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DECAY RATES FOR A VISCOELASTIC WAVE EQUATION

WITH BALAKRISHNAN–TAYLOR AND FRICTIONAL

DAMPINGS

Baowei Feng — Yong Han Kang

Abstract. In this paper we are concerned with a viscoelastic wave equa-

tion with Balakrishnan–Taylor damping and frictional damping. By using
the multiplier method and some properties of convex functions, we establish

general energy decay rates of the equation without imposing any growth as-

sumption near the origin on the frictional term and strongly weakening the
usual assumptions on the relaxation term. Our stability result generalizes

the earlier related results.

1. Introduction

This paper is concerned with the following viscoelastic wave equation with

Balakrishnan–Taylor and frictional dampings in Ω× R+,

(1.1) utt −
(
ξ1 + ξ2‖∇u‖2 + σ(∇u,∇ut)

)
∆u

+

∫ t

0

div[a(x)g(t− s)∇u(s)] ds+ η(t)b(x)h(ut) = |u|ρu,
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together with the boundary condition

(1.2) u(t) = 0, on ∂Ω× R+,

and the initial conditions

(1.3) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω ⊆ Rn(n ≥ 1) is a bounded domain with a smooth boundary ∂Ω.

ξ1,ξ2 and σ are positive constants. a and b are functions of the space variable.

The integral term is the memory responsible for the viscoelastic damping. The

relaxation function g(t) is a real function. The function η(t) is a time-dependent

coefficient of the frictional damping term and h is a specific function.

To motivate our work, we recall some results related to viscoelastic wave

equation. In the absence of Balakrishnan–Taylor damping, the general form of

viscoelastic wave equation reads,

(1.4) utt − %∆utt −∆u+

∫ t

0

g(t− s)∆u(s) ds+ η(t)h(ut) = F(u).

If h = 0 and g decays exponentially (polynomially), then it is well-known that so

does the energy. Messaoudi [22], [23] considered (1.4) with % = 0, by taking F =

0 and F = |u|γu, γ > 0 and established a more general decay for a wider class of

relaxation function by assuming g′(t) ≤ −ξ(t)g(t), where ξ(t) is a nonincreasing

differentiable function. Even since many authors used this assumption on g to

get general decay of energy for problems related to (1.4). See, for example,

Messaoudi and Mustafa [24], Mustafa [25], [26] and Park and Park [34]. In

Alabau-Boussouira and Cannarsa [1], they first introduced a general assumption

on relaxation function by

(1.5) g′(t) ≤ −H(g(t)),

where H is a positive, strictly increasing and strictly convex function satisfying

H(0) = H ′(0) = 0. They established general decay rates for a semilinear abstract

second order equation with a memory. After that many results appeared by the

use of the condition (1.5). We refer a reader to Cavalcanti et al. [7], [6], Lasiecka

et al. [15], [17], Mustafa [27], Mustafa and Messaoudi [31] and Xiao and Liang

[38]. In addition, the energy decay rate first established by Lasiecka and Wang

[17] constitute not only general but also optimal results in which the decay rates

are characterized by an ODE of the same type as the one generated by the

inequality (1.5) satisfied by g. Very recently, in [28], [29], Mustafa considered

two classes of wave equation (1.4) under the assumption on relaxation function

g′(t) ≤ −ξ(t)H(g(t)), where ξ(t) is a nonincreasing differentiable function, and

proved the optimal decay of energy. If g = 0, one can find some decay results

for damped wave equations in Lasiecka and Tataru [16], Liu and Zuazua [18],

and Martinez [19], [20]. In the presence of the time-dependent coefficient η(t),
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Mustafa and Messaoudi [32] and Mustafa and Abusharkh [30] established a ge-

neral energy decay result, which depends on both h and η, for wave equation and

plate equation, respectively. Here we also would like to mention the contribution

of Cavalcanti and Oquendo [8]. In [8], the authors considered a wave equation

with viscoelastic and frictional dampings of the form

utt −∆u+

∫ t

0

div
[
a(x)g(t− s)∇u(s)

]
ds+ b(x)h(ut) + f(u) = 0,

and established exponential stability of energy for g decaying exponentially and

h linear. In addition, they also obtained polynomial stability of energy for g

decaying polynomially and h having a polynomial growth near zero.

Balakrishnan–Taylor damping σ(∇u(t),∇ut(x, t)) was firstly proposed by

Balakrishnan–Taylor [3] and Bass and Zes [4]. It is related to the panel flutter

equation and to the spillover problem. The system is reduced to well-known

wave equation with ξ2 = σ = 0 and Kirchhoff type wave equation with σ = 0

and have been extensively studied. For results on viscoelastic wave equation

with Balakrishnan–Taylor damping (σ 6= 0),

(1.6) utt −
(
ξ1 + ξ2‖∇u‖2 + σ(∇u,∇ut)

)
∆u+

∫ t

0

h(t− s)∆u(s) ds = f(u),

Zaräı and Tatar [35] studied (1.6) with f(u) = |u|pu. They proved the global

existence and the polynomial decay of the problem. Exponential decay and

blow up of solution to the problem were established in Tatar and Zaräı [36]. If

f(u) = 0 in (1.6), Park [33] established a general decay result of the problem

without imposing the usual relation between the relaxation function g and its

derivative. Recently, Ha [12] investigated the following viscoelastic wave equation

of the form

utt −
(
a+ b‖∇u‖2 + σ(∇u,∇ut)

)
∆u+

∫ t

0

h(t− s)∆u(s) ds+ g(ut) = |u|ρu.

The author proved a general decay result of energy. For more results concerning

wave equation with Balakrishnann–Taylor damping, one can refer to Clark [9],

Kang [13], Ha [10], [11], Tatar and Zaräı [37], You [39] and Zaräı and Tatar [40]

and so on.

In this paper we intend to consider (1.1)–(1.3) with both weak frictional

damping and viscoelastic damping acting simultaneously and complementarily

in the domain and also with a time-dependent coefficient η(t). We establish

a general decay rate for the energy without imposing any growth assumption

near the origin on h and strongly weakening the usual assumptions on g. In

other words, the result here holds for a larger class of functions g and h, from

which the energy decay rates are not necessarily of exponential or polynomial

types, and hence improve some previous related results.
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The rest of this paper is as follows. In Section 2, we give some assumptions,

state the main results and prove the global existence of solution. In Section 3,

we establish the general decay result of the energy.

2. Assumptions and main results

In the following Lq(Ω) (1 ≤ q ≤ ∞) and H1(Ω) denote Lebesgue integral and

Sobolev spaces. ‖ · ‖q is the norm in Lq(Ω). For simplicity we write ‖ · ‖ instead

of ‖ · ‖2. c > 0 is used to denote a generic constant. We give some assumptions

used in this paper.

(A1) The constants ξ1, ξ2 and σ are positive constants. Let ρ be a constant

satisfying

(2.1) 0 < ρ <
2

n− 1
if n ≥ 3 and ρ > 0 if n = 1, 2.

(A2) The function η : R+ → R+ is a nonincreasing C1 function.

(A3) a, b : Ω→ R+ are such that a ∈ C1(Ω), b ∈ L∞(Ω) and

(2.2) meas{x ∈ ∂Ω : a(x) > 0} > 0 and inf
x∈Ω
{a(x) + b(x)} = β > 0.

(A4) The relaxation function g : [0,∞)→ R+ is a differentiable function such

that

(2.3) g(0) > 0, ξ1 − ‖a‖∞
∫ ∞

0

g(s) ds = l > 0,

and there exists a positive function H ∈ C1(R+) and H is linear or

strictly increasing and strictly convex C2 function on (0, r], r < 1, with

H(0)=H ′(0)=0, such that

(2.4) g′(t) ≤ −H(g(t)), for all t > 0.

(A5) The function h : R → R is a nondecreasing C0 function and there exist

positive constants c1 and c2 such that

(2.5)

c1|s| ≤ |h(s)| ≤ c2|s| if |s| ≥ r,
s2 + h2(s) ≤ H−1(sh(s)), if |s| ≤ r.

Remark 2.1. Assumption (A5), first introduced by Lasiecka and Tataru [16],

gives us that sh(s) ≥ 0 for all s 6= 0.

By using the Fadeo–Galerkin approximation and the contraction mapping

theorem (see, for instance, Tatar and Zaräı [35], Berrimi and Messaoudi [5]) we

can get the local existence of solution to problem (1.1)–(1.3).
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Theorem 2.2. Suppose (A1)–(A5) hold. Then, given (u0, u1) ∈ H1
0 (Ω) ×

L2(Ω), there exists T > 0 and a unique solution u(t) of problem (1.1)–(1.3)

such that

u(t) ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)).

The energy functional associated with problem (1.1)–(1.3) is defined by

(2.6) E(t) =
1

2
‖ut‖2 +

ξ2
4
‖∇u‖4

+
1

2

∫
Ω

(
ξ1 − a(x)

∫ t

0

g(s) ds

)
|∇u|2 dx+

1

2
(g ◦ ∇u)− 1

ρ+ 2
‖u‖ρ+2

ρ+2,

where

(g ◦ v)(t) =

∫ t

0

g(t− s)‖v(t)− v(s)‖2 ds.

We can get the following lemma.

Lemma 2.3. The energy functional E(t) is nonincreasing and such that for

any t ≥ 0,

(2.7) E′(t) =
1

2
(g′ ◦ ∇u)− 1

2
g(t)

∫
Ω

a(x)|∇u|2 dx

− σ
(

1

2

d

dt
‖∇u‖2

)2

− η(t)

∫
Ω

b(x)uth(ut) dx ≤ 0.

Proof. Multiplying (1.1) by ut, and using integration by parts over Ω, we

can easily get (2.7). By using assumption (A5), we know that E′(t) ≤ 0, and

hence E(t) is nonincreasing. The proof is complete. �

To obtain the potential well, we define the following functions:

J(u(t)) =
ξ2
4
‖∇u‖4 +

1

2

∫
Ω

(
ξ1 − a(x)

∫ t

0

g(s) ds

)
|∇u|2 dx

+
1

2
(g ◦ ∇u)− 1

ρ+ 2
‖u‖ρ+2

ρ+2,

and

I(u(t)) =

∫
Ω

(
ξ1 − a(x)

∫ t

0

g(s) ds

)
|∇u|2 dx+ (g ◦ ∇u)− ‖u‖ρ+2

ρ+2.

Lemma 2.4. Suppose that (A4) holds. Let (u0, u1) ∈ H1
0 (Ω) × L2(Ω) such

that

(2.8) γ :=
Cρ+2
ρ+2

l

(
2(ρ+ 2)

ρl
E(0)

)ρ/2
< 1 and I(u0) > 0,

where Cρ+2 is an embedding constant of H1
0 (Ω) ↪→ Lρ+2(Ω). Then I(u) > 0 for

all t > 0.
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Proof. By using the continuity of u(t) and noting that I(u0) > 0, we can

get that, for all t̃ ∈ U(0), I(u(t̃)) ≥ 0. We denote the maximal interval where

the above inequality holds by [0, tmax]. It follows that

J
(
u(t̃)

)
=

ρ

2(ρ+ 2)

[ ∫
Ω

(
ξ1 − a(x)

∫ t

0

g(s) ds

)∣∣∇u(t̃)
∣∣2 dx+ (g ◦ ∇u)(t̃)

]
(2.9)

+
ξ2
4

∥∥∇u(t̃)
∥∥4

+
1

ρ+ 2
I
(
u(t̃)

)
≥ ρ

2(ρ+ 2)

[ ∫
Ω

(
ξ1 − a(x)

∫ t

0

g(s) ds

)∣∣∇u(t̃)
∣∣2 dx+ (g ◦ ∇u)(t̃)

]
,

which, together with (2.3) and (2.7), gives us for all t ∈ [0, tmax]∥∥∇u(t̃)
∥∥2 ≤

∫
Ω

(
ξ1 − a(x)

∫ t

0

g(s) ds

)∣∣∇u(t̃)
∣∣2 dx(2.10)

≤ 2(ρ+ 2)

ρ
J
(
u(t̃)

)
≤ 2(ρ+ 2)

ρ
E(t̃) ≤ 2(ρ+ 2)

ρ
E(0).

By using (2.3), (2.8) and (2.10), we shall see that∥∥u(t̃)
∥∥ρ+2

ρ+2
≤ Cρ+2

ρ+2‖∇u(t̃)‖ρ+2

≤ γl
∥∥∇u(t̃)

∥∥2
<

∫
Ω

(
ξ1 − a(x)

∫ t

0

g(s) ds

)∣∣∇u(t̃)
∣∣2 dx.

Then we have I(u(t̃)) > 0 for every t ∈ [0, tmax]. By repeating the procedure

and using the fact that

lim
t̃→tmax

Cρ+2
ρ+2

l

(
2(ρ+ 2)

ρl
E(t̃)

)ρ/2
≤ γ < 1,

tmax is extended to for all t. �

Remark 2.5. For Lemma 2.4, we can get that, for all t > 0,

(2.11) 0 < I(u) ≤ (ρ+ 2)J(u) ≤ (ρ+ 2)E(t).

Theorem 2.6. Suppose (A1)–(A5) and (2.8) hold. If the initial data (u0, u1)

in H1
0 (Ω)× L2(Ω) satisfy (2.8), then the solution u(t) of problem (1.1)–(1.3) is

global in time.

Proof. It remains to prove that ‖ut‖2 + ‖∇u‖2 is bounded independently

of t. It follows from (2.9) and Lemma 2.4 that

J(u(t)) =
ρ

2(ρ+ 2)

[ ∫
Ω

(
ξ1 − a(x)

∫ t

0

g(s) ds

)
|∇u(t)|2 dx+ (g ◦ ∇u)(t)

]
+
ξ2
4
‖∇u(t)‖4 +

1

ρ+ 2
I(u(t))

>
ρ

2(ρ+ 2)

[ ∫
Ω

(
ξ1 − a(x)

∫ t

0

g(s) ds

)
|∇u(t)|2 dx+ (g ◦ ∇u)(t)

]
.
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Then we get

l‖∇u(t)‖2 ≤
∫

Ω

(
ξ1 − a(x)

∫ t

0

g(s) ds

)
|∇u(t)|2 dx < 2(ρ+ 2)

ρ
J(u(t)).

Therefore,

1

2
‖ut(t)‖2 +

ρl

2(ρ+ 2)
‖∇u(t)‖2 < 1

2
‖ut(t)‖2 + J(u(t)) = E(t) ≤ E(0).

Then there exists a constant C > 0 depending only on ρ and l such that

‖ut(t)‖2 + ‖∇u(t)‖2 ≤ CE(0). �

Now we are in a position to state the stability result of energy to problem

(1.1)–(1.3) given in the following theorem.

Theorem 2.7. Suppose (A1)–(A5) and (2.8) hold. Let (u0, u1) ∈ H1
0 (Ω) ×

L2(Ω). Then there exist positive constants k1, k2, k3 and ε0 such that the energy

E(t) defined by (2.6) satisfies for any t ≥ 0,

(2.12) E(t) ≤ k3H
−1
1

(
k1

∫ t

0

η(s) ds+ k2

)
,

and

H1(t) =

∫ 1

t

1

sH ′0(ε0s)
ds and H0(t) = H(D(t))

and D is a positive C1 function satisfying D(0) = 0, and H1 is strictly increasing

and convex C2 function on (0, r] with

(2.13)

∫ ∞
0

g(s)

H−1
0 (−g′(s))

ds < +∞.

In addition, if we choose the function D(t) satisfying
∫ 1

0
H1(t) dt < +∞, then

we obtain

(2.14) E(t) ≤ k3G
−1

(
k1

∫ t

0

η(s) ds+ k2

)
, where G(t) =

∫ 1

t

1

sH ′(ε0s)
ds.

In particular, this last estimate also holds for the special case H(t) = ctp with

1 ≤ p < 3/2.

Remark 2.8. (a) H1 and G are strictly decreasing and convex on (0, 1], with

lim
t→0

H1(t) = lim
t→0

G(t) = +∞. Therefore,

if

∫ ∞
0

η(s) ds = +∞, then lim
t→+∞

E(t) = 0.

(b) The following Jensen’s inequality is critical to prove our main result. Let

F be a convex increasing function on [a, b], f : Ω → [a, b] and m are integrable
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functions on Ω such that m(x) ≥ 0 and
∫

Ω
m(x) dx = k > 0, then Jensen’s

inequality states that∫
Ω

F−1(f(x))m(x) dx ≤ kF−1

[
1

k

∫
Ω

f(x)m(x) dx

]
.

(c) It should be pointed out that the restriction that p ∈ [1, 3/2) in Theo-

rem 2.7 is not optimal. In fact the polynomial decay can be pushed up to p < 2,

one can refer to Lasiecka and Wang [17].

(d) In the absence of Balakrishnan–Taylor damping in (1.1), i.e. σ = 0, we

can get the same results.

(e) It follows from (A1) that lim
t→+∞

g(t) = 0. Similarly, assuming the existence

of the limit, we can get lim
t→+∞

(−g′(t)) = 0. Then there exists some t1 ≥ 0 large

enough such that

(2.15) max{g(t),−g′(t)} < min{r,H(r), H0(r)}, for all t ≥ t1.

Since H is a positive continuous function and g is positive nonincreasing contin-

uous function, we can get for every t ∈ [0, t1], 0 < g(t1) ≤ g(t) ≤ g(0). Therefore

there exist positive constants a and b such that, a ≤ H(g(t)) ≤ b, which yields,

for every t ∈ [0, t1],

(2.16) g′(t) ≤ −H(g(t)) ≤ − a

g(0)
g(0) ≤ − a

g(0)
g(t).

Then for some positive constant µ,

g′(t) ≤ −µg(t), for all t ∈ [0, t1].(2.17)

(f) If there exist two different functions H1 and H2 satisfying (A4)–(A5)

such that g′(t) ≤ −H1(g(t)) and s2 + h2(s) ≤ H−1
2 (sh(s)), then there is some

r < min{r1, r2} so small that H1(t) ≤ H2(t) on (0, r]. Then, for all t ≥ t1, the

function H(t) = H1(t) satisfies (A4) and (A5).

We end this section by giving an example in which a much larger class of

relaxation functions g guarantee that the uniform decays are not necessarily of

exponential or polynomial decay: one can find it in Mustafa and Messaoudi [31].

Example 2.9. Let g(t) = ae−t
q

for 0 < q < 1 and a chosen so that g satisfies

(2.3), then g′(t) = −H(g(t)), with, for t ∈ (0, r], r < a,

H(t) =
qt

[ln(a/t)]1/q−1
,

which satisfies (A4). In addition, taking D(t) = tς , (2.13) is satisfies for any

ς > 1. Therefore, if h satisfies (A5) with this function H, then we can use

Theorem 2.7 to get the energy decays at the rate

E(t) ≤ c exp

[
− k
(∫ t

0

η(s) ds

)q]
.
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3. General decay

In this section we shall study the general decay of energy to problem (1.1)–

(1.3) to prove Theorem 2.7.

3.1. Technical lemmas. First we introduce a function α(x). Since a(x) is

continuous and meas{x ∈ ∂Ω : a(x) > 0} > 0, there exists an open set V ⊂ Ω and

ε0 > 0 such that meas(∂V ∩∂Ω) > 0 and inf
x∈V

a(x) ≥ ε0. Set d = min{ε0, β} > 0,

where β is defined in (2.2), and let α ∈ C1(Ω) be such that 0 ≤ α(x) ≤ a(x) and

α(x) = 0, if a(x) ≤ d

4
,

α(x) = a(x), if a(x) ≥ d

2
.

The same arguments as in Mustafa and Abusharkh [30], we can get the

following lemma.

Lemma 3.1. The function α(x) is not identically zero and satisfies

(3.1) inf
x∈Ω
{α(x) + b(x)} ≥ d

2
.

Lemma 3.2. Let u be the solution of problem (1.1)–(1.3). Then there exists

c > 0 such that

(3.2)

∫
Ω

α(x)

∣∣∣∣ ∫ t

0

g(t− s)(u(t)− u(s)) ds

∣∣∣∣2 dx ≤ c(g ◦ ∇u)(t).

Proof. Let Sa = {x ∈ Ω : a(x) ≥ d/4}. We note that suppα ⊂ Sa, and

noting the definition of d, ∂V ∩ ∂Ω ⊂ ∂Sa ∩ ∂Ω, then we know that meas(∂Sa ∩
∂Ω) > 0. It follows from Hölder’s inequality and Poincaré’s inequality that∫

Ω

α(x)

∣∣∣∣ ∫ t

0

g(t− s)(u(t)− u(s)) ds

∣∣∣∣2 dx
=

∫
suppα

α(x)

∣∣∣∣ ∫ t

0

g(t− s)(u(t)− u(s)) ds

∣∣∣∣2 dx
≤ c
∫ t

0

g(s) ds

∫
suppα

∫ t

0

g(t− s)(u(t)− u(s))2 ds dx

≤ c
∫
Sa

∫ t

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx

which, recalling the definition of Sa, implies∫
Ω

α(x)

∣∣∣∣ ∫ t

0

g(t− s)(u(t)− u(s)) ds

∣∣∣∣2 dx
≤ c

∫
Sa

∫ t

0

g(t− s)|∇u(t)−∇u(s)|2 ds dx ≤ c(g ◦ ∇u)(t).

The proof is complete. �
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Remark 3.3. (a) We use a variant of the Poincaré’s inequality in the proof

of Lemma 3.2, see, for example, Cavalcanti and Oquendo [8]: Let Ω1, Ω2, and Ω

be subsets of Rn with positive measure and such that Ω1 ⊂ Ω2, Ω2 ⊂ Ω. Then,

assuming that Ω is bounded and moreover that meas (∂Ω2 ∩ ∂Ω) 6= 0, we have∫
Ω1

|ω|2 dx ≤ c
∫

Ω2

|∇ω|2 dx for all ω ∈ H1
0 (Ω),

where c is a positive constant.

(b) Since supp |∇α| ⊂ suppα, then (3.2) also holds with the right-hand side

c(g ◦ ∇u) if α in the left-hand side is replaced by |∇α|.

Now we define the following functionals:

φ(t) =

∫
Ω

u(t)ut(t) dx+
σ

4
‖∇u(t)‖4,

ψ(t) = −
∫

Ω

α(x)ut(t)

∫ t

0

g(t− s)(u(t)− u(s)) ds dx.

Lemma 3.4. Under the assumptions of Theorem 2.7, the functional φ(t) sat-

isfies that for any t ≥ 0,

(3.3) φ′(t) ≤ − l(1− γ)

4
‖∇u(t)‖2 + ‖ut(t)‖2 − ξ2‖∇u(t)‖4

+ c(g ◦ ∇u)(t) + c

∫
Ω

b(x)h2(ut) dx.

Proof. It follows from (1.1) that

φ′(t) =

∫
Ω

utt(t)u(t) dx+ ‖ut‖2 + σ‖∇u‖2(∇u,∇ut)(3.4)

= ‖ut‖2 −
(
ξ1 + ξ2‖∇u‖2

)
‖∇u‖2 +

∫ t

0

g(s) ds

∫
Ω

a(x)|∇u|2 dx

+

∫
Ω

a(x)∇u(t)

∫ t

0

g(t− s)(∇u(s)−∇u(t)) ds dx

− η(t)

∫
Ω

b(x)uh(ut) dx+

∫
Ω

|u|ρ+2 dx

≤‖ut‖2 − l‖∇u‖2 − ξ2‖∇u‖4 − η(t)

∫
Ω

b(x)uh(ut) dx

+

∫
Ω

|u|ρ+2 dx+

∫
Ω

a(x)∇u(t)

∫ t

0

g(t− s)(∇u(s)−∇u(t)) ds dx.

By using Young’s inequality and Hölder’s inequality, we can obtain that∫
Ω

a(x)∇u(t)

∫ t

0

g(t− s)(∇u(s)−∇u(t)) ds dx(3.5)

≤ l(1− γ)

2‖a‖∞

∫
Ω

a(x)|∇u|2 dx
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+
‖a‖∞

2l(1− γ)

∫
Ω

a(x)

(∫ t

0

g(t− s)(∇u(s)−∇u(t)) ds

)2

dx

≤ l(1− γ)

2
‖∇u‖2 +

c

2l(1− γ)
(g ◦ ∇u),

(3.6) −η(t)

∫
Ω

b(x)uh(ut) dx ≤
l(1− γ)

4
‖∇u‖2 +

c

l(1− γ)

∫
Ω

b(x)h2(ut) dx,

and ∫
Ω

|u|ρ+2 dx ≤Cρ+2
ρ+2

(∫
Ω

|∇u|2 dx
)(ρ+2)/2

(3.7)

≤Cρ+2
ρ+2

(∫
Ω

|∇u|2 dx
)ρ/2

‖∇u‖2

≤Cρ+2
ρ+2

(
2(ρ+ 2)

ρl
E(0)

)ρ/2
‖∇u‖2 ≤ lγ‖∇u‖2.

Inserting (3.5)–(3.7) into (3.4), we get the desired estimate (3.3). �

Lemma 3.5. Under the assumptions of Theorem 2.7, the functional ψ(t)

satisfies that for any δ > 0 and for any t ≥ 0,

ψ′(t) ≤ −
(∫ t

0

g(s) ds− δ
)∫

Ω

α(x)u2
t (t) dx+ δ‖∇u(t)‖2(3.8)

+
4σ2δ

l
E(0)

(
1

2

d

dt
‖∇u(t)‖2

)2

+
c

δ
(g ◦ ∇u)(t)

− c

δ
(g′ ◦ ∇u)(t) + δ

∫
Ω

b(x)h2(ut) dx.

Proof. By using (1.1) and integration by parts, we can get

ψ′(t) =
(
ξ1 + ξ2‖∇u‖2 + σ(∇u,∇ut)

) ∫
Ω

α∇u
∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds dx

+
(
ξ1 + ξ2‖∇u‖2 + σ(∇u,∇ut)

) ∫
Ω

∇α∇u
∫ t

0

g(t− s)(u(t)− u(s)) ds dx

−
∫

Ω

∇α
(∫ t

0

a(x)g(t− s)(∇u(s)−∇u(t)) ds

)
×
(∫ t

0

g(t− s)(u(t)− u(s)) ds

)
dx

−
∫

Ω

∇α
(∫ t

0

a(x)g(t− s)∇u(t) ds

)(∫ t

0

g(t− s)(u(t)− u(s)) ds

)
dx

−
∫

Ω

α

(∫ t

0

a(x)g(t− s)(∇u(s)−∇u(t)) ds

)
×
(∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx
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−
∫

Ω

α

(∫ t

0

a(x)g(t− s)∇u(t) ds

)(∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)
dx

+

∫
Ω

η(t)b(x)h(ut)

∫ t

0

g(t− s)(u(t)− u(s)) ds dx

−
∫

Ω

α|u|ρu
∫ t

0

g(t− s)(u(t)− u(s)) ds dx

−
∫

Ω

αut

∫ t

0

g′(t− s)(u(t)− u(s)) ds dx−
∫ t

0

g(s) ds

∫
Ω

αu2
t dx.

Then we have

ψ′(t) =

∫
Ω

α

(
ξ1 − a(x)

∫ t

0

g(s)ds+ ξ2‖∇u‖2
)
∇u(3.9)

×
∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds dx

+

∫
Ω

∇α
(
ξ1 − a(x)

∫ t

0

g(s) ds+ ξ2‖∇u‖2
)
∇u

×
∫ t

0

g(t− s)(u(t)− u(s)) ds dx

+ σ(∇u,∇ut)
∫

Ω

α∇u
∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds dx

+ σ(∇u,∇ut)
∫

Ω

∇α∇u
∫ t

0

g(t− s)(u(t)− u(s)) ds dx

+

∫
Ω

αa(x)

(∫ t

0

g(t− s)(∇u(t)−∇u(s))ds

)2

dx

+

∫
Ω

∇αa(x)

∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

×
∫ t

0

g(t− s)(u(t)− u(s)) ds dx

+

∫
Ω

η(t)b(x)h(ut)

∫ t

0

g(t− s)(u(t)− u(s)) ds dx

−
∫

Ω

α|u|ρu
∫ t

0

g(t− s)(u(t)− u(s)) ds dx

−
∫

Ω

αut

∫ t

0

g′(t− s)(u(t)− u(s)) ds dx−
∫ t

0

g(s)ds

∫
Ω

αu2
t dx.

Noting that E(t) is non-increasing we infer that(
ξ1 − ‖a‖∞

∫ ∞
0

g(s) ds

)
‖∇u‖2 ≤

∫
Ω

(
ξ1 − a(x)

∫ t

0

g(s) ds

)
|∇u|2 dx ≤ 2E(t),

which, together with (2.3), gives us

(3.10) ‖∇u‖2 ≤ 2

l
E(0).
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Then by using Hölder’s inequality, Young’s inequality, (3.10) and (3.2), we see

that, for any δ > 0,∫
Ω

α

(
ξ1 − a(x)

∫ t

0

g(s) ds

)
∇u
∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds dx(3.11)

≤
(
ξ1 +

2ξ2
l
E(0)

)∫
Ω

|α||∇u|
∣∣∣∣ ∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

∣∣∣∣ dx
≤ δ

3
‖∇u‖2 +

3

4δ

(
ξ1 +

2ξ2
l
E(0)

)2

×
∫

Ω

α2

(∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)2

dx

≤ δ

3
‖∇u‖2 +

c

δ
(g ◦ ∇u),

σ(∇u,∇ut)
∫

Ω

α∇u
∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds dx(3.12)

≤σ2(∇u,∇ut)2δ‖∇u‖2

+
1

4δ

∫
Ω

α2

(∫ t

0

g(t− s)(∇u(t)−∇u(s))ds

)2

dx

≤σ2 2δ

l
E(0)

(
1

2

d

dt
‖∇u‖2

)2

+
c

δ
(g ◦ ∇u),

and

(3.13)

∫
Ω

αa(x)

(∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

)2

dx ≤ c(g ◦ ∇u).

Similarly, we can also get for any δ > 0,

(3.14)

∫
Ω

∇α
(
ξ1 − a(x)

∫ t

0

g(s) ds+ ξ2‖∇u‖2
)
∇u

×
∫ t

0

g(t− s)(u(t)− u(s)) ds dx ≤ δ

3
‖∇u‖2 +

c

δ
(g ◦ ∇u),

(3.15) σ(∇u,∇ut)
∫

Ω

∇α∇u
∫ t

0

g(t− s)(u(t)− u(s)) ds dx

≤ σ2 2δ

l
E(0)

(
1

2

d

dt
‖∇u‖2

)2

+
c

δ
(g ◦ ∇u),

and

(3.16)

∫
Ω

∇αa(x)

∫ t

0

g(t− s)(∇u(t)−∇u(s)) ds

×
∫ t

0

g(t− s)(u(t)− u(s)) ds dx ≤ c(g ◦ ∇u).
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It follows from (A2) and Hölder’s and Young’s inequalities that, for any δ > 0,

(3.17)

∫
Ω

η(t)b(x)h(ut)

∫ t

0

g(t− s)(u(t)− u(s)) ds dx

≤ δ
∫

Ω

b(x)h2(ut) dx+
c

δ
(g ◦ ∇u),

(3.18) −
∫

Ω

αut

∫ t

0

g′(t− s)(u(t)− u(s)) ds dx ≤ δ
∫

Ω

αu2
t dx−

c

δ
(g′ ◦ ∇u),

and, for any δ1 > 0,

−
∫

Ω

α|u|ρu
∫ t

0

g(t− s)(u(t)− u(s)) ds dx(3.19)

≤ δ1
∫

Ω

|u|2ρ+2 dx+
c

δ1
(g ◦ ∇u)

≤ δ1C2(ρ+2)
ρ+2

(
2(ρ+ 2)

ρl
E(0)

)ρ
‖∇u‖2 +

c

δ1
(g ◦ ∇u).

Taking

δ1 =
δ

3C
2(ρ+2)
ρ+2

(
2(ρ+ 2)

ρl
E(0)

)ρ
in (3.19) and then replacing (3.11)–(3.19) in (3.9), we can get (3.8). �

Now we define the functional L(t) by

L(t) := N1E(t) + φ(t) +N2ψ(t),

where N1 and N2 are positive constants will be chosen later. It is easy to verify

that for N1 large, there exist β1 > 0 and β2 > 0 such that

(3.20) β1E(t) ≤ L(t) ≤ β2E(t).

Lemma 3.6. There exists a constant m > 0 such that for any t ≥ t1,

(3.21) L′(t) ≤ −mE(t) + c(g ◦ ∇u)(t) + c

∫
Ω

b(x)(u2
t + h2(ut)) dx.

Proof. Let g1 =
∫ t1

0
g(s) ds > 0. Combining (2.7), (3.3) and (3.8), and

taking δ = l/(4N2), we can infer that, for any t ≥ t1,

L′(t) ≤ − l(1− γ)

4
‖∇u‖2 −

(
N2g1 −

l

4

)∫
Ω

αu2
t dx+ ‖ut‖2 − ξ2‖∇u‖4(3.22)

+

(
4c

l
N2

2 + c

)
(g ◦ ∇u) +

(
N1

2
− 4c

l
N2

2

)
(g′ ◦ ∇u)

− (σN1 − σ2E(0))

(
1

2

d

dt
‖∇u‖2

)2

+

(
l

4
+ c

)∫
Ω

b(x)h2(ut) dx.



Decay Rates for a Viscoelastic Wave Equation 335

Using (3.1), we have

−
(
N2g1 −

l

4

)∫
Ω

αu2
t dx+ ‖ut‖2

= −
(
N2g1 −

l

4

)∫
Ω

αu2
t dx+

2

d

∫
Ω

d

2
u2
t dx

≤ −
(
N2g1 −

l

4

)∫
Ω

αu2
t dx+

2

d

∫
Ω

[
α(x) + b(x)

]
u2
t dx

= −
(
N2g1 −

l

4
− 2

d

)∫
Ω

[
α(x) + b(x)

]
u2
t dx+

(
N2g1 −

l

4

)∫
Ω

b(x)u2
t dx

≤ −
(
N2g1 −

l

4
− 2

d

)∫
Ω

d

2
u2
t dx+

(
N2g1 −

l

4

)∫
Ω

b(x)u2
t dx,

which together with (3.22) implies that, for any t ≥ t1,

L′(t) ≤ − l(1− γ)

4
‖∇u‖2 − d

2

(
N2g1 −

l

4
− 2

d

)
‖ut‖2 − ξ2‖∇u‖4

+

(
4c

l
N2

2 + c

)
(g ◦ ∇u) +

(
N1

2
− 4c

l
N2

2

)
(g′ ◦ ∇u)

−
(
σN1 − σ2E(0)

)(1

2

d

dt
‖∇u‖2

)2

+

(
l

4
+ c

)∫
Ω

b(x)h2(ut) dx

+

(
N2g1 −

l

4

)∫
Ω

b(x)u2
t dx.

At this point we take N2 > 0 so large that N2g1 − l/4− 2/d > 0, and then take

N1 > 0 large enough so that N1/2− 4cN2
2 /l and σN1 − σ2E(0) > 0. Thus there

exist a positive constant m such that, for any t ≥ t1,

L′(t) ≤ −mE(t) + c(g ◦ ∇u)(t) + c

∫
Ω

b(x)(u2
t + h2(ut)) dx,

which completes the proof. �

3.2. Proof of Theorem 2.7. Following the same arguments as in Ko-

mornik [14], we consider

Ω+ = {x ∈ Ω : |ut| ≤ r} and Ω− = {x ∈ Ω : |ut| > r}.

It follows from (A2), (A5), (2.17) and (2.7) that, for any t ≥ t1,

η(t)

∫ t1

0

g(s)

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds(3.23)

+ η(t)

∫
Ω−

b(x)(u2
t + h2(ut)) dx

≤ − c

µ

∫ t1

0

g′(s)

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds

+ cη(t)

∫
Ω−

b(x)uth(ut) dx ≤ −cE′(t).
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Here we denote F (t) = η(t)L(t) + cE(t). It is easy to derive that F (t) ∼ E(t).

Multiplying (3.21) by η(t) and using (3.23), we can conclude that for any t ≥ t1,

(3.24) F ′(t) ≤ −mη(t)E(t) + cη(t)

∫ t

t1

g(s)

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds

+ cη(t)

∫
Ω+

b(x)(u2
t + h2(ut)) dx.

In order to prove Theorem 2.7 we distinguish the following two cases .

3.2.1. Special case: H(t) = ctp and 1 ≤ p < 3/2. Hölder’s inequality yields

that

(3.25) η(t)

∫
Ω+

b(x)(u2
t + h2(ut)) dx ≤ cη(t)

∫
Ω+

b(x)[uth(ut)]
1/p dx

≤ cη(t)

(∫
Ω+

b(x)uth(ut) dx

)1/p

≤ cη(p−1)/p(t)
[
− E′(t)

]1/p
.

Case 1. p = 1. It follows from (3.24)–(3.25) that, for any t ≥ t1,

(3.26) F ′(t) ≤ −mη(t)E(t)− cη(t)(g ◦ ∇u)− cE′(t) ≤ −mη(t)E(t)− cE′(t).

We define J (t) = F (t) + cE(t), which is equivalent to E(t), and can get from

(3.26) that J ′(t) ≤ −cη(t)J (t), for any t ≥ t1, which implies for any t ≥ t1,

J (t) ≤ J (t1) exp

(
− c

∫ t

t1

η(s) ds

)
.

Using the fact J (t) ∼ E(t), we have

E(t) ≤ c exp

(
− c

∫ t

0

η(s) ds

)
= cG−1

1

(
c

∫ t

0

η(s) ds

)
.

Case 2. 1 < p < 3/2. As in Messaoudi [21], we know that, for any δ0 < 2−p,∫∞
0
g1−δ0(s) ds < +∞. Choosing t1 so large as needed and using (2.7), we can

obtain that, for any t ≥ t1,

π(t) :=

∫ t

t1

g1−δ0(s)

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds(3.27)

≤ c
∫ t

t1

g1−δ0(s)

∫
Ω

(
|∇u(t)|2 + |∇u(t− s)|2

)2
dx ds

≤ cE(0)

∫ t

t1

g1−δ0(s) ds < 1.
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From Jensen’s inequality, (2.7), (A4) and (3.27) it follows that, for any t ≥ t1,∫ t

t1

g(s)

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds(3.28)

=

∫ t

t1

gδ0(s)g1−δ0(s)

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds

=

∫ t

t1

g(p−1+δ0)δ0/(p−1+δ0)(s)g1−δ0(s)

×
∫

Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds

≤π(t)

(
1

π(t)

∫ t

t1

g(p−1+δ0)(s)g1−δ0(s)

×
∫

Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds
)δ0/(p−1+δ0)

≤
(∫ t

t1

gp(s)

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds
)δ0/(p−1+δ0)

≤
(∫ t

t1

(−g′(s))
∫

Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds
)δ0/(p−1+δ0)

≤ c
[
− E′(t)

]δ0/(p−1+δ0)
.

Taking δ0 = 1/2 in (3.28), we can obtain from (3.24) that, for any t ≥ t1,

(3.29) F ′(t) ≤ −mη(t)E(t) + cη(t)
[
−E′(t)

]1/(2p−1)
+ cη(p−1)/p(t)

[
−E′(t)

]1/p
.

Multiplying (3.29) by E2p−2(t) and using (2.7), we can get

(FE2p−2)′ ≤ F ′E2p−2

≤ −mηE2p−1 + cηE2p−2(−E′)1/(2p−1) + cη(p−1)/pE2p−2(−E′)1/p,

which, applying Young’s inequality, implies for any ε > 0 and δ > 0,

(FE2p−2)′ ≤ −(m− ε)ηE2p−1 + Cεη(−E′(t)) + δηE2p + Cδ(−E′).

Noting E2p ≤ E(0)E2p−1 and choosing ε+ δE(0) < m, we can derive that

F ′0(t) ≤ −cη(t)E2p−1(t) with F0 = FE2p−2 + cE ∼ E.

Hence F ′0(t) ≤ −c η(t)F 2p−1
0 (t), which gives us

(3.30) E(t) ≤ c
(
c1

∫ t

0

η(s) ds+ c2

)−1/(2p−2)

.

Recalling p < 3/2 and using (3.30), we know that
∫∞

0
η(t)E(t) dt < +∞. Noting

that

η(t)

∫ t

0

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds ≤ c
∫ t

0

η(s)E(s) ds,
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then we see that

η(t)

∫ t

0

g(s)

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds = η(t)(gp·(1/p) ◦ ∇u)

≤ cη1/p(t)
[
(gp ◦ ∇u)

]1/p ≤ cη(p−1)/p(t)
[
(−g′ ◦ ∇u)

]1/p
≤ cη(p−1)/p(t)

[
− E′(t)

]1/p
,

which, together with (3.24), yields

(3.31) F ′(t) ≤ −mη(t)E(t) + cη(p−1)/p(t)
[
− E′(t)

]1/p
.

Multiplying (3.31) by Ep−1 and using the same arguments as before, we can

obtain that

E(t) ≤ c
(
c1

∫ t

0

η(s) ds+ c2

)−1/(p−1)

= cG−1

(
c1

∫ t

0

η(s) ds+ c2

)
.

3.2.2. General case. First we define I(t) by

I(t) :=

∫ t

t1

g(s)

H−1
0 (−g′(s))

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds,

where H0 is such that (2.13) satisfied. In view of (3.27) we get that I(t) satisfies,

for any t ≥ t1,

(3.32) I(t) < 1.

Without loss of generality, we assume that I(t) > 0 for all t ≥ t1, otherwise

(3.24) implies an exponential decay. In addition, we define λ(t) by

λ(t) = −
∫ t

t1

g′(s)
g(s)

H−1
0 (−g′(s))

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds.

From (A4) and the properties of H0 and D it follows that, for some k0 > 0,

g(s)

H−1
0 (−g′(s))

≤ g(s)

H−1
0 (H(g(s)))

=
g(s)

D−1(g(s))
≤ k0.

Choosing t1 so large as needed and using (2.7), we can obtain that for any t ≥ t1,

λ(t) ≤ −k0

∫ t

t1

g′(s)

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds(3.33)

≤ −cE(0)

∫ t

t1

g′(s) ds ≤ cg(t1)E(0) ≤ 1

2
min{r,H(r), H0(r)}.

Since H0(t) is strictly convex on (0, r] and H0(0) = 0, then H(νx) ≤ νH(x),

provided 0 ≤ ν ≤ 1 and x ∈ (0, r]. By using (A4), (2.15), (3.32)–(3.33) and
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Jensen’s inequality, we can obtain

λ(t) =
1

I(t)

∫ t

t1

I(t)H0

[
H−1

0 (−g′(s))
] g(s)

H−1
0 (−g′(s))

×
∫

Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds

≥ 1

I(t)

∫ t

t1

H0

[
I(t)H−1

0 (−g′(s))
] g(s)

H−1
0 (−g′(s))

×
∫

Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds

≥H0

(
1

I(t)

∫ t

t1

I(t)H−1
0 (−g′(s)) g(s)

H−1
0 (−g′(s))

×
∫

Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds
)

=H0

(∫ t

t1

g(s)

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds
)
,

which gives us

(3.34)

∫ t

t1

g(s)

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds ≤ H−1
0 (λ(t)).

It remains to estimate the last integral in (3.24). We first assume that r is small

enough such that, for any |s| ≤ r,

(3.35) sh(s) ≤ 1

2
min{r,H(r), H0(r)}.

Define S(t) by

S(t) :=
1

‖b‖L1(Ω+)

∫
Ω+

b(x)uth(ut) dx.

Using (A5) and Jensen’s inequality, we have

(3.36) H−1(S(t)) ≥ c
∫

Ω+

b(x)H−1(uth(ut)) dx ≥
∫

Ω+

b(x)
(
u2
t + h2(ut)

)
dx.

Combining (3.34) and (3.36) with (3.24), we see that, for any t ≥ t1,

F ′(t) ≤ −mη(t)E(t) + cη(t)H−1
0 (λ(t)) + cη(t)H−1(S(t)).

Using the properties of H, D and H0 and the fact that

H−1
0 (S(t)) = D−1(H−1(S(t))), D−1(0) = 0 and H−1(S(t)) ≤ r,

we can infer that H−1(S(t)) ≤ cH−1
0 (S(t)), which implies

F ′(t) ≤ −mη(t)E(t) + cη(t)H−1
0 (λ(t)) + cη(t)H−1

0 (S(t))(3.37)

≤ −mη(t)E(t) + cη(t)H−1
0 (λ(t) + S(t)).
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Now, for ε0 < r and c0 > 0, we define the function K1(t) by

K1(t) = H ′0

(
ε0
E(t)

E(0)

)
F (t) + c0E(t),

which is equivalent to E(t), i.e. there exist two positive constants a1 and a2 such

that a1K1(t) ≤ E(t) ≤ a2K1(t). Noting that E′(t) ≤ 0, H ′0 > 0 and H ′′0 > 0, we

obtain for any t ≥ t1,

K′1(t) = ε0
E′(t)

E(0)
H ′′0

(
ε0
E(t)

E(0)

)
F (t) +H ′0

(
ε0
E(t)

E(0)

)
F ′(t) + c0E

′(t)(3.38)

≤ −mη(t)E(t)H ′0

(
ε0
E(t)

E(0)

)
+ c0E

′(t)

+ cη(t)H ′0

(
ε0
E(t)

E(0)

)
H−1

0 (λ(t) + S(t)).

Now by H∗0 we denote the Fenchel conjugate function of the convex function

H0 (see, for example, Arnold [2]), i.e. H∗0 (s) = sup
t∈R+

(st−H0(t)). Then

H∗0 (s) = s(H ′0)−1(s)−H0[(H ′0)−1(s)],

is the Legendre transform of H0, which satisfies AB ≤ H∗0 (A) + H0(B). With

A = H ′0(ε0E(t)/E(0)) and B = H−1
0 (λ(t) + S(t)), and noting the fact H∗0 (s) ≤

s(H ′0)−1(s), and using (2.7), (3.33) and (3.35), we see that

K′1(t) ≤ −mη(t)E(t)H ′0

(
ε0
E(t)

E(0)

)
+ cη(t)H∗0

(
H ′0

(
ε0
E(t)

E(0)

))
(3.39)

+ cη(t)(λ(t) + S(t)) + c0E
′(t)

≤ −mη(t)E(t)H ′0

(
ε0
E(t)

E(0)

)
+ c ε0η(t)

E(t)

E(0)
H ′0

(
ε0
E(t)

E(0)

)
− cE′(t) + c0E

′(t).

For a suitable choice of ε0 and c0, we get that, for some constant k > 0,

(3.40) K′1(t) ≤ −kη(t)
E(t)

E(0)
H ′0

(
ε0
E(t)

E(0)

)
= −kη(t)H2

(
E(t)

E(0)

)
,

where H2(t) = tH ′0(ε0t).

Denote R(t) = a1K1(t)/E(0). It is easy to verify that

(3.41) R(t) ∼ E(t).

Since H ′2(t) = H ′(ε0t) + ε0tH
′′(ε0t), then, using the strict convexity of H on

(0, r], we know that H ′2(t), H2(t) > 0 on (0, 1]. By (3.40), we can obtain for

some k1 > 0 and for all t ≥ t1,

(3.42) R′(t) ≤ −k1η(t)H2(R(t)).
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Integrating (3.42) over (t1, t), we have∫ t

t1

−R′(s)
H2(R(s))

ds ≥ k1

∫ t

t1

η(s) ds,

then

k1

∫ t

t1

η(s) ds ≤
∫ t

t1

(H1(R))′(s) ds = H1(R(t))−H1(R(t1)),

which, noting H1 is strictly decreasing on (0, r] and lim
t→∞

H1(t) = +∞, gives us

(3.43) R(t) ≤ H−1
1

(
k1

∫ t

t1

η(s) ds+ k2

)
,

where H1(t) =
∫ 1

t
1/H2(s) ds and k2 > 0 is a constant. Then (2.12) follows from

(3.41) and (3.43) and continuity and boundedness of E and η.

In addition, if
∫ 1

0
H1(t) dt < +∞, then

∫∞
0
H−1

1 (t) dt < +∞, and so, by (2.12),∫∞
0
E(t) dt < +∞. Then∫ t

t1

∫
Ω

|∇u(t)−∇u(t− s)|2 dx ds ≤ c
∫ t

0

E(s) ds < +∞.

Hence we can repeat the same procedures with

I(t) :=

∫ t

t1

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds,

and

λ(t) := −
∫ t

t1

g′(s)

∫
Ω

a(x)|∇u(t)−∇u(t− s)|2 dx ds,

to establish (2.14). �
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