tR0Uε) < Iλ(w) + s(Cns Ss)
n/2s/nλ(n−2s)/2s for ε ∈ (0, ε0) and

t ∈ [0, 1].

We define the complete metric space

Γ := {η ∈ C([0, 1], T ) : η(0) = w, ‖η(1)− w‖ > σ1, Iλ(η(1)) < Iλ(w)}

with metric defined as d(η′, η) = max
t∈[0,1]

{‖η′(t)− η(t)‖} for all η, η′ ∈ Γ. From (a)

above, we get that η(t) = w+tR0Uε ∈ Γ for large enough R0 > 0. This gives that

Γ 6= ∅. Let γ0 = inf
η∈Γ

max
t∈[0,1]

Iλ(η(t)). In virtue of (b) above and condition (MP),

we get

Iλ(w) < γ0 ≤ Iλ(w) +
s(Cns Ss)

n/2s

nλ(n−2s)/2s
.

Now let Ψ(η) = max
t∈[0,1]

Iλ(η(t)) for η ∈ Γ. Then, using Ekeland’s variational

principle, we get a sequence {ηk} ⊂ Γ such that

(4.14) Ψ(ηk) < γ0 +
1

k
and Ψ(ηk)<Ψ(η)+

1

k
‖Ψ(η)−η(ηk)‖Γ, for all η ∈ Γ.

We define

Λk =
{
t ∈ [0, 1] : Iλ(ηk(t)) = max

x∈[0,1]
Iλ(ηk(x))

}
.

Claim. There exists a tk ∈ Λk such that, if vk = ηk(tk) and z ∈ T , then∫
Rn

(−∆)svk(z − vk)−
∫

Ω

(
v−qk + λv

2∗s−1
k

)
(z − vk) dx ≥ −1

k
max{1, ‖z − vk‖}.

We prove it by contradiction, so assume that for every t ∈ Λk there exists

zt ∈ T such that

(4.15)

∫
Rn

(−∆)sηk(t)

(
zt − ηk(t)

max{1, ‖zt − ηk(t)‖}

)
dx

−
∫

Ω

((ηk(t))−q + λ
(
ηk(t))2∗s−1

)( zt − ηk(t)

max{1, ‖zt − ηk(t)‖}

)
dx < −1

k
.

Since Iλ is locally Lipschitz in T , zt can be chosen to be locally constant on Λt.

Therefore for each t ∈ Λk there exists a neighbourhood Nt of t in (0, 1) such
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that, for each r ∈ Nt ∩ Γk, (4.15) holds, that is

(4.16)

∫
Rn

(−∆)sηk(r)

(
zt − ηk(r)

max{1, ‖zt − ηk(r)‖}

)
dx

−
∫

Ω

(
(ηk(r))−q + λ(ηk(r))2∗s−1

)( zt − ηk(r)

max{1, ‖zt − ηk(r)‖}

)
dx < −1

k
.

It is possible to choose a finite set {r1, . . . , rm} ⊂ Λk such that Λk ⊂
m⋃
i=1

Jri .

For notational convenience, we set zi = zri and denote {κ1, . . . , κm} as the

partition of unity associated with covering {Jr1 , . . . , Jrm} of Λk. Now, if we

define z(r) =
m∑
i=1

κi(r)zi for r ∈ [0, 1], then z(r) ∈ T for each r ∈ [0, 1]. Therefore,

from (4.16) we deduce that, for all r ∈ [0, 1],∫
Rn

(−∆)sηk(r)

(
z(r)− ηk(r)

max{1, ‖z(r)− ηk(r)‖}

)
dx

−
∫

Ω

(
(ηk(r))−q + λ(ηk(r))2∗s−1

)( z(r)− ηk(r)

max{1, ‖z(r)− ηk(r)‖}

)
dx < −1

k
.

Let h : [0, 1]→ [0, 1] be a continuous function such that h(t) = 1 in a neighbour-

hood of Λk and h(0) = h(1) = 0. Also we set µk(t) = max{1, ‖z(t) − ηk(t)‖}
and

η(t) = ηk(t) +
h(t)ε

µk(t)
(z(t)− ηk(t)).

For ε ∈ (0, 1), η(t) ∈ T for all t ∈ [0, 1]. Hence (4.14) gives us that

(4.17) max
t∈[0,1]

Iλ(ηk(t)) ≤ max
t∈[0,1]

Iλ(η(t)) +
ε

k
max
t∈[0,1]

(
h(t)
‖z(t)− ηk(t)‖

µk(t)

)
.

If tk,ε ∈ [0, 1] denotes the value such that Iλ(η(tk,ε)) = max
t∈[0,1]

Iλ(η(t)), then we

can assume that tk,εj → tk for some tk ∈ [0, 1], where εj is a sequence such that

εj → 0. Using the continuity of η, we deduce that

η(tk,εj )→ ηk(tk) as εj → 0.

Hence from (4.17) we obtain that max
t∈[0,1]

Iλ(ηk(t)) ≤ max
t∈[0,1]

Iλ(ηk(tk)) which im-

plies Iλ(ηk(tk)) = max
t∈[0,1]

Iλ(ηk(t)). So tk ∈ Γk and h(tk,εj ) = 1 for j > 0

large enough, by definition. If we set vk = ηk(tk), vk,j = ηk(tk,εj ) and µk,j =

max{1, ‖z(tk,εj )− vk,j‖}, then, for large enough j, we obtain

(4.18) Iλ(vk,j) ≤ Iλ(vk) ≤ Iλ
(
vk,j +

εj
µk,j

(z(tk,εj )− vk,j)
)

+
εj
k
.

It is easy to see that µk,j → θk := max{1, ‖z(tk)− vk‖} and ‖vk − vk,j‖ → 0 as

j →∞. Let pj = vk,j − vk and

kj = pj + εj

(
z(tk,j)− vk,j

µk,j
− z(tk)− vk

θk

)
= pj + o(1).
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Then, from (4.18), we obtain

1

εj

(
Iλ

(
vk + εj

(
z(tk)− vk

θk

)
+ kj

)
+ Iλ(vk + pj)

)
≥ −1

k
as j →∞.

But since vk + εj((z(tk) − vk)/θk) ≥ w, using the fact that z(tk) ∈ T , from

Proposition 2.1 and the above inequality we get∫
Rn

(−∆)svk

(
z(tk)− vk

θk

)
dx−

∫
Ω

(
v−qk + λv

2∗s−1
k

)(z(tk)− vk
θk

)
dx ≥ −1

k
.

This is a contradiction to (4.15). Thus, the claim holds. So there exists a se-

quence {vk} satisfying

(4.19)



∫
Rn

(−∆)svk(z − vk)−
∫

Ω

(v−qk + λv
2∗s−1
k )(z − vk) dx

≥ − c
k

(1 + ‖z‖) for all z ∈ T,

Iλ(vk)→ γ0 as k →∞,

where c > 0 is some constant. Setting z = 2vk in (4.14) and using (4.19) we get

γ0 + o(1) ≥ sCns
n
‖vk‖2 −

2∗s − 1 + q

2∗s(1− q)

∫
Ω

|vk|1−q dx−
c

2∗sk
(1 + 2‖vk‖).

Now this implies that {vk} must be bounded in X0, thus up to a subsequence,

vk ⇀ v weakly in X0 as k → ∞. Using similar ideas as in (ZA) case, it can be

shown that v is a weak solution of (Pλ). Then the remaining part of the proof is

similar as in [12, Proposition 4.12] (see also [13, Lemma 2.7] in the local setting)

and consists of proving the strong convergence of the sequence {vk} to v. To

this aim we use that the energy Iλ(vk) is strictly below the first critical level

Iλ(w) + s(Cns Ss)
n/2s/nλ(n−2s)/2s which implies

(4.20)
Cns
2
‖vk − v‖2 −

λ

2∗s
‖vk − v‖

2∗s
L2∗s (Ω)

<
s(Cns Ss)

n/2s

nλ(n−2s)/2s
.

Now (4.12), (4.20) and the fact that Ss‖vk−v‖2L2∗s (Ω)
≤‖vk−v‖2 force ‖vk−v‖→0

as k → ∞. Thus, we infer that Iλ(v) = γ0 and v 6≡ w and the proof of w < v

in Ω can be performed as in the proof of Lemma 4.2. �

Proof of Theorem 1.2. The proof follows from Lemmas 4.2 and4.4,

Proposition 3.4 along with Proposition 3.2. �

Proof of Theorem 1.3. The proof follows directly from Proposition 4.1

and [1, Theorem 1.2] with δ = q and β = 0. To see that the regularity result falls

into the scope of [1, Theorem 1.2], note that u is a classical solution as defined

in [1, Definition 1]. �
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